REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

ECOLE NATIONALE POLYTECHNIQUE

DEPARTEMENT DE GENIE CIVIL

PROJET DE FIN D'ETUDES

EN VUE DE L'OBTENTION DU DIPLOME D'INGENIEUR D'ETAT EN GENIE CIVIL

Etude d'un bâtiment (R+9) à usage d'habitation en zone sismique

Dirigé par : Réalisé par :

Mme A.CHIKH
M. HAMIDA Takieddine
M. KADRI Youcef

Promotion 2014

Ecole Nationale Polytechnique 10, Avenue Hassen Badi BP182 El –Harrach 16200 Alger « Algérie »

Tel: 213.21.52.53.01/03 - Fax: 213.21.52.29.73

Résumé

Le but de ce travail est l'étude d'une structure de bâtiment en béton armé (R+9) implanté à Alger, classée comme zone de forte sismicité.

La résistance du bâtiment est assurée par un système de contreventement en voiles, la conception et le calcul sont conformes aux règlements de construction en vigueur (RPA 99/2003, CBA 93, BAEL91).

L'étude dynamique a été faite avec le logiciel Etabs **V9.0.7** 'Extended Three Dimensional Analysis of Building Systems '

Mots clés

Béton armé, contreventement par voiles, étude dynamique, voiles.

ملخص

إن الهدف من هذا العمل هو دراسة بناية من الخرسانة المسلحة ذات تسعة طوابق و طابق أرضي, هي في طور الإنجاز بالجزائر العاصمة, المصنفة كمنطقة نشاط زلزالي كبير.

مقاومة البناية محققة بواسطة نظام دعم بجدر ان (من الخرسانة المسلحة). وقد تم التصميم وفقا لقوانين ومعايير البناء السارية المفعول في الجزائر (RPA 99/2003, CBA 93, BAEL91)

أعتمد في الدراسة الميكانيكية على برنامج Etabs V9.0.7

كلمات المفتاح

در اسة ديناميكية جدر إن دعم خرسانة مسلحة

Abstract

The aim of this work is the study of a reinforced concrete structure (R + 9) which is outstanding execution in Algiers that is classified as zone of high seismicity.

The strength of the building system is provided by braced sails, the design was done according to building regulations force (RPA 99/2003, CBA 93, and BAEL91), and the dynamic study was done with the software Etabs **V9.0.7** 'Extended Three Dimensional Analysis of Building Systems '

Keywords

Reinforced concrete, bracing by shells, dynamic study, shells

Remerciements

Nous remercions, en premier lieu, notre dieu qui a bien voulu nous donner la force pour effectuer le présent travail.

Nous remercions nos très chers parents pour leurs soutiens et leurs patiences.

Nous exprimons nos profonds remerciements à notre promotrice Mme. A.CHIKH pour son orientation et ses précieux conseils.

Nous remercions les membres de jury qui nous feraient l'honneur de juger ce travail.

Nous remercions chaleureusement tous les professeurs qui ont contribué à notre

formation.

Nous voudrions aussi remercier tous les étudiants et le personnel de l'Ecole Nationale polytechnique.

Tables des matières

Introduction générale	1
Chapitre I : Présentation du projet	
1. Présentation du bâtiment	2
2. Dimensions de l'ouvrage	2
2.1. Système structural.	6
2.2. Planchers	6
2.3. Maçonnerie	6
2.4. Revêtements	6
2.5. Terrasse	
2.6. Escaliers	7
2.7. Ascenseur	7
2.8. Acrotère	
3. Caractéristiques mécaniques des matériaux	7
3.1. Béton	7
3.2. Aciers	8
Chapitre II : Prédimensionnement et descente de cl	ıarge
1. Introduction	9
2. Pré dimensionnement des planchers	9
2.1. Résistance au feu	9
2.2. Isolation phonique	9
2.3. Résistance à la flexion	9
3. Evaluation des charges et des surcharges	
3.1. Plancher terrasse	10
3.2. Planchers courants	10
3.3. Cloisons doubles	10
3.4. Pré dimensionnement des voiles	11
3.5. Descente des charges	13
Chapitre III : Dimensionnement des éléments seconda	
1. Introduction	16
2. Acrotère	16
2.1. Evaluations des sollicitations de calcul	
2.2. Calcul des efforts	17
2.3. Vérification au cisaillement	18
2.4.Composante horizontale de la charge sismique	
3. Calcul du garde-corps	19
3.1. Introduction	19
3.2. Dimensions et modélisation du garde-corps	
3.3. Evaluations des sollicitations	
3.4. Ferraillage du garde-corps	
3.5. Vérification de la condition de non-fragilité	
3.6. Composante horizontale de la charge sismique	
3.7. Composante horizontale de la charge sismique	
4. Balcons	
4.1. Calculs les sollicitations	23

Tables des matières

	4.2. Ferraillage des Balcons	.23
5.	Calcul des escaliers	.24
	5.1. Caractéristiques géométriques	.24
	5.2. Prédimensionnement de la paillasse et du palier	.25
	5.3. Evaluation des charges et surcharges	.25
	5.4. Combinaisons des charges	.26
	5.5. Modèle de calcul d'escalier	.27
	5.6. Calculs des Sollicitations	.27
	Chapitre IV : Analyse dynamique	
1.	Introduction	.30
2.	Objectifs de l'étude dynamique	.30
3.	Modélisation	.30
4.	Contreventement	.31
5.	Choix de la méthode de calcul	.31
	5.1. Méthode statique équivalente	.32
	5.2. Méthode modale spectrale	.32
6.	Modes à considérer	.36
7.	Résultats numériques	.36
	7.1. Caractéristiques géométriques du bâtiment	.36
	7.2. Périodes et facteurs de participation massique	.37
8.	Vérification	.38
	8.1. Vérification de la période fondamentale de la structure	.38
	8.2. Résultante des forces sismiques de calcul	.38
	8.3. Vérification au renversement	.39
	8.4. Justification vis-à-vis des déformations	.40
	8.5. justification vis-à-vis de l'effet P- Δ	.41
9.	Conclusion	.42
	Chapitre V : Les planchers	
1.	Introduction	43
2.	Types de panneaux pour les planchers des étages courants et la terrasse	43
	Méthode de calcul	
4.	Calcul du plancher terrasse	.44
	4.1. Calcul du ferraillage	.51
	4.2. Vérification du cisaillement	.51
5.	Calcul des planchers courants	.51
	5.1. Calcul du ferraillage	57
	5.2. Vérification du cisaillement	
		,50
	Chapitre VI : Ferraillage des éléments structuraux	_
1.	Introduction	
	1.1. Combinaisons d'actions	
	1.2. Identification des voiles	
	13 Ferraillage vertical	61

Tables des matières

1.4. Ferraillage horizontal	61
1.5. Armatures transversales	62
2. Ferraillage des trumeaux	62
2.1. Exposé de la méthode	62
2.2. Vérifications	66
2.2.1. Vérification à l'ELS	66
2.2.2. Vérification de la contrainte de cisaillement	66
3. Ferraillage des linteaux	71
3.1. Calcul le ferraillage	71
3.2. Ferraillage final	72
Chapitre VII : Etude des fondations	
1. Introduction	74
2. Choix du type de fondation	74
3. Dimensionnement des fondations	74
3.1. Prédimensionnement du radier	75
3.2. Caractéristiques géométriques du radier	77
4. Vérifications	77
4.1. Vérification au cisaillement	77
4.2. Vérification au poinçonnement	78
4.3. Vérification de la stabilité au renversement	79
4.4. Vérification vis-à-vis des contraintes du sol	79
4.5. Vérification de l'effort de sous pression	80
5. Ferraillage du radier	80
5.1. Calcul du ferraillage	86
5.2. Vérification du cisaillement	
6. Ferraillage des nervures	88
6.1. Armatures longitudinales	
6.2. Vérification de l'effort tranchant	91
7. Etude du débord de radier	91
7.1. Caractéristique géométrique du débord	91
7.2. Vérification au cisaillement	92
8. Etude du voile périphérique	92
8.1. Dimensionnement du voile périphérique	92
8.2. Détermination des sollicitations	92
8.3. Ferraillage du voile périphérique	93
9. Conclusion.	95
Conclusion générale	
Bibliographie.	

Liste des tableaux

Chapitre II : Présentation du projet

Tab.II.1 Charge permanente due au plancher terrasse10
Tab.II.2 Charge permanente due au plancher courant11
Tab.II.3 Charge permanente du aux cloisons doubles11
Tabl.II.4 Règle de dégression adopté15
Chapitre III : Dimensionnement des éléments secondaire
Tab.III.1. Efforts agissant sur l'acrotère17
Tab.III.2. Efforts agissants sur le garde-corps20
Tab III.3. Calcul du ferraillage de l'acrotère21
Tableau III.4. Balcon : charges et surcharges23
Tableau III.5. Balcon : résultats du calcul à l'ELS23
Tab.III.6. Charge et surcharge due au palier26
Tab.III.7. Charge et surcharge due à la volée26
Tab.III.8.Combinaisons de charges considérées pour l'escalier à deux volées26
Tab.III.10.Sollicitations de calcul pour l'escalier27
Tab.III.11. Résultats du ferraillage à l'ELU+ vérification à l'ELS de l'escalier28
Chapitre IV : Analyse dynamique
Tab.IV.1 Facteurs définissant le spectre de réponse
Tab.IV.2 Valeurs du spectre de réponse
Tab.IV.3. Caractéristiques du bâtiment
Tab.IV.4. Participation des masses modales effectives
Tab.IV.5. Charge sismique à la base par la méthode statique équivalente39
Tab.IV.6 Charge sismique à la base par la méthode modale spectrale donnée par
ETABS39
Tab.IV.7 Vérification de l'effort tranchant à la base
Tab.IV.8 Vérification de la stabilité au renversement40
Tab.IV.9 Justification vis-à-vis la déformation40
Tab.IV.10 Justification vis-à-vis de l'effet P-Delta41
Chapitre V : Les plancher
Tab.V.1. Panneau type 1 du plancher terrasse, efforts et diagrammes45
Tab.V.2. Panneau type 2 du plancher terrasse, efforts et diagrammes46
Tab.V.3. Panneau type 3 du plancher terrasse, efforts et diagrammes47
Tab.V.4. Panneau type 4 du plancher terrasse, efforts et diagrammes48
Tab.V.5. Panneau type 5 du plancher terrasse, efforts et diagrammes49

Liste des tableaux

Tab.V.6. Récapitulatif des moments max et résultats du ferraillage des panneaux
du plancher terrasse50
Tab.V.7. Vérification du cisaillement51
Tab.V.8. Panneau type 1 de l'étage courant, efforts et diagrammes52
Tab.V.9. Panneau type 2 de l'étage courant, efforts et diagrammes53
Tab.V.10. Panneau type 3 de l'étage courant, efforts et diagrammes54
Tab.V.11. Panneau type 4 de l'étage courant, efforts et diagrammes55
Tab.V.12. Panneau type 5 de l'étage courant, efforts et diagrammes56
Tableau IV.13. Récapitulatif des moments et résultats du ferraillage des panneaux
de planchers courants57
Tab.V.14. Vérification du cisaillement58
Chapitre VI : ferraillage des éléments structuraux
Tab VI.1. Caractéristiques des voiles
Tab VI.2. Ferraillage vertical du voile plein67
Tab VI.3. Calcul du ferraillage67
Tab VI.4. Choix d'armature verticale67
Tab.VI.5. Sections d'armatures pour les voiles de la 1ème zone
Tab.VI.6. Sections d'armatures pour les voiles de la 2ème zone69
Tab.VI.7. Sections d'armatures pour les voiles de la 3ème zone70
Tab.VI.8. Ferraillage des linteaux72
Chapitre VII: Etude des fondations
Tab.VII.1: Les efforts à la base de la structure74
Tab VII.2. Vérification des contraintes80
Tab VII.3. Panneau type 1 du radier, efforts et diagrammes
Tab VII.4. Panneau type 2 du radier, efforts et diagrammes82
Tab VII.5. Panneau type 3 du radier, efforts et diagrammes83
Tab VII.6. Panneau type 4 du radier, efforts et diagrammes84
Tab VII.7. Panneau type 5 du radier, efforts et diagrammes85
Tab.V.8. Récapitulatif des moments max et résultats du ferraillage des panneaux
du plancher terrasse86
Tab.VII.9. Vérification du cisaillement87
Tab.VII.10. Transmission des charges
Tab.VII.11. Moments et efforts tranchant dans les nervures90
Tab.VII.11. Ferraillage des nervures90
Tab.VII.12. Ferraillage du débord91

Liste des tableaux

Tab .VII.13. Valeur de moment de calcul pour le voile périphérique	94
Tab .VII.14. Résultats de ferraillage du voile périphérique	94

Liste des figures

Chapitre I : Présentation du projet

Fig.I.1. vue en plan - R.D.C
Fig.I.2. vue en plan - étage courant
Fig.I.3. vue en plan de la terrasse
Fig.I.4. Coupe A-A5
Fig.I.5. La zone d'implantation du projet6
Fig.I.6. Diagramme de calcul du béton (diagramme parabole –rectangle8
Fig.I.7. Diagramme de calcul des aciers8
Chapitre II : Prédimensionnement et descente des charges
Fig.II.1 Détail du plancher terrasse
Fig.II.2 Détail plancher courant
Fig.II.3 Cloisons doubles
Fig.II.4 Coupe de voile en élévation
Fig.II.5 Coupe de voile en plan
Chapitre III : Dimensionnement des éléments secondaire
Fig.III.1 Caractéristiques géométriques et modèle de calcul de l'acrotère16
Fig.III.2. Dimensions de la section dangereuse
Fig.III.3. Ferraillage de l'acrotère
Fig.III.4.dimensions et modélisation du garde –corps
Fig.III.5. Ferraillage du garde-corps
Fig. III.6. Dimensions du balcon
Fig.III.7. Balcon : modélisation et diagrammes
Fig. III.8. Ferraillage des balcons (treillis soudé)
Fig.III.9. Vue 3D de l'escalier à 2 volées
Fig.III.10. Caractéristiques géométriques de l'escalier du RDC25
Fig.III.11. Vue en plan de l'escalier
Fig.III.12.Modélisation et diagrammes des efforts de volée
Fig.III.13. Schéma statique de l'escalier
Fig.III.14. Ferraillage de l'escalier29
Chapitre IV : Analyse dynamique
Fig. IV.1. Modèle en 3D du bâtiment31
Fig.IV.2 Allure du spectre de réponse
Fig.IV.3.Disposition des voiles
FigIV.4. Principaux modes de vibration
Fig.IV.5.Effet P-Δ

Liste des figures

Chapitre V : Les plancher	
Fig.V.1. Différents types de panneaux pour le plancher terrasse	43
Fig.V.2.Exemple de modélisation d'un panneau avec le logiciel SOCOTEC	44
Fig.V.3. Schéma de ferraillage des planchers des différents niveaux	59
Chapitre VI : ferraillage des éléments structuraux	
Fig.VI.1 Identification des voiles	60
Fig.VI.2. Schéma de disposition des armatures verticale	61
Fig.VI.3. Diagramme d'une section entièrement	64
Fig.VI.4. Diagramme d'une section partiellement Comprimée	64
Fig.VI.5. Diagramme d'une section entièrement	64
Fig.VI.6. Schéma de ferraillage du voile de l'axe G'	71
Fig.VI.7. Ferraillage du linteau	73
Chapitre VII: Etude des fondations	
Fig.VII.1. Coupe verticale du radier	76
Fig.VII.2. Identification des voiles	77
Fig.VII.3. Périmètre utile des voiles	78
Fig.VII.4. schéma de la contrainte du sol	79
Fig.VII.5.Schéma de ferraillage du radier.	87
Fig.VII.6. Transmission des charges aux poutres	88
Fig.VII.7. Charges revenants aux nervures	89
Fig.VII.8. Diagrammes des efforts dans la nervure sens ${\bf X}$	89
Fig.VII.9. Diagrammes des efforts dans la nervure sens Y	90
Fig. VII.10. Schéma statique et dimensions du débord	91
Fig.VII.11. Ferraillage de la nervure	92
Fig. VII.12. Schéma statique du voile périphérique.	93
Fig. VII 13 Scháma da farraillaga du voila nárinháriqua	04

INTRODUCTION GENERALE

Introduction générale

Les désordres engendrés par les sollicitations sismiques, dont le phénomène de ruine structurelle partielle ou totale des constructions, ont fait que la prise en compte du risque sismique dans la conception des ouvrages est devenue plus que nécessaire. La connaissance phénoménologique de l'action sismique et de ses dangers s'est par ailleurs fortement améliorée en Algérie surtout après celui du 21 Mai 2003 à Boumerdes.

Le développement rapide des techniques de constructions conjugué aux impératifs d'ordre architectural incite souvent les maîtres d'œuvres à fixer leur choix sur la construction de structures élancées présentant des irrégularités en plan et/ou en élévation.

De telles structures sont constituées en général d'ossatures présentant des distributions de rigidités et de masses hétérogènes excédant de loin les normes parasismiques, ce qui est le cas pour notre structure qui est en forme de « Y ».

Les activités du génie civil, couvrent non seulement l'état de l'art actuel dans les domaines inhérents aux thèmes majeurs liés aux séismes, mais tiennent compte aussi de plus en plus des tendances futures sur l'économie d'énergie.

Dans le cadre de notre projet de fin d'études, nous nous proposons de faire l'étude technique complète d'un bâtiment R+9, Le dimensionnement et la vérification seront effectués en respectant la règlementation en vigueur, en suivant les étapes principales suivantes:

- Après la présentation complète du projet à étudier, la définition de ses différents éléments et le choix de matériaux à utiliser nous passerons à la détermination des actions verticales présentes dans le bâtiment et le prédimensionnement des éléments structuraux et non structuraux du bâtiment.
- L'étude dynamique du bâtiment sera réalisée par l'analyse du modèle de la structure en 3D à l'aide du logiciel de calcul ETABS.
- Le calcul du ferraillage des éléments structuraux, des éléments non structuraux et des planchers (pour lesquels on utilisera le logiciel de calcul Socotec Dalle)
- L'étude de l'infrastructure, suivie d'une conclusion générale, achèvera ce travail.

CHAPITRE I PRESENTATION DU PROJET

1. Présentation du bâtiment

L'ouvrage étudié est un bâtiment R+9 à usage d'habitation situé à Ouled-Fayet dans la wilaya d'Alger. Il fait partie d'un projet de réalisation de 1500 logements dans le cadre du programme location-vente dont l'étude et la conception ont été confiées au bureau d'études national BEREG et la réalisation à la société ALCOST.

D'après la classification des RPA99 version 2003, le bâtiment est considéré comme un ouvrage d'importance moyenne (groupe d'usage 2). La région est classée zone III.

La structure du bâtiment est constituée par des voiles en béton armé. Le système de fondation prévu est un radier général ancré dans le sol à 4 m mètres de profondeurs par rapport au niveau du terrain naturel.

2. Dimensions de l'ouvrage

• En plan

Les dimensions de l'ouvrage en plan sont :

Sens longitudinal: 31,85 mSens transversal: 23,54 m

> Surface totale du bâtiment : 749,75 m²

En élévation

- \blacktriangleright Hauteur du rez-de-chaussée $H_R = 3,06$ m
- \blacktriangleright Hauteur du niveau courant $H_C = 3,06 \text{ m}$
- \blacktriangleright Hauteur totale du bâtiment (sans acrotère) $H_t = 30,6$ m

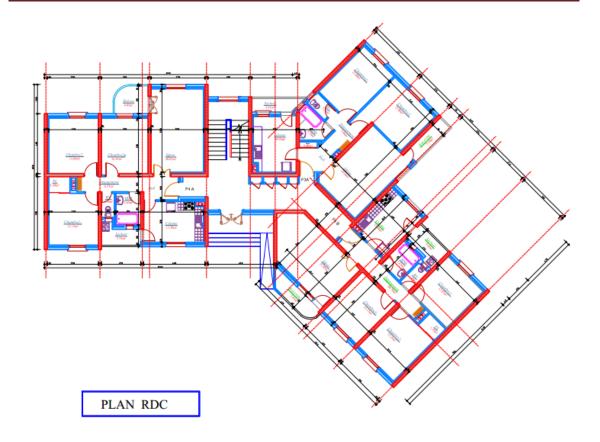


Fig.I.1. vue en plan - R.D.C.

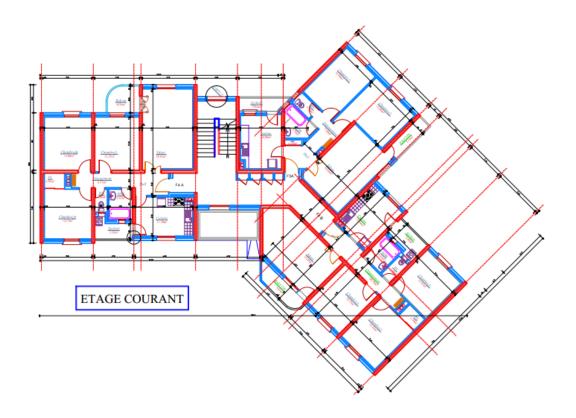


Fig.I.2. vue en plan - étage courant

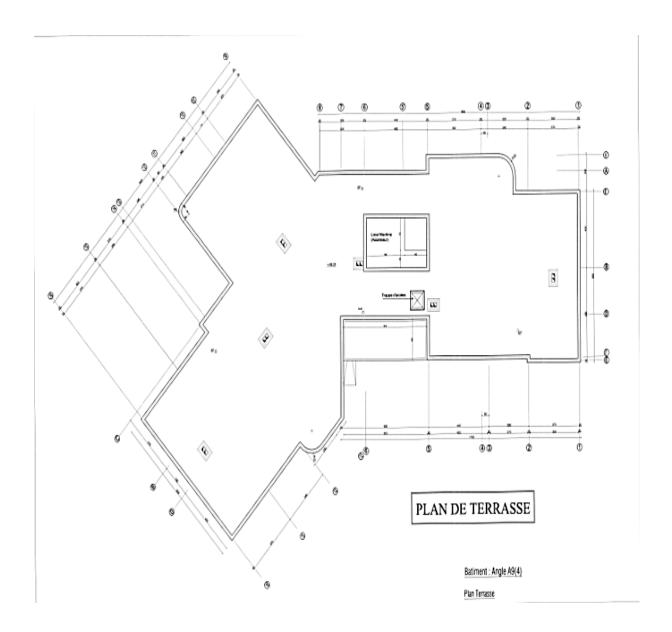


Fig.I.3. vue en plan de la terrasse

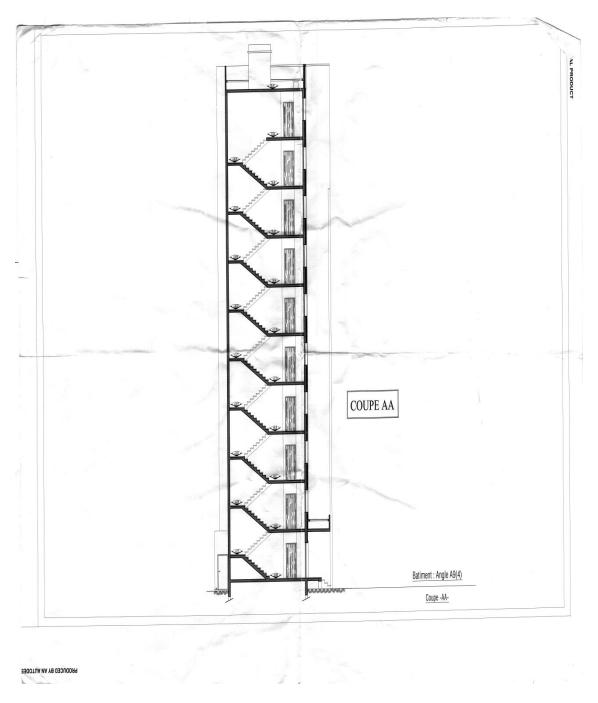


Fig.I.4. Coupe A-A

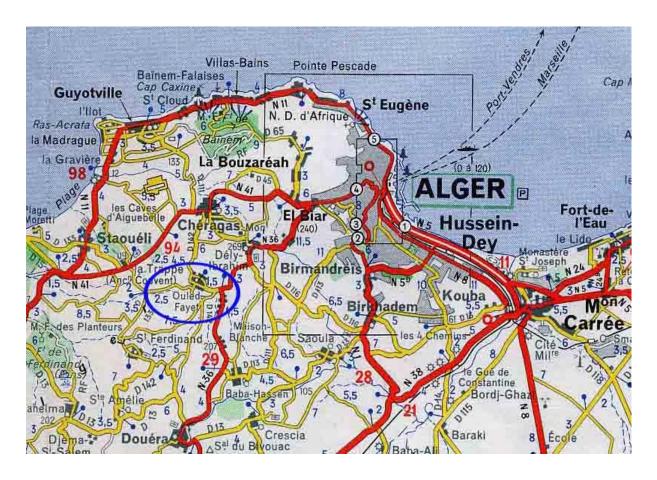


Fig.I.5. La zone d'implantation du projet

2.1 Système structural

La stabilité de l'ouvrage vis-à-vis des actions verticales et des actions horizontales dues au séisme est assurée par des voiles.

2.2 Planchers

Ce sont des diaphragmes rigides d'une faible épaisseur par rapport aux autres dimensions. Les planchers du bâtiment étudié sont des dalles pleines en béton armé.

2.3 Maconnerie

La maçonnerie la plus utilisée en Algérie est la brique en terre cuite. Les murs de façades, pour une meilleure isolation, sont des murs en double cloison en briques d'une épaisseur de 25cm.

Les murs de séparation intérieurs (cloisons simples) sont en briques de 10cm d'épaisseur.

2.4 Revêtements

Pour les planchers on prépare une couche de mortier sur laquelle on place une dalle de sol.

2.5 Terrasse

La terrasse du bâtiment est non accessible. Elle comporte des pentes de 1,5% qui acheminent l'eau vers des gargouilles. Des trous de ventilation sont aussi prévus.

2.6 Escaliers

Les escaliers, en béton armé coulé sur place, sont de type droit avec une ou deux volées et un ou deux paliers de repos.

2.7 Ascenseur

Un ascenseur est prévu, d'une capacité de charge de 630 Kg soit le poids de huit (8) personnes avec une vitesse de 1 m/s.

2.8 Acrotère

La terrasse est entourée d'un acrotère en béton armé de 60 cm de hauteur et de 10 cm d'épaisseur pour permettre d'effectuer correctement les relevés d'étanchéité.

Caractéristiques mécaniques des matériaux

3.1. Béton

Le béton utilisé est un béton dont les caractéristiques sont les suivantes :

- -Dosage de ciment :350 kg/m³.
- Masse volumique : $\rho = 25 \text{kg/m}^3$.
- -Résistance du béton à la compression $f_{C28} = 25$ MPa.
- -Résistance du béton à la traction $f_{t28} = 0.6 + 0.06 * f_{C28} = 2.1$ MPa.
- -Module d'élasticité $E_i = 3.21 \times 10^4 MPa$.

➤ à l'E.L.U

Contrainte limite de compression dans le béton :

onte limite de compression dans le beton :
$$\sigma_{bu} = \frac{0.85* fC28}{\gamma_b} \quad \text{avec} : \quad \gamma_b = 1.15 \text{ pour situations accidentelles}$$

$$\gamma_b$$
=1.5 pour situations normales

La contrainte limite ultime τ_u de cisaillement est limitée à :

$$\tau_u = \min\{0.2f_{c28}/\gamma_b; 5Mpa\}$$
 si la fissuration est peu préjudiciable

$$au_u = \min \{0.15 f_{c28} / \gamma_b; 4Mpa\}$$
 si la fissuration est préjudiciable ou très préjudiciable

> à l'E.L.S

Contrainte limite de compression dans le béton : $\overline{\sigma} = 0.6f_{c28} = 15MPa$.

Module de déformation longitudinale du béton :

- pour des contraintes de courte durée d'application :

$$E_{ij}\!=\!11000(f_{c28})^{1/3}\!=32164.19MPa.$$

- pour des contraintes de longue durée d'application :

$$E_{\nu j} \!\! = 3700 (f_{c28})^{1/3} \! = \!\! 10818.8 MPa.$$

> Coefficient de Poisson (v):

v = 0pour le calcul des sollicitation aux états limites ultimes (ELU)

v = 0.2pour le calcul des déformations aux états limites de services (ELS)

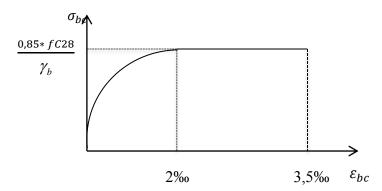


Fig.I.6. Diagramme de calcul du béton (diagramme parabole –rectangle)

3.2. Aciers

Les aciers utilisés sont :

- ➤ HA (haute adhérence) F_eE400
- > RL (ronds lisses) F_eE235
- Module d'élasticité longitudinal $E = 2,10 \times 10^5 MPa$
- > Coefficient de sécurité
 - Situation normale

$$\gamma_{\rm s} = 1.15$$

• Situation accidentelle

$$\gamma_s = 1.00$$

- > Contraintes de calcul
 - Situation normale

$$\sigma_s = \frac{fe}{1.15} = 348 \text{ MPa}$$

• Situation accidentelle

$$\sigma_s = \frac{fe}{1.00} = 400 \text{MPa}$$

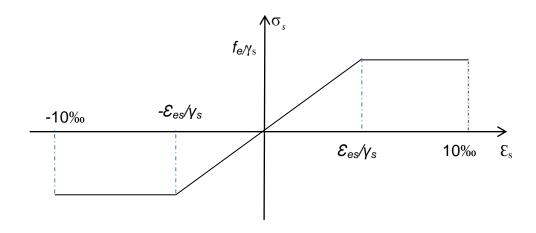


Fig.I.7. Diagramme de calcul des aciers

CHAPITRE II PREDIMENTIONNEMENT ET DISCENTE DE CHARGE

1. INTRODUCTION

Dans ce chapitre, on va faire un dimensionnement initial des éléments structuraux qui sont les planchers et les voiles dans notre cas .ce pré dimensionnement nous permet de connaître les ordres de grandeurs des dimensions de la structure, et pour ça on va utiliser des lois empiriques.

2. Pré dimensionnement des planchers

Les planchers utilisés sont des dalles pleines en béton armé. Ils permettent de transmettre les charges horizontales et les surcharges aux éléments porteurs (voiles).

L'épaisseur adoptée doit vérifier certaines conditions :

2.1 Résistance au feu :

e₁=7 cm pour une heure de coupe-feu.

e₂=11 cm pour 2 heures de coupe -feu.

2.2 Isolation phonique:

Pour avoir une isolation phonique acceptable , il faut que la masse du plancher dépasse 300kg/m^3 . Pour un béton de masse volumique $\rho = 2500 \text{kg/m}^3$ $e_2 = \frac{300}{2500} = 12 \text{cm}$.

2.3 Résistance à la flexion :

Il existe deux types de dalles suivant la nature de la répartition des charges :

> Dalles portant dans un seul sens avec $\alpha < 0.4$ tel que $\alpha = \frac{lx}{ly}$ avec Lx <Ly

L'épaisseur est obtenue par la formule

$$\frac{lx}{40} \le e \le \frac{lx}{30} \ .$$

Dans le cadre de cette étude $l_x = 3,85m$, $e \le \frac{385}{30} = 12,83cm$

ightharpoonup Dalles portant dans un seul sens avec $\alpha \ge 0,4$,

L'épaisseur est donnée par la formule

$$\frac{lx}{25} \le e \le \frac{lx}{20} \; ,$$

Dans notre cas l_x=3,70m

$$e \le \frac{370}{20} = 18,5 \text{ cm}$$

On adoptera une épaisseur e = 18 cm.

3. Evaluation des charges et des surcharges

3.1 Plancher terrasse

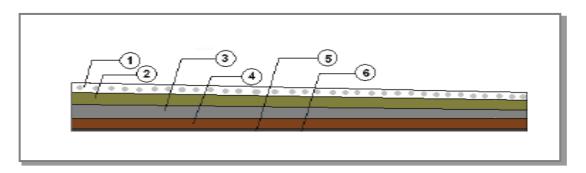
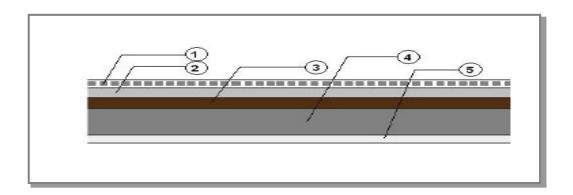
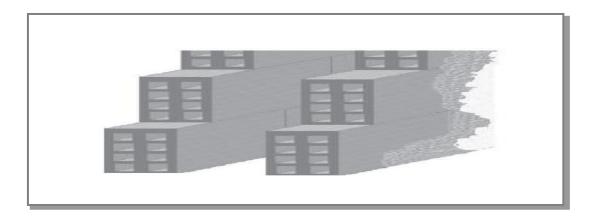



Fig.II.1 Détail du plancher terrasse

Tableau II.1 Charge permanente due au plancher terrasse

	Couche	ρ [kg/m ³]	Epaisseur [cm]	Poids [kN/m ²]
1	Gravillons roulés	1500	4	0,6
2	Etanchéité	600	2	1,2
3	Forme de pente	2000	10	4
4	Plaque de liège	750	4	0,3
5	Dalle pleine	2500	18	4,5
6	Enduit de plâtre	1330	1,5	0,2
	Total			7 ,72

3.2 Planchers courants


FigII.2 Détail plancher courant

CHAPITRE II : Prédimensionnement et descente de charges

Tableau II.2 Charge permanente due au plancher courant

	Couche	ρ [kg/m ³]	Epaisseur e [cm]	Poids [kN/m ²]
1	Dalle de sol	1800	1,5	0,27
2	Mortier de ciment	2000	2	0,40
3	Couche de sable	2000	2	0,40
4	Dalle pleine	2500	18	4,50
5	Enduit de plâtre	1330	1,5	0,20
	Total			5,77

3.3 Cloisons doubles

FigII.3 Cloisons doubles

Tableau II.3 Charge permanente du aux cloisons doubles

	Couche	$\boldsymbol{\rho}[\mathrm{kg/m}^3]$	Epaisseur e [cm]	Poids [kN/m ²]
1	Enduit de plâtre	1330	1,5	0,61
2	Brique creuse	900	10,0	2,75
3	Lame d'air	-	5,0	-
4	Brique creuse	900	10,0	2,75
5	Enduit de ciment	1330	1,5	0,61
	Total			6,72

3.4 Pré dimensionnement des voiles

Le prédimensionnement des murs en béton armé est justifié par l'article 7.7.1 du **RPA99V2003.** Les voiles servent d'une part à contreventer le bâtiment en reprenant les efforts horizontaux (séisme ou vent) et d'autre part à reprendre les efforts verticaux qu'ils transmettent aux fondations.

D'après le **RPA99V2003** article 7.7.1« les éléments satisfaisants la condition ($L \ge 4e$) sont considérés comme des voiles, contrairement aux éléments linéaires. »

L et e sont respectivement la portée et l'épaisseur du voile.

L'article 7.7.1 RPA99V2003 « l'épaisseur minimale est de 15 cm ». De plus l'épaisseur doit être déterminé en fonction de la hauteur libre d'étage h_e et des conditions de rigidité à l'extrémité comme indiqué sur la figure ci-après :

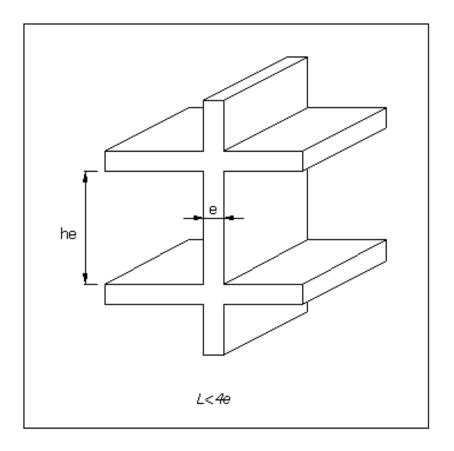


Fig. II.4 Coupe de voile en élévation.

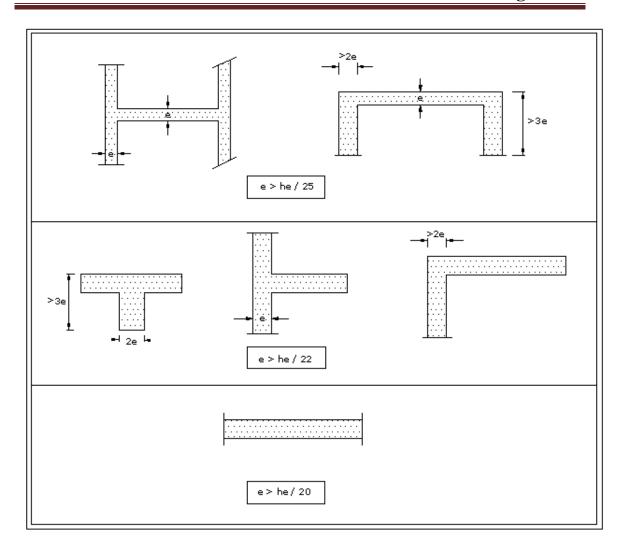


Fig. II.5 Coupe de voile en plan.

 $e \ge max (he/25; he/22; he/20).$

 $e \ge max (12,2; 13,86; 15,25).$

On prendra : e = 20 cm.

3.5 Descente des charges

C'est l'opération qui consiste à calculer les efforts normaux résultant de l'effet des charges des charges verticales sur les divers éléments porteurs verticaux (les voiles dans notre cas) ainsi que les fondations, afin de faire leur dimensionnement.

Pour faire un calcul de descente de charges, on utilise la règle de dégression donnée par le règlement D.T.R.B.C.22 qui en exige l'application quand le bâtiment à étudier contient plus de cinq niveaux et que l'occupation des différents niveaux peut être considérée comme indépendante ce qui est le cas pour le bâtiment étudié.

CHAPITRE II : Prédimensionnement et descente de charges

Donc:

Sous le terrasse : Q₀

Sous le 9éme étage : $Q_0 + Q_1$

Sous le 8éme étage : $Q_0 + 0.95(Q_1 + Q_2)$

Sous le 7éme étage : $Q_0 + 0.90(Q_1 + Q_2 + Q_3)$

Sous le 6éme étage : $Q_0 + 0.85(Q_1 + Q_2 + Q_3 + Q_4)$

Sous le 5éme étage : $Q_0 + 0.80(Q_1 + Q_2 + Q_3 + Q_4 + Q_5)$

Sous les étages inférieurs suivants : $Q_0 + \frac{3+n}{2n} \sum_{i=1}^{n} Q_i$

Avec n : nombre d'étages compté à partir du sommet du bâtiment

Le DTR BC2.2 préconise les valeurs de surcharges d'exploitation :

 $ightharpoonup Q_0 = 1,00 \text{ KN/m}^2$ pour une terrasse non accessible.

 $ightharpoonup Qi = Q = 1,50 \text{ kN/m}^2 \text{ pour les logements (niveaux courants)}$

L'effort normal dû aux charges d'exploitation sous chaque niveau tenant compte de la dégression est présenté dans tableau ci-dessous.

CHAPITRE II : Prédimensionnement et descente de charges

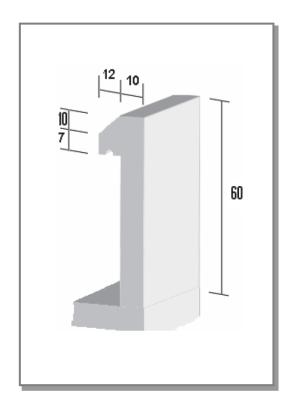
Tableau II.4 Règle de dégression adopté.

Niveau	Dégression	Q cumulée [kN/m²]
Terrasse	Q ₀	1
Sous le 9 ^{ème} étage	$Q_0 + Q_1$	2,5
Sous le 8 ^{ème} étage	$Q_0 + 0.95 (Q_1 + Q_2)$	3,85
Sous le 7 ^{ème} étage	$Q_0 + 0.90 (Q_1 + Q_2 + Q_3)$	5,05
Sous le 6 ^{ème} étage	$Q_0 + 0.85 (Q_1 + Q_2 + Q_3 + Q_4)$	6,1
Sous le 5 ^{ème} étage	$Q_0 + 0.80 (Q_1 + Q_2 + Q_3 + Q_4 + Q_5)$	7,0
Sous le 4 ^{ème} étage	$Q_0 + 0.75 (Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6)$	7,75
Sous le 3 ^{ème} étage	$Q_0 + 0.71 (Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6 + Q_7)$	8,5
Sous le 2 ^{ème} étage	$Q_0 + 0.687 (Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6 + Q_7 + Q_8)$	9,25
Sous le 1 ^{er} étage	$Q_0 + 0.67 (Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6 + Q_7 + Q_8 + Q_9)$	10,0
Sous le RDC	$Q_0 + 0.65 (Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6 + Q_7 + Q_8 + Q_9$	13,03

CHAPITRE III DIMENSIONNEMENT DES ELEMENT SECONDAIRE

1. Introduction

« Les éléments non structuraux sont des éléments qui n'ont pas une fonction porteuse ou de contreventement. Ils peuvent être en maçonnerie (cloisons, murs extérieurs etc ...) ou en béton armé (acrotère, balcon, ect ...) » [Article 6.2.1 RPA99version 2003]. Ils ne participent pas directement au contreventement et leur calcul se fait sous l'action des charges permanentes et des surcharges d'exploitation. Cependant, certains éléments doivent être vérifiés sous l'action de la charge sismique (composante verticale ou horizontale). Ces éléments peuvent avoir une influence sur la période de notre structure et créent une distorsion du bâtiment.


Dans ce présent chapitre on va faire le calcul des éléments suivants :

- Acrotère
- Escaliers
- ➤ Garde-corps
- ➤ Balcon

2. Acrotère

L'acrotère est considéré comme une console verticale encastrée au plancher terrasse, soumis à son poids propre et à une charge horizontale de **1 kN/ml appliquée** à l'extrémité supérieure.

La fissuration est considérée comme préjudiciable puisque l'acrotère est soumis aux intempéries.

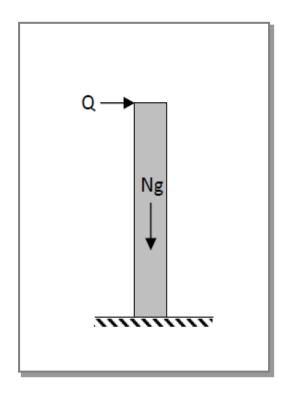


Fig. III.1 Caractéristiques géométriques et modèle de calcul de l'acrotère

Chapitre III : Dimensionnement des éléments secondaires

2.1 Evaluations des sollicitations de calcul

L'acrotère est de 10 cm d'épaisseur et de 60 cm de hauteur. Le calcul se fera au niveau de la section d'encastrement pour une bande de 1m linéaire.

$$Arr$$
 G = 25*[(0,6*0,1)+ (0,07*0,12) + [(0,1*0,12)/2]= 1.86 kN/ml

$$ightharpoonup Q = 1 \text{ kN/ml.}$$

Les résultats des efforts qui agissent sur l'acrotère sont résumés dans le tableau suivant :

G[kN] 25*[(0,6*0,1)+(0,07*0,12)+[(0,1*0,12)/2]1,86 Q[kN]1,00 N[kN]**M** [kN.m] **T** [kN] 2,51 0,9 **ELU** 1,5 **ELS** 1,86 0,6 1.0

Tableau III.1. Efforts agissant sur l'acrotère

2.2 Calcul des efforts

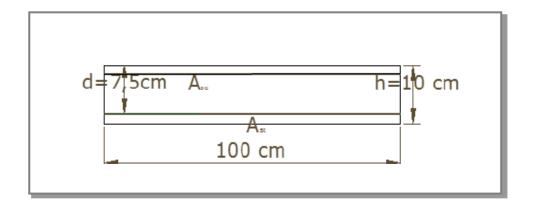


Fig.III.2. Dimensions de la section dangereuse

> Calcul à l'ELU

$$e_0 = M_u/N_u = 0,358 \text{ m}$$

 $e_a = e_0 + [(h/2) - d'] = 0,383 \text{ m}.$

Le centre de pression se trouve en dehors de la section donc elle est partiellement comprimée.

$$\begin{split} M_u &= N_u^* \ e_a = 0.961 \ k \ N.m \\ \mu &= \frac{Mu}{bd2 \ fbu} = 0,012 < \mu_{lim} = 0,391 \end{split}$$

Les armatures de compression ne sont donc pas nécessaires.

Chapitre III : Dimensionnement des éléments secondaires

Done

Section fictive d'armatures $A_s = [Mu/0.9 * d * \sigma s] = 0.41 \text{ cm}^2$.

Section d'armatures réelle $A_s = 0.41 - \frac{Nu}{\sigma s} = 0.34 \text{ cm}^2$

Vérification de la condition de non-fragilité

Dans le cas de la flexion simple, la condition de non-fragilité est donnée par l'article A.4.2.1

du BAEL 91/99

$$\mathbf{A_{s \ min}} \ge \frac{0.23 \times b \times d \times ft28}{fe} * \frac{e - 0.45d}{e - 0.185d}$$
 avec $\mathbf{e} = \frac{Mser}{Nser} = 0.322 \,\mathrm{m}$ et $f_{t28} = 2.1 \mathrm{MPa}$

 $A_{\text{s min}} \ge 1,04 \text{ cm}^2$

$$A_{s min} > A_s$$
 donc $A_s = 1.04 cm^2$

> Calcul à l'ELS

Comme l'acrotère est exposé aux intempéries on considère que la fissuration est préjudiciable.

$$\sigma'_{bc}$$
= 0,6 f_{c28} = 15 MPa.

$$\sigma'_{s} = \min \left\{ \frac{2}{3} fe ; 110 \sqrt{\eta f t28} \right\} = 201.6 \text{ MPa} \text{ tel que } \eta = 1,6$$

✓ Calcul du moment limite de service M.

$$x = \frac{15 \sigma' \mathbf{bc} \times d}{15 \sigma' \mathbf{bc} + \sigma' \mathbf{s}} = 0.039 \text{ m}.$$

$$z = d(1 - x/3) = 0.074 \text{ m}.$$

$$M' = 1/2 \text{ x b } z\sigma'_{bc} = 0,0216 \text{ MN.m}.$$

M_{ser} < M' donc les armatures de compression ne sont pas nécessaires.

Par conséquent :

- ► La section fictive des armatures $A_s = [M_{ser}/Z x\sigma'_s] = 0.40 \text{ cm}^2$.
- ightharpoonup La section d'armatures réelle A_s = 0,4 $\frac{\text{Nser}}{\sigma \text{s}}$ = 0,35 cm²

2.3. Vérification au cisaillement

La contrainte de cisaillement maximale est donnée par la formule suivante :

$$\tau'_{u} = \min(\frac{0.15*fc28}{\gamma b}; 4MPA) = 2.5 MPA$$

$$\tau_{u} = \frac{Vu}{b.d} = \frac{1.5}{1*0.075} = 0.02 MPA$$

 $\tau_u < \tau'_u =>$ condition vérifiée.

2.4. Composante horizontale de la charge sismique

D'après le RPA 99/2003 (Article 6.2.3) les éléments non structuraux doivent être calculés sous l'action des forces horizontales suivant la formule suivante;

$$\mathbf{FP} = \mathbf{4} \mathbf{A} \mathbf{C}_{\mathbf{P}} \mathbf{W}_{\mathbf{P}}$$

A: coefficient d'accélération de zone. Dans le cas de ce projet A = 0,25 (groupe 2, zone III).

 $C_P = 0.80$ (élément en console)

W_P =1,86kN/ml (poids de l'acrotère)

D'où: $F_P = 4 \times 0.25 \times 0.80 \times 1.86 = 1.48 \text{ kN/ml}$

En conséquence, on devra utiliser la section minimale d'armatures (condition de non-fragilité)

Choix des armatures

- Armatures verticales : $A_{sv} = 4 \text{ HA8} / \text{face/ml} = 2,01 \text{ cm}^2$; $S_t = 25 \text{ cm}$
- Armatures de répartition: $A_{sr}=A_v/4$, soit $A_r=2$ HA6/ml = 0,57cm²; $S_t=15$ cm

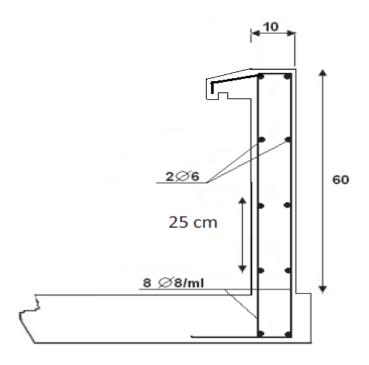


Figure III.3. Ferraillage de l'acrotère

3. Calcul du garde-corps

3.1. Introduction

Le garde-corps est un élément non structurel de protection. Sa hauteur est de 100 cm et son épaisseur est de 10 cm. Il sera calculé selon la même méthode que l'acrotère. Il travaille, comme l'acrotère en flexion composée, mais avec une surcharge de 2,70kN/ml due à la main courante concentrée à son extrémité libre.

3.2 Dimensions et modélisation du garde-corps

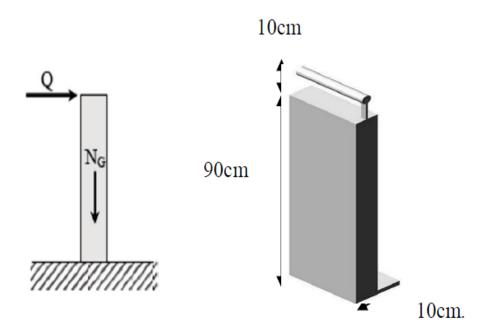


Fig.III.4.dimensions et modélisation du garde -corps

3.3 Evaluations des sollicitations de calcul

Le calcul se fera au niveau de la section d'encastrement pour une bande de 1mètre linéaire.

Les résultats des efforts qui agissent sur l'acrotère sont résumés dans le tableau III.2 :

Tableau III.2. Efforts agissants sur le garde-corps

G[kN]	25*0,	2,25						
Q[kN]	1,00							
	N [kN]	M [kN.m]	T [kN]					
ELU	3,04	1,35	1,5					
ELS	2,25	0,9	1,0					

3.4 Ferraillage du garde-corps

$$\mathbf{e_0} = \frac{Mu}{Nu} = \frac{1,35}{3,04} = 0,44$$

 $\frac{\mathbf{h}}{6} = 0,025 \text{ m}$

La section est partiellement comprimée ce qui ramène à un calcul en flexion simple

Chapitre III : Dimensionnement des éléments secondaires

Tab III.3. Calcul du ferraillage de l'acrotère

ELU	PIVOT A			$\sigma_s[MPa]$		$A_{sc}[cm^2]$		$A_s[cm^2]$	
	μ=0.03946	α=	0.05	348		0,00		0.15	
ELS	σbadm[MPa]		osadm[MPa]		Asc[cm ²]		As[cm ²]		
	201,6		15		0,00		0.316		

3.5 Vérification de la condition de non-fragilité.

Dans le cas de la flexion simple, la condition de non-fragilité est donnée par l'article A.4.2.1

On a:
$$A_{smin} \ge \frac{0.23 \times b \times d \text{ x ft28}}{\text{f e}} * \frac{\textbf{e} - \textbf{0.45} \textbf{d}}{\textbf{e} - \textbf{0.185} \textbf{d}} = 1.026 \text{ cm}^2/\text{ml}.$$

Donc $A_s > max (A_{ser}, A_{min}) => A_s = 1.026 \text{ cm}^2$.

Qui nous donne **4HA8** = 2,01cm²/ml espacée de 25cm.

3.6 Vérification au cisaillement.

$$\tau'_{u} = \min\left(\frac{0.15*fc28}{vb}; 4\text{MPa}\right) = 2.5 \text{ MPa}$$
 et $\tau_{u} = \frac{Vu}{b.d} = \frac{1.5}{1*0.09} = 0.016 \text{ MPa}$

On constate que $\tau_u < \tau'_{u} =$ condition vérifiée.

L'armature de répartition.

$$A_r = A_s / 4 = 0.5025 \text{ cm}^2$$

3.7 Composante horizontale de la charge sismique

D'après le RPA 99/2003 (Article 6.2.3) les éléments non structuraux doivent être vérifiés sous l'action des forces horizontales dont la valeur est calculée par la formule suivante ;

$$\mathbf{F}_{\mathbf{P}} = \mathbf{4} \mathbf{A} \mathbf{C}_{\mathbf{P}} \mathbf{W}_{\mathbf{P}}$$

A: coefficient d'accélération de zone.

A = 0.25 (groupe 2, zone III).

 $C_P = 0.80$ (élément en console)

 $W_P = 2,25 \text{ kN/ml}$ (poids du garde-corps)

D'où
$$F_P = 4 \times 0.25 \times 0.80 \times 2.25 = 1.8 \text{kN/ml}$$

On retient comme ferraillage du garde-corps celui obtenu sous l'ELU et l'ELS si Fp<1,5Q

Fp<1,5Q = 0,15t/ml la condition n'est pas vérifiée.

On doit donc faire un calcul àl'état limite accidentel et la section obtenue dans un sens sera retenue dans l'autre sens tout comme pour l'acrotère.

On refait les calculs précédents en prenant Q = 2,4 kN, ce qui donne : $A_{st}=1,35$ cm², donc on retient cette dernière valeur pour les deux sens et on aura le ferraillage suivant :

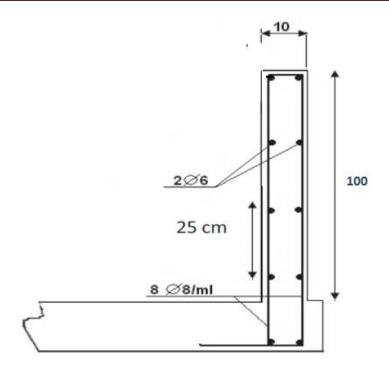


Fig.III.5. Ferraillage du garde-corps

4. Balcons

Les balcons sont des dalles pleines encastrées qui seront calculées comme des consoles.

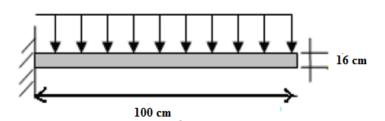


Figure III.6. Dimensions du balcon

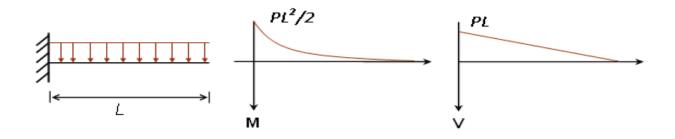


Fig.III.7. Balcon: modélisation et diagrammes

Chapitre III : Dimensionnement des éléments secondaires

4.1 Calculs les sollicitations

Tableau III.5. Balcon: charges et surcharges

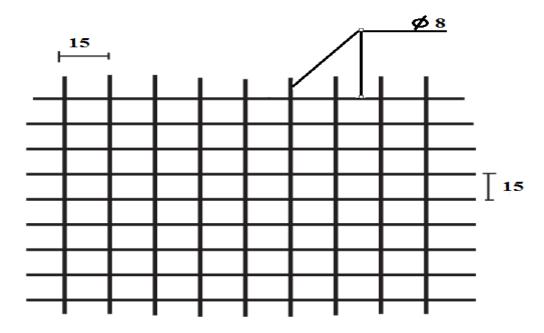
	q [kN.m²]	M _{max} [kN.m]	V _{max} [kN/m]
ELU	12,36	6,8	12,36
ELS	8,77	4,38	8,77

4.2 Ferraillage des Balcons

• Calcul à l'ELS

Tableau III.6. Balcon: résultats du calcul à l'ELS.

Mser[kN.m]	Y [cm]	I [cm ⁴]	σ _{bc} ' [MPa]	σs' [MPa]
8,77	2,07	3496,78	5,2	78


• Vérification de l'effort tranchant

$$\tau'_{u} = \min \left(\frac{0.15*fc28}{\gamma b}; 4MPA \right) = 2.5 \text{ MPa}$$

$$\tau_{\mathbf{u}} = \frac{Vu}{b.d} = \frac{12,36}{1*0,14} = 0,88 \text{ MPa}$$

 $\tau_u \! < \! \tau^{\boldsymbol{\cdot}}_u => \! \text{condition vérifiée}.$

• Schéma de ferraillage

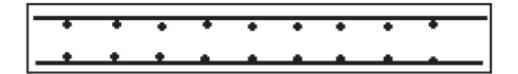


Figure III.8. Ferraillage des balcons (treillis soudé).

5. Calcul des escaliers

Un escalier est une suite de degrés égaux permettant aux piétons de monter ou de descendre en toute commodité afin d'accéder aux différents niveaux de la structure. Notre structure comporte des escaliers droits à deux volées.

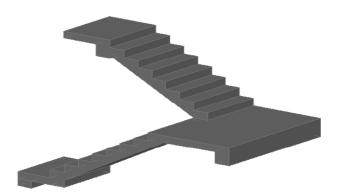


Fig.III.9. Vue 3D de l'escalier à 2 volées.

5.1. Caractéristiques géométriques

La hauteur de la contre marche (h) et la largeur de la marche (g) doivent satisfaire la formule

de BLONDEL : $60 \le 2h + g \le 65$; avec :

- h : hauteur de la contremarche (en centimètre).
- g : largeur de la marche (en centimètre).

En fixant la hauteur de la contre marche à 17 cm, pour une hauteur d'étage h_e = 3,06 cm ($H = h_e/2 = 153$ cm étant la hauteur à gravir), on aura :

- Nombre de contremarches : n = H/h = 153/17 = 9
- Largeur de la marche est : g = l/(n-1) = 306/8 = 30 cm

g + 2h = 30 + 2.17 = 64 donc la relation de Blondel est vérifiée.

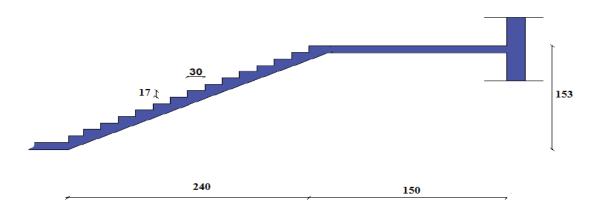


Figure III.10. Caractéristiques géométriques de l'escalier du RDC

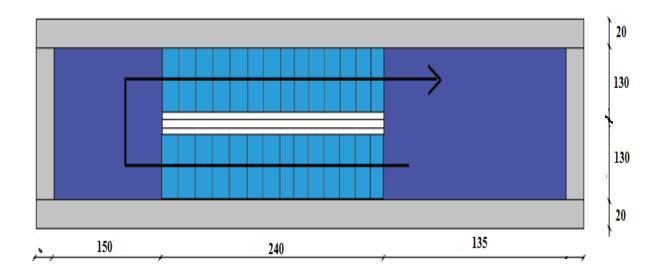


Figure III.11. Vue en plan de l'escalier

5.2. Prédimensionnement de la paillasse et du palier

L'épaisseur de la paillasse est déduite à partir de la formule suivante :

- Condition de limitation de la flèche : e ≥ max {Portée/30 ; 10 cm}
- L'inclinaison de la paillasse est : $\alpha = \text{arc tg } (1,53/2,40) = 32,52^{\circ}$
- La portée de la paillasse $L=2,40/\cos\alpha=2,85m$

Donc on a : $e \ge max \{9,5 \text{ cm}; 10 \text{ cm}\}\$

Nous prendrons une épaisseur de 12 cm pour la paillasse ainsi que pour le palier intermédiaire.

5.3. Evaluation des charges et surcharges

Les charges sont données par mètre carré.

Département de Génie Civil

• PALIER

Tab.III.7. Charge et surcharge due au palier

Elément	Q [kN/m²]		G [kN/m²]				
		Couche	Epaisseur cm	g			
		Carrelage	2	0.44			
PALIER	2,5	Mortier de pose	2	0,40	4.04		
		Dalle	12	3,00	4,04		
		Enduit de ciment	2	0,20			

• VOLEE

Tab.III.8. Charge et surcharge due à la volée

Elément	Q [kN/m²]	G [kN/m²]					
		Couche	Epaisseur cm	g			
		Carrelage	2	0.44			
		Mortier de pose		0,40			
VOLEE	2,5	Marche	8,5	2,125	6,425		
		Dalle	$12/\cos\alpha = 14,23$	3 ,56			
		Enduit de ciment	2	0,20			

5.4. Combinaisons des charges

Les combinaisons de charges à considérer sont résumées dans le tableau suivant.

Tab.III.9.Combinaisons de charges considérées pour l'escalier à deux volées.

	G [kN/m²]	Q [kN/m²]	ELU 1,35 G+1,5 Q [kN/m ²]	ELS G + Q [kN/m ²]
Volée	7,085	2,5	13,31	9,585
Palier	4,40	2,5	9,69	6,9

A. Calcul de la volée

La volée est encastrée d'un seul côté et elle est soumise à la flexion simple. L'enrobage des armatures est de 2 cm.

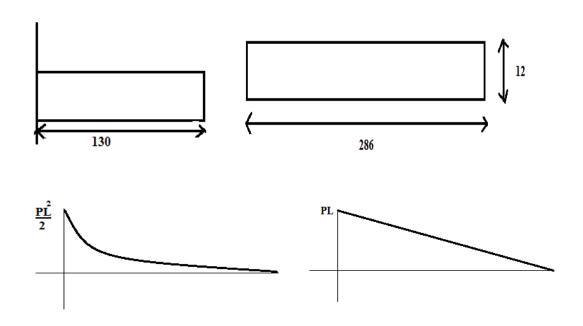


Figure III.12.Modélisation et diagrammes des efforts de volée

5.4. Modèle de calcul d'escalier

la volée et le palier sont considéré comme une poutre de largeur 1m, le schéma suivant montre le chargement des deux parties.

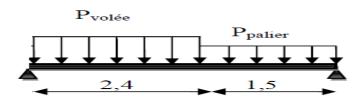


Fig.III.13. Schéma statique de l'escalier.

5.5. Calculs des Sollicitations.

Le tableau suivant résume l'ensemble des sollicitations maximales qu'il faut prendre en compte pour dimensionner cet escalier (en travée et sur appuis).

	Sur	· appui	En travée		
Sous la combinaison	ELU	ELS	ELU	ELS	
Moment fléchissant max [kN.m]	6,987	5,019	19,79	14,22	
Effort tranchant max [kN]	24,9	17,91	-	-	

Tab.III.10.Sollicitations de calcul pour l'escalier.

Tab.III.11. Résultats du ferraillage à l'ELU+ vérification à l'ELS de l'escalier

	PIVOT		A _{sc} [cm2]	A _{st} [cm2]	A _s min [cm2]	
ELU				travée	appui	
	A		0	6,09	2,04	1,5
	$\mu_{\rm b} = 0.139$	$\alpha = 0.187$				
ELS	σ _{badm} [MPa]	σ _{sadm} [MPa]	Position de l'axe neutre [cm]	I (moment d'inertie de la section homogénéisée) [cm4]	σ _b [MPa]	σ _s [MPa]
	15	348	2	8351,25	9,3	260

Le diamètre des barres longitudinales ne doit pas dépasser le dixième de la hauteur de la paillasse avec un espacement maximal e_{max} = min (33cm; 3epaisseur) [BAEL A.8.2, 42].

On va donc adopter le ferraillage suivant :

- **6 HA14/m** longitudinalement, avec un espacement $S_t = 10$ cm.
- 4HA10/m comme armatures de répartition qui sont équivalentes à une section d'acier égale au quart des armatures longitudinales [BAEL- A.8.2, 41], avec $S_t = 20$ cm.
- 5HA8/m en partie supérieure des sections d'encastrement.
- > Vérification de l'effort tranchant

$$\tau'_{u} = \min \left(\frac{0.15*fc28}{\gamma b}; 4\text{MPa} \right) = 2.5 \text{ MPa}$$

$$\tau_{u} = \frac{Vu}{b.d} = \frac{12,36}{1*0.1} = 1,236 \text{ MPa}$$

 $\tau_u < \tau'_u =>$ condition vérifiée.

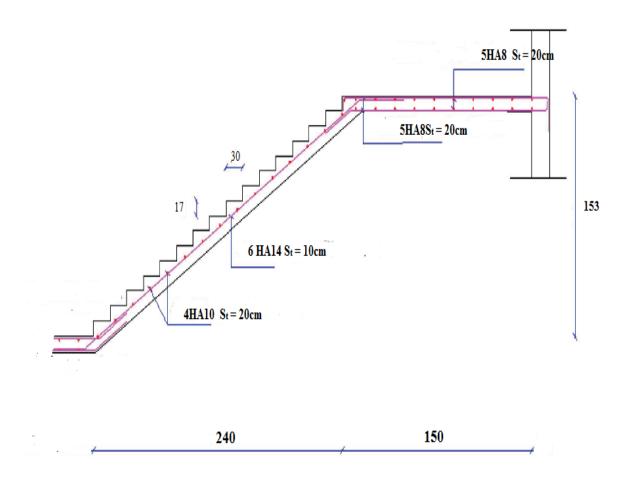


Figure III.14. Ferraillage de l'escalier

CHAPITRE IV ANALYSE DYNAMIQUE

1. Introduction

Le séisme peut être défini comme des mouvements transitoires et passagers qui provoquent une libération brutale d'énergies accumulées dans la région où il se manifeste. Ces mouvements s'effectuent généralement le long d'une faille préexistante affectant des roches de la croûte terrestre. Selon leur intensité, ils peuvent provoquer des dommages importants et même la ruine des constructions, d'où la nécessité de protéger les vies humaines et leurs biens matériels en tenant compte de ce phénomène naturel dans la conception des constructions.

Pour cela, le règlement parasismique Algérien prévoit des mesures nécessaires à la conception et à la réalisation des ouvrages de manière à leur assurer un degré de protection acceptable.

2. Objectifs de l'étude dynamique

L'objectif initial de l'étude dynamique d'une structure est la détermination de ses caractéristiques dynamiques propres. En considérant son comportement en vibration libre non amortie on peut calculer les efforts et les déplacements maximums lors d'un séisme.

L'étude dynamique d'une structure telle qu'elle se présente réellement est souvent très complexe et demande un calcul très fastidieux voire impossible. C'est pour cette raison qu'on on recourt à des modélisations qui permettent de simplifier suffisamment le problème pour pouvoir l'analyser.

3. Modélisation

La modélisation consiste à représenter un problème physique possédant un nombre de degrés de liberté (DDL) infini par un modèle ayant un nombre de DDL fini, et qui reflète avec une bonne précision les paramètres du système d'origine à savoir : la masse, la rigidité et l'amortissement, autrement dit un modèle simplifié qui nous rapproche le plus que possible du comportement réel de la structure.

Lors de l'analyse dynamique d'une structure, il est indispensable de trouver la modélisation adéquate de cette dernière. Dans notre cas le modèle adopté comporte les éléments résistants (poteaux, poutres et voiles), ainsi que les planchers, et les éléments restants sont introduits comme un chargement.

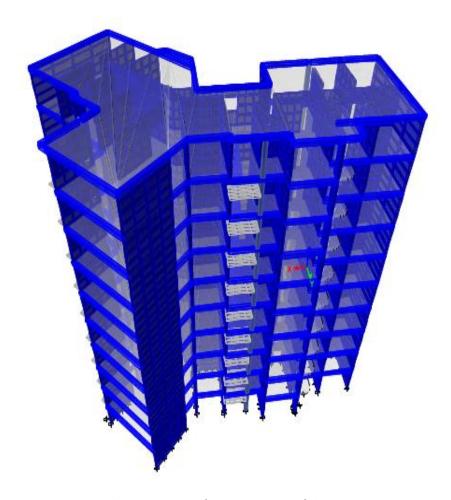


Fig. IV.1. Modèle en 3D du bâtiment

4. Contreventement

La structure étudiée est contreventée par des voiles uniquement. Le système de contreventement doit satisfaire plusieurs conditions :

- Reprendre l'ensemble des charges horizontales.
- L'excentricité entre le centre de masse et le centre de torsion ne dépasse en aucun cas 5% de la plus grande dimension en plan du bâtiment.
- Les contraintes de cisaillement dans les voiles ne dépassent pas la contrainte admissible.
- Les périodes propres ne varient pas brusquement entre deux modes successifs.

5. Choix de la méthode de calcul

Le choix des méthodes de calcul et la modélisation de la structure ont comme objectif de prévoir aux mieux le comportement réel de l'ouvrage.

Les règles parasismiques Algériennes (**RPA99/version2003**) proposent trois méthodes de calcul des sollicitations.

- La méthode statique équivalente.
- La méthode d'analyse modale spectrale.
- La méthode d'analyse dynamique par accélérogramme.

5.1 Méthode statique équivalente

a) Principe:

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les effets sont considérés comme équivalents à ceux de l'action sismique.

Le mouvement du sol peut se faire dans une direction quelconque dans le plan horizontal.

Les forces sismiques horizontales équivalentes seront considérées appliquées successivement suivant deux directions orthogonales caractéristiques choisies par le projecteur. Dans le cas général, ces deux directions sont les axes principaux du plan horizontal de la structure

b) Conditions d'application de la méthode statique équivalente

- Le bâtiment ou bloc étudié, satisfaisait aux conditions de régularité en plan et en élévation avec une hauteur au plus égale à 65m en zones I et II et à 30m en zone Ш.
- Le bâtiment ou bloc étudié présente une configuration irrégulière tout en respectant, outre les conditions de hauteur énoncées en haut, et les conditions complémentaires suivantes :

- •groupe d'usage3 et 2, si la hauteur est inférieure ou
- égale à 5 niveaux ou 17m

 •groupe d'usage 1B, si la hauteur est inférieure ou égale à 3 niveaux ou 10m.

 •groupe d'usage 1A, si la hauteur est inférieure ou
 - égale à 2 niveaux ou 8m

Nota : La méthode statique équivalente n'est pas applicable dans le cas de notre bâtiment car la structure est en zone III de groupe d'usage 2 et sa hauteur dépasse les 17m.

5.2 Méthode modale spectrale :

La méthode d'analyse modale spectrale peut être utilisée dans tous les cas et en particulier dans le cas où la méthode statique équivalente n'est pas applicable.

Dans notre projet, une étude dynamique de la structure s'impose du fait que les conditions de régularité en plan et en élévation ne sont pas satisfaites.

a) Principe:

Il est recherché pour chaque mode de vibration le maximum des effets engendrés dans la structure par les forces sismiques, représentées par un spectre de calcul. Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

Cette méthode est basée sur les hypothèses suivantes :

- Concentration des masses au niveau des planchers.
- Seuls les déplacements horizontaux des nœuds sont pris en compte.
- Le nombre de modes à prendre en compte est tel que la somme des coefficients de ces modes soit au moins égale à 90%.
- Ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la réponse totale de la structure.
- Le minimum de modes à retenir est de trois (3) dans chaque direction considérée.

Dans le cas où les conditions décrites ci-dessus ne peuvent pas être satisfaites à cause de l'influence importante des modes de torsion, le nombre minimal de modes (K) à retenir doit être tel que :

$$K \ge 3\sqrt{N}$$
 et $T_K \le 0.20 \sec$.

où:

• N est le nombre de niveaux au-dessus de sol et T_K la période du mode K.

b) Analyse spectrale:

• Utilisation des spectres de réponse

La pratique actuelle la plus répandue consiste à définir le chargement sismique par un spectre de réponse.

Toute structure est assimilable à un oscillateur multiple, la réponse d'une structure à une accélération dynamique est fonction de l'amortissement (ζ) et de la pulsation naturelle (ω).

Donc pour des accélérogramme donnés si on évalue les réponses maximales en fonction de la période (T), on obtient plusieurs points sur un graphe qui est nommé spectre de réponse et qui aide à faire une lecture directe des déplacements maximaux d'une structure.

L'action sismique est représentée par le spectre de calcul suivant :

$$\frac{S_a}{g} = \begin{cases}
1,25A \left(1 + \frac{T}{T_1} \left(2,5\eta \frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1 \\
2,5\eta \left(1,25A\right) \frac{Q}{R} & T_1 \le T \le T_2 \\
2,5\eta \left(1,25A\right) \frac{Q}{R} \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3,0s \\
2,5\eta \left(1,25A\right) \frac{Q}{R} \left(\frac{T_2}{3}\right)^{2/3} \left(\frac{3}{T}\right)^{5/3} & T \ge 3,0s
\end{cases}$$

Avec:

- g : accélération de la pesanteur.
- A : coefficient d'accélération de zone.
- η : facteur de correction d'amortissement, (quand l'amortissement est différent de 5%). $\eta = 7/(2+\xi) \ge 0.7$
- R : Coefficient de comportement de la structure. Il est fonction du système de contreventement.
- T_1 , T_2 : Périodes caractéristiques associées à la catégorie de site soit : T_1 = 0.15 s et T_2 = 0,50 s (site 3).
- Q : Facteur de qualité.

Dans notre cas, les valeurs utilisées sont les suivantes :

Tab IV.1 Facteurs définissant le spectre de réponse

A	Q	R	υ	η	T_1	T_2
0,25	1,15	3,5	5	1	0,15	0,50

Le spectre de réponse est donné par le tableau suivant :

Tab IV.2 Valeurs du spectre de réponse

T[s]	Sa/g								
0,0	0,313	1,0	0,169	2,0	0,106	3,0	0,081	4,0	0,050
0,1	0,283	1,1	0,158	2,1	0,103	3,1	0,077	4,1	0,048
0,2	0,268	1,2	0,149	2,2	0,100	3,2	0,073	4,2	0,046
0,3	0,268	1,3	0,142	2,3	0,097	3,3	0,069	4,3	0,045
0,4	0,268	1,4	0,135	2,4	0,094	3,4	0,066	4,4	0,043
0,5	0,268	1,5	0,129	2,5	0,092	3,5	0,063	4,5	0,041
0,6	0,237	1,6	0,123	2,6	0,089	3,6	0,060	4,6	0,040
0,7	0,214	1,7	0,118	2,7	0,087	3,7	0,057	4,7	0,038
0,8	0,196	1,8	0,114	2,8	0,085	3,8	0,055	4,8	0,037
0,9	0,181	1,9	0,110	2,9	0,083	3,9	0,052	4,9	0,036
	•		•	•	•		•	5,0	0,035

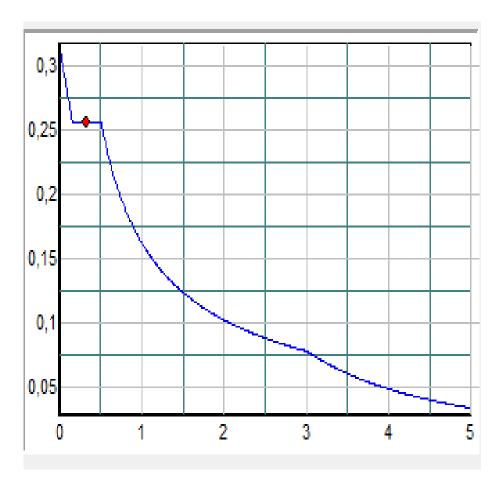


Fig.IV.2 Allure du spectre de réponse

6. Modes à considérer

Comme notre structure comporte 10 niveaux, et tenant compte des conditions exprimées dans le paragraphe (a) le nombre de modes à considérer doit être au moins de 12 modes de vibrations.

7. Résultats numériques

7.1 Caractéristiques géométriques du bâtiment

Conformément à l'article 4.3.7 du RPA99/2003 et comme on a procédé à une analyse tridimensionnelle, en plus de l'excentricité théorique calculée, une excentricité accidentelle égale à \pm 5% L doit être appliquée au niveau du plancher considéré et ce, suivant chaque direction.

(L est la dimension du plancher perpendiculaire à la direction de l'action sismique considérée)

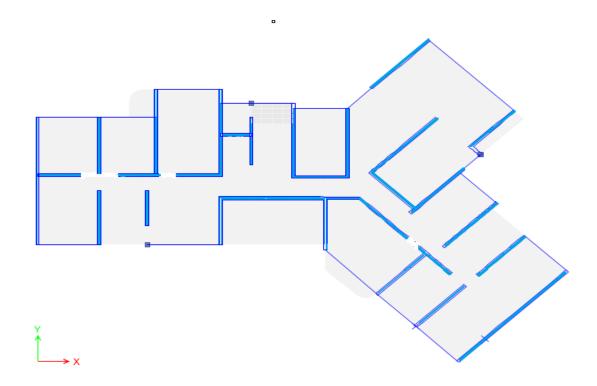


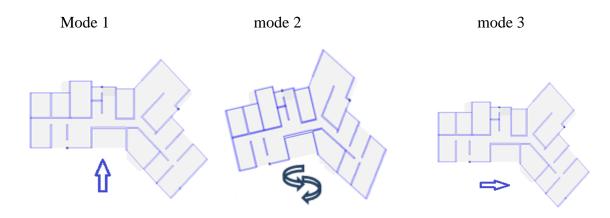
Fig.IV.3.Disposition des voiles

Tab.IV.3. Caractéristiques du bâtiment.

Nimo	Magas [4]	Centre de m	nasse	Centre de torsion Excentricit		€ [m]	
Niveau	Masse [t]	X _M [m]	Y _M [m]	X _T [m]	Y _T [m]	e _x [cm]	e _Y [cm]
RDC	244,635	16,018	12,495	15,532	12 ,973	48,6	-47,8
01	243,880	16,023	12,491	15,488	12,924	53,5	-43,3
02	243,880	16,023	12,491	15,421	12,875	60,2	-38,4
03	243,880	16,023	12,491	15,325	12,812	69,8	-32,1

04	243,880	16,023	12,491	15,222	12,712	80,1	-22,1
05	243,880	16,023	12,491	15,184	12,628	83,9	-13,7
06	243,880	16,023	12,491	15,123	12,542	90,0	-5,1
07	243,880	16,023	12,491	15,089	12,485	93,4	0,6
08	246,603	16,025	12,488	15,032	12,403	99,1	8,5
09	166,792	16,002	12,506	15,023	12,215	100,0	29,1

7.2 Périodes et facteurs de participation massique


L'analyse modale par ETABS nous fournit les résultats suivants :

Tab IV.4. Participation des masses modales effectives

					% cumulé de la	% cumulé de la
Mode	Période	U_x	$U_{\rm y}$	R_z	masse modale	masse modale
	[s]	[cm]	[cm]	[rad]	suivant X	suivant Y
01	0,522	0,69	<u>53,82</u>	0,013	0,69	53,82
02	0,483	1,08	12,13	<u>0,531</u>	1,77	65,95
03	0,423	71,17	1,06	0,006	72,94	67,01
04	0,174	3,93	10,81	0,037	76,88	77,82
05	0,159	8,41	8,86	0,015	85,29	86,68
06	0,109	4,78	0,62	0,155	90,07	87,30
07	0,074	2,04	2,01	0,011	92,12	89,31
08	0,059	2,37	3,78	0,000	94,49	93,09
09	0,056	1,19	0,71	0,043	95,68	93,80
10	0,036	0,53	0,69	0,014	96,21	94,49
11	0,027	1,03	0,08	0,001	97,24	94,57
12	0,024	0 ,50	2,36	0,000	97,74	96,93

Interprétation des résultats

- Ce modèle présente une période fondamentale de T = 0,522 s
- Le premier mode est un mode de translation suivant (yy)
- Le deuxième mode est un mode de rotation avec faible coefficient de participation, le comportement dans ce cas de la structure est bon
- Le troisième mode est un mode de translation suivant (xx)
- Les facteurs de participation massique ont atteint les 90% au 08vibration.

FigIV.4. Principaux modes de vibration

8. Vérification

Les vérifications suivantes sont nécessaires selon le RPA99/2003.

8.1Vérification de la période fondamentale de la structure

La valeur de la période calculée numériquement ne doit pas dépasser de plus de 30% la valeur calculée par les formules empiriques données par le RPA99/2003.

$$T_{empirique} = min (C_T \times h_N^{3/4}; 0.09 \times \frac{hN}{\sqrt{D}})$$

Avec:

 $\mathbf{h}_{\mathbf{N}}$: hauteur totale de la structure

C_T: Coefficient, fonction du type de contreventement [Tab4.6 RPA99/2003].

D: Dimension du bâtiment mesurée à sa base dans la direction de calcul considérée

 $T_{\text{empirique}} = \min(0.65; 0.567; 0.488) = 0.488 \text{ s}$

 $1,3 \text{ T}_{\text{empirique}} = 0,634 \text{ s}$

T_{numérique} = 0,522 s < 1,3 T empirique **condition** vérifiée.

8.2 Résultante des forces sismiques de calcul

L'une des premières vérifications préconisée par le "*RPA99 version 2003*" est relative à la résultante des forces sismiques.

En effet la résultante des forces sismiques à la base V_t obtenue par combinaison des valeurs modales ne doit pas être inférieure à 80% de la résultante V des forces sismiques déterminées par la méthode statique équivalente pour une valeur de la période fondamentale donnée par la formule empirique appropriée.

Si $V_t < 0.8V$, il faut augmenter tous les paramètres de la réponse (forces, déplacements, moments,.....) dans le rapport : $\frac{0.8V}{V_t}$ avec $\mathbf{V} = \frac{\mathbf{ADQ}}{\mathbf{R}}\mathbf{W}$

Tab.IV.5. Charge sismique à la base par la méthode statique équivalente

A	Q	R	$\mathbf{D}_{\mathbf{x}}$	$\mathbf{D}_{\mathbf{y}}$	W [MN]	V _x [MN]	V _y [MN]
0,25	1,15	3,5	31,85	23,54	23,62	6,258	4,567

Tab IV.6 Charge sismique à la base par la méthode modale spectrale donnée par ETABS

	V [MN]	V [MN]
Sens X	4,713	0,834
Sens Y	0,834	4,236

Tab IV.7 Vérification de l'effort tranchant à la base

	V _{tx} [MN]	V _{ty} [MN]	V [MN]	V_t/V	$V_t/V \ge 0.80$
Sens X	5,547	-	6,258	0,88	Vérifié
Sens Y	-	5,07	4,567	1,11	Vérifié

8.3 Vérification au renversement

Le moment de renversement qui peut être causé par l'action sismique doit être calculé par rapport au niveau de contact sol fondation.

Le moment stabilisant sera calculé en prenant en compte le poids total équivalent au poids de la construction, au poids des fondations et éventuellement au poids du remblai. Pour que le bâtiment soit stable au renversement, on doit vérifier la relation suivante :

$$\frac{Ms}{Mr} \ge 1.5$$

Avec:

 M_s : Moment de renversement.

 $\mathbf{M_r}$: Moment stabilisant ; $\mathbf{M_s} = \mathbf{W} \times \mathbf{L}/2$.

Tab IV.8 Vérification de la stabilité au renversement

	W [MN]	L/2 [m]	Ms [MN.m]	MR [MN.m]	Ms/MR	$\frac{\text{Ms}}{\text{Mr}} \ge 1.5$
Sens X		11,770	278,007	97,958	2,83	Condition vérifiée
Sens Y	23,62	15,925	376,148	89,603	4,19	Condition vérifiée

8.4 Justification vis-à-vis des déformations

L'article 5.10 du RPA99/2003 préconise un déplacement latéral relatif d'un étage par rapport aux autres étages adjacents de l'ordre de 1% de la hauteur d'étage au plus.

Autrement dit, $\Delta_{ek} = \delta_k$ - $\delta_{k-1} \le 1\%$ he. avec h_e : hauteur d'étage

Le déplacement horizontal à chaque niveau « $k \ \text{>\! }$ de la structure est calculé comme suit :

 $\Delta_k = R \times \Delta_{ek}$

Avec:

- Δ_{ek} : Déplacement dû aux forces sismiques.
- R = 3.5: Coefficient de comportement.

Tab IV.9 Justification vis-à-vis la déformation

δ_{ex}	$\delta_{ m ey}$	$\Delta_{ m ex}$	$\Delta_{ m ey}$	Δ_{x}	$\Delta_{ m y}$	$1\% \times h_e$	Condition
[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	
0,48	0,95	0,05	0,09	0,175	0,315	3,06	Vérifiée
0,43	0,84	0,05	0,12	0,175	0,420	3,06	Vérifiée
0,38	0,72	0,05	0,12	0,175	0,420	3,06	Vérifiée
0,33	0,60	0,05	0,12	0,175	0,420	3,06	Vérifiée
0,28	0,48	0,06	0,12	0,210	0,420	3,06	Vérifiée
0,22	0,36	0,05	0,11	0,175	0,385	3,06	Vérifiée
0,17	0,25	0,06	0,09	0,210	0,315	3,06	Vérifiée
0,11	0,16	0,05	0,08	0,175	0,280	3,06	Vérifiée
0,06	0,08	0,05	0,05	0,175	0,175	3,06	Vérifiée
0,02	0,03	0,02	0,03	0,070	0,105	3,06	Vérifiée
	[cm] 0,48 0,43 0,38 0,33 0,28 0,22 0,17 0,11 0,06	[cm] [cm] [cm] 0,48 0,95 0,43 0,84 0,38 0,72 0,33 0,60 0,28 0,48 0,17 0,25 0,11 0,16 0,06 0,08	[cm] [cm] [cm] 0,48 0,95 0,05 0,43 0,84 0,05 0,38 0,72 0,05 0,33 0,60 0,05 0,28 0,48 0,06 0,22 0,36 0,05 0,17 0,25 0,06 0,11 0,16 0,05 0,06 0,08 0,05	[cm] [cm] [cm] [cm] 0,48 0,95 0,05 0,09 0,43 0,84 0,05 0,12 0,38 0,72 0,05 0,12 0,33 0,60 0,05 0,12 0,28 0,48 0,06 0,12 0,22 0,36 0,05 0,11 0,17 0,25 0,06 0,09 0,11 0,16 0,05 0,08 0,06 0,08 0,05 0,05	[cm] [cm] [cm] [cm] [cm] 0,48 0,95 0,05 0,09 0,175 0,43 0,84 0,05 0,12 0,175 0,38 0,72 0,05 0,12 0,175 0,33 0,60 0,05 0,12 0,175 0,28 0,48 0,06 0,12 0,210 0,22 0,36 0,05 0,11 0,175 0,17 0,25 0,06 0,09 0,210 0,11 0,16 0,05 0,08 0,175 0,06 0,08 0,05 0,05 0,175	[cm] [cm] <td< td=""><td>[cm] [cm] <td< td=""></td<></td></td<>	[cm] [cm] <td< td=""></td<>

8.5 Justification vis-à-vis de l'effet P- Δ

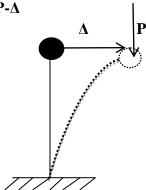


Fig.IV.5.Effet P-Δ

D'après l'article 5.9 du RPA99/2003, la justification vis-à-vis de l'effet P- Δ est négligée si la condition suivante est satisfaite à tous les niveaux :

$$\theta = \frac{Pk*\Delta k}{Vk*hk} \leq 0.1$$

Avec:

 $\mathbf{P_k} = \sum_{i=k}^{n} (\mathbf{W_{Gi}} + \beta \mathbf{w_{Qi}})$ Poids total de la structure et des charges d'exploitation associées au-dessus du niveau « k » avec $\beta = 0.3$.

 $\mathbf{V}_{\mathbf{K}}$: Effort tranchant d'étage au niveau « k ».

 Δ_k : Déplacement relatif du niveau « k » par rapport au niveau « k-1 ».

 $\mathbf{h_k}$: Hauteur de l'étage « k ».

- Si $0,1 < \theta_k < 0,2$, les effets P- Δ peuvent être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculés au moyen d'une analyse élastique du 1^{er} ordre par le facteur $\frac{1}{1+\theta k}$.
- Si $\theta_k > 0,2$, la structure est instable et doit être redimensionnée.

Tab IV.10 Justification vis-à-vis de l'effet P-Delta

		D	Sens X				Sens Y	
Niveau	h _k [cm]	P _k [MN]	Δ _k [cm]	V _K [MN]	$\theta_{\mathbf{k}}$	Δ _k [cm]	V _K [MN]	θ_{k}
09	306	1,668	0,140	0,678	0,00112	0,420	0,699	0,00327
08	306	2,466	0,175	1,550	0,00091	0,450	1,517	0,00239
07	306	2,439	0,210	2,287	0,00073	0,420	2,197	0,00152
06	306	2,439	0,175	2,903	0,00048	0,420	2,734	0,00122
05	306	2,439	0,210	3,418	0,00049	0,450	3,173	0,00113
04	306	2,439	0,175	3,837	0,00036	0,420	3,531	0,00094
03	306	2,439	0,210	4,190	0,00034	0,380	3,815	0,00079
02	306	2,439	0,175	4,450	0,00031	0,350	4,026	0,00069
01	306	2,439	0,140	4,626	0,00024	0,280	4,169	0,00053
RDC	306	2,446	0,07	4,713	0,00011	0,100	4,236	0,00018

9. Conclusion

Cette étude nous a permis de vérifier la bonne conception de l'ouvrage, grâce aux vérifications imposées par les RPA99 (Période, Effort tranchant, déplacement et stabilité au renversement).

.

CHAPITRE V LES PLANCHERS

1. Introduction

Un plancher est une aire généralement plane et horizontale qui délimite les étages. Il sert à supporter son poids propre et les surcharges.

Mais, sous charges horizontales, le rôle essentiel du plancher, supposé infiniment rigide dans le plan horizontal, est de transmettre les efforts aux éléments porteurs.

Les planchers peuvent être préfabriqués ou coulés sur place. Nous ne nous intéresserons ici qu'aux planchers coulés sur place.

La structure étudiée comporte seulement des dalles pleines.

2. Types de panneaux pour les planchers des étages courants et la terrasse

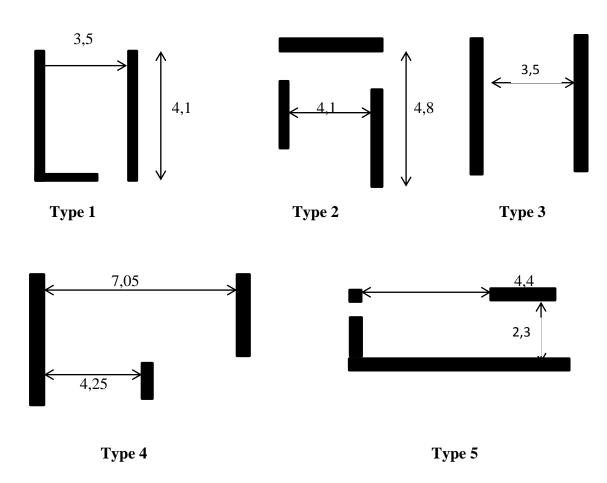


Fig.V.1. Différents types de panneaux pour le plancher terrasse

3. Méthode de calcul

Le calcul s'effectue pour les types de panneaux illustrés précédentes, les diagrammes des moments et des efforts tranchants sont calculés par le logiciel de calcul des dalles **SOCOTEC Dalle**.

Les dalles sont encastrés dans les voiles et ils sont chargés de la même façon, donc on peut isoler la dalle à étudier et faire le calcul.et pour ça nous avons pris cinq types de panneaux différentes indiqués.

Les dalles travaillent à la flexion et le calcul se fera uniquement à l'ELU car la fissuration est considéré peu préjudiciable.

4. Calcul du plancher terrasse

 $G = 7,22 \text{ kN/m}^2$

 $Q = 1.0 \text{ kN/m}^2$

 $Pu=1,35 G + 1,5 Q = 11,247 kN/m^2$

• **Exemple** : pour le panneau de type 1 les appuis continus sont des lignes d'équation :

$$x = 0$$
 et $y = 0$ et $y = 3.5$

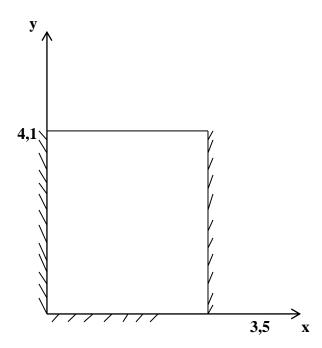


Fig.V.2.Exemple de modélisation d'un panneau avec le logiciel SOCOTEC

Tab V.1. Panneau type 1 du plancher terrasse, efforts et diagrammes.

panneau	sollicitation	position	Valeur max	diagrammes
	Mx [kN.m/ml]	(3,5;0)	11,5	MOX 5,95 Max global 5,95 175 35 X
		(1,75;0)	5,95	-5.75
Type1	My [kN.m/ml]	(1,75;4,1)	7,04	2,01 Max, global 2,01 2,05 4,1 Y
		(1,75;1,75)	2,01	-3.52 -7.04 Min. global
	Vx [kN/ml]	(0; 2,05)	23,32	TZX 23.32 Max. global
	Vy [kN/ml]	(1,75;0)	- 18,41	TZY 5.3 Max. global 0 0,39
		(1,75;4,1)	0,39	-18.41 Min. gobal

Tab V.2. Panneau type 2 du plancher terrasse, efforts et diagrammes.

panneau	sollicitation	position	Valeur max	diagrammes
	Mx [kN.m/ml]	(4,1;2,4)	13,54	MOX 8.71 Max global 6.57
		(4,1;4,8)	6,57	-13.8 -13.54 -13.54 -13.54
	My [kN.m/ml]	(2,05;4,8)	10,09	Mny 228
Type2		(2,05;2,96)	2,26	-5,4710,99 -16,94
	Vx [kN/ml]	(4,1;4,8)	22,18	7ZX, 37,35
				-95,31 Min. global
	Vy [kN/ml]	(0; 1,05)	134,8	124 8 Max plotes 67,4-
		(0; 1,425)	41,06	41,06 Min. grobal _41,06

Tab V.3. Panneau type 3 du plancher terrasse, efforts et diagrammes.

panneau	sollicitation	position	Valeur	diagrammes
			max	MOX ₄
	Mx [kN.m/ml]	(3,5; 1,97)	11,23	5.09 Max global 5.09
		(1,75;1,97)	5,89	-11.33 Min. global .11,23
	My [kN.m/ml]	(1,75;1,97)	1,08	1,08 Max.global 1,08 1,08 1,08 1,08 1,08 1,08 1,08 1,08
Type3				-2.25 Mn. gobal
	Vx [kN/ml]	(0; 3,95)	20,82	72X 22,81 Max global 20.82 7,75 3,5 X
	Vy [kN/ml]	(0;0)	4,29	12/ 4.28 Max. global
		(0;3,95)	4,29	2,14
				429

Tab V.4. Panneau type 4 du plancher terrasse, efforts et diagrammes.

panneau	sollicitation	position	Valeur max	diagrammes
	Mx [kN.m/ml]	(2,25;2,47)	9,47	MOX, 17.51 Max plotel 9,47
		(4,18;2,47)	28	-21,38 - -28
	My [kN.m/ml]	(3,52;1,35)	14,06	MYY 5.07 Hax global 4.91
Type4		(3,52;4,95)	4,91	-14,06 -19,39 -
	Vx [kN/ml]	(4,07;0)	118,75	TZX 170.37 Max. global 118,75
		(5,28;0)	87,54	3,525 7,05 X -57,54 -158,11
		(3,52;1,05)	58,49	76,21 Max global 58,49 2,475 12,18
		(3,52;4,95)	12,18	-80,33 - -160,67

Tab V.5. Panneau type 5 du plancher terrasse, efforts et diagrammes.

panneau	sollicitation	position	Valeur max	diagrammes
	Mx [kN.m/ml]	(0;0)	6,24	MOX 6.24 Max global 6.24 3.05
		(2,09;0)	26,11	-13,06
	My [kN.m/ml]	(3,05;0)	11,09	Myy 2,71 Max. global 2,44
Type5		(3,05;1,49)	2,11	-6,44
	Vx [kN/ml]	(0;2,3)	9,02	72X 95,72 Max. global 95,72 95,72 St. No. 10,100 St
		(4,24;2,3)	165,92	-62.98 - -165.97 - -165.97 - Mn. global
	Vy [kN/ml]	(0;1,01)	159,29	TZV 159.29 Max: global 159.29
		(0; 2,3)	-47,8	47.8 Min. gobal -47.8

4.1 Calcul du ferraillage

On considère une section rectangulaire de (100 x 16) avec un enrobage de 2 cm.

Tabl.V.6. Récapitulatif des moments max et résultats du ferraillage des panneaux du plancher terrasse.

Panneau	Sens	Position	Moment [kN.m]	Armatures sup. [cm ²]	Armatures inf. [cm ²]
	Y	travée	2,01	-	0,41
Type 1	X	travée	5,95	-	1,23
	X	appuis	11,5	2,41	-
	Y	travée	2,26	-	0,46
Type 2	X	travée	6,57	-	1,36
	X	appuis	13,54	2,85	-
	Y	travée	1,08	-	0,22
Type 3	X	travée	5,89	-	1,22
	X	appuis	11,23	2,35	-
	Y	travée	4,91	-	1,01
Type 4	X	travée	9,47	-	1,97
	X	appuis	28	6,07	-
	Y	travée	2,11	-	0,43
Type 5	X	travée	6,24	-	1,29
	X	appuis	26,11	5,63	-

4.2 Vérification du cisaillement

Tabl.V.7. Vérification du cisaillement.

Panneau	Sens	Position	Effort tranchant max [kN]	τu [MPa]	τlim [MPa]
Type 1	X	Appui	23,32	0,166	2,5
	Y	Appui	18,41	0,131	2,5
Type 2	X	Appui	22,18	0,158	2,5
-	Y	Appui	134,8	0,962	2,5
Type 3	X	Appui	20,82	0,148	2,5
	Y	Appui	4,29	0,03	2,5
Type 4	X	Appui	118,75	0,848	2,5
	Y	Appui	68,8	0,491	2,5
Type 5	X	Appui	165,92	1,118	2,5
	Y	Appui	159,25	1,137	2,5

5. Calcul des planchers courants

G=5,27 KN/m²

 $Q=1,5 \text{ KN/m}_2$

 $P_u=1,35 G + 1,5 Q = 9,36 KN/m_2$

Tab.V.8. Panneau type 1 de l'étage courant, efforts et diagrammes.

panneau	sollicitation	position	Valeur max	diagrammes
Type1	Mx [kN.m/ml]	(3,5;0)	-9,57	MDX, 4,95 Max, global 4.95
		(1,75;0)	4,95	-9,57 Min goosi -9,57
	My [kN.m/ml]	(1,75 ;4,1)	-5,86	MYY 1,67 Max. global 1,67 2,05 4,1 Y
		(1,75;1,75)	1,67	-2.93
	Vx [kN/ml]	(0; 2,05)	18,51	TZX 19.41 Max global J0.51
	Vy [kN/ml]	(1,75;0)	-15,32	7ZV 4,41 Max. global 0,333
		(1,75;4,1)	0,33	-7.66

Tab.V.9. Panneau type 2 de l'étage courant, efforts et diagrammes.

panneau	sollicitation	position	Valeur max	diagrammes
Type2	Mx [kN.m/ml]	(4,1;2,4)	-11,27	1000 7.25 Max. global 5,46
		(4,1;4,8)	5,46	-11,32 -11,27 -11,27 -11,27
	My [kN.m/ml]	(2,05;4,8)	-8,4	1,9 Max global 1,88 2 y
		(2,05;2,96)	1,88	-7,05 - -3,4
	Vx [kN/ml]	(4,1;4,8)	18,46	TZX 31,08 Max global 18,45 -17,83 -19,66 -
	Vy [kN/ml]	(0;1,05)	112,18	112,18 Max. \$6848 56.09
		(0; 1,425)	-34,17	34,17 Min. global _34,17

Tab.V.10. Panneau type 3 de l'étage courant, efforts et diagrammes.

panneau	sollicitation	position	Valeur max	diagrammes
	Mx [kN.m/ml]	(3,5; 1,97)	-9,35	100X 4,9 Max, global 4,9
		(1,75;1,97)	4,9	-4,72
	My [kN.m/ml]	(1,75;1,97)	0,9	0.9 Max gobal 0.9 1,975 3,95 V
Туре3				-0.54
	Vx [kN/ml]	(0; 3,95)	17,33	12.X 18.56 Max. global 177.33 17.33
	Vy [kN/ml]	(0;0)	-3,57	TZY 3.57 Max. global
		(0;3,95)	3,57	1,975 3,55 y

Tab.V.11. Panneau type 4 de l'étage courant, efforts et diagrammes.

panneau	sollicitation	position	Valeur max	diagrammes
	Mx [kN.m/ml]	(2,25;2,47)	-23,3	14,57 Max, global 7,88 7,85 X
	[w	(4,18;2,47)	7,88	-17,79-
	My [kN.m/ml]	(3,52;1,35)	-11,7	15.58 Min. global Min. global 4.09 4.22 Max. global 4.09 4.55 Y
Type4	[KIV.III/III]	(3,52;4,95)	4,09	-11,7 -16,14 -32,28 Min. gbčai
	Vx	(4,07;0)	98,82	TZX 141,79 Max. global 98.82
	[kN/ml]	(5,28;0)	-72,85	3.525 7,65 X
	Vy [kN/ml]	(3,52;1,05)	24,46	7ZY 76.19 Max global 11.54 11.54 7.05 %
		(3,52;4,95)	11,54	-0.31

Tab.V.12. Panneau type 5 de l'étage courant, efforts et diagrammes.

panneau	sollicitation	position	Valeur max	diagrammes
	Mx [kN.m/ml]	(0;0)	-21,73	MOX 5,19 Max gobal 5,19 3,05
		(2,09;0)	5,19	-10,87 -21,73 -21,73 Min. geosal
	My [kN.m/ml]	(3,05;0)	-9,23	2.26 Max. global 1,15 2,3 Y
Туре5		(3,05;1,49)	1,76	-5,36 -9,23 -10,71 Min. gobal
	Vx [kN/ml]	(0;2,3)	7,51	TZX 79.64 Max. global 7.51
		(4,24;2,3)	138,08	-138,08 -138,08 -138,08
	Vy [kN/ml]	(0;1,01)	-132,53	12/ 13/253 Max. global 66.26
		(0;2,3)	17,92	3,05 6,1 X -17,92

5.1. Calcul du ferraillage

On considère une section rectangulaire de (100 x 16) avec un enrobage de 2 cm.

Tab.IV.13. Récapitulatif des moments et résultats du ferraillage des panneaux de planchers courants.

Panneau	Sens	Position	Moment [kN.m]	Armatures sup. [cm ²]	Armatures inf. [cm²]
	Y	travée	1,67	-	0,34
Type 1	X	travée	4,95	-	1,02
	X	appuis	9,57	2,03	-
	Y	travée	1,88	-	0,38
Type 2	X	travée	5,46	-	1,13
	X	appuis	11,27	2,36	-
	Y	travée	0,9	-	0,18
Type 3	X	travée	4,9	-	1,01
	X	appuis	9,35		-
	Y	travée	4,09	•	1,95
Type 4	X	travée	7,88	-	1,64
	X	appuis	23,3	5,00	-
	Y	travée	1,76	-	0,36
Type 5	X	travée	5,19	-	1,07
	X	appuis	21,73	4,64	-

5.2. Vérification du cisaillement

Tab.V.14. Vérification du cisaillement.

Panneau	Sens	Position	Effort tranchant max [kN]	τu [MPa]	τlim [MPa]
Type 1	X	Appui	18,51	0,132	2,5
	Y	Appui	15,32	0,109	2,5
Type 2	X	Appui	18,46	0,131	2,5
1 y p c 2	Y	Appui	112,18	0,801	2,5
Type 3	X	Appui	17,33	0,123	2,5
	Y	Appui	3,57	0,025	2,5
Type 4	X	Appui	98,82	0,705	2,5
	Y	Appui	24,46	0,174	2,5
Type 5	X	Appui	138,08	0,986	2,5
	Y	Appui	132,53	0,946	2,5

Pour faciliter l'exécution, on adoptera le même ferraillage pour tous les planchers.

- 4 HA8 dans les deux sens comme armatures inférieures avec un espacement 20 cm.
- 4 HA14 dans les deux sens comme armatures supérieures avec un espacement 20 cm.

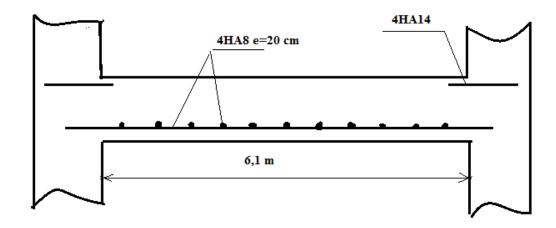


Fig.V.3. Schéma de ferraillage des planchers des différents niveaux

CHAPITRE VI FERRAILLAGE DES ELEMENTS STRUCTURAUX

1. introduction

Le contreventement permet d'assurer une stabilité horizontale et verticale de la structure sous l'action d'efforts horizontaux (séisme, vents) et verticaux (charges permanentes et surcharges d'exploitations). Le voile est donc sollicité à la flexion composée avec effort tranchant. Le ferraillage des voiles s'effectuera selon le règlement CBA 93 et les vérifications selon les RPA 99-version 2003.

1.1 Combinaisons d'actions :

Les combinaisons d'actions sismiques et celles des deux charges verticales à prendre sont données ci-dessus :

Selon le BAEL 91:

• ELU: 1.35 G + 1.5 Q

• ELS: G + Q

Selon le RPA 99 révisé 2003 :

• G+Q+E

• 0.8 G + E

1.2 Identification des voiles

Notre structure comporte des voiles pleins, des voiles avec une seule file d'ouverture ainsi que des voiles avec plusieurs files d'ouvertures.

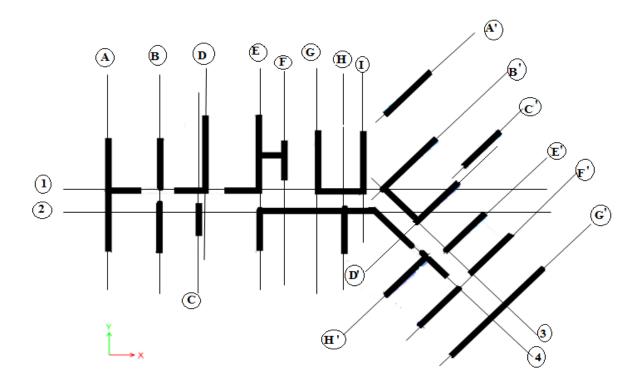


Fig.VI.1 Identification des voiles

1.3 Ferraillage vertical

béton tendue.

Le ferraillage vertical sera disposé de telle sorte qu'il prendra les contraintes de flexion composée, en tenant compte des prescriptions composées par le RPA 99/Version2003. Décrites ci-dessous :

- L'effort de traction engendrée dans une partie du voile doit être repris en totalité par les armatures dont le pourcentage minimal est de 0.2% de la section horizontal de
- Les barres verticales des zones extrêmes devraient être raccrochées avec des cadres horizontaux dont l'espacement ne doit pas être supérieur à l'épaisseur du voile.
- les barres verticales du dernier niveau doivent être munies de crochets à la partie supérieure.
- A chaque extrémité du voile (trumeau) l'espacement des barres doit être réduit de moitié sur 1/10 de la langueur de voile, cet espacement est au plus 15 cm (le ferraillage vertical doit être symétrique en raison de changement en terme de moment).
- Le pourcentage minimal d'armatures longitudinal des trumeaux dans chaque direction est donné comme suit :
 - ✓ Globalement dans la section du voile égale a 0.15%
 - ✓ En zone courante égale a 0.10%.
- Si des efforts importants de compression agissant sur l'extrémité, les barres verticales doivent respecter les conditions imposées au poteau.

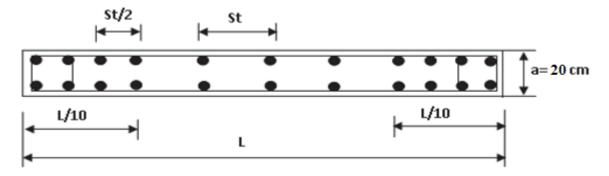


Fig.VI.2. Schéma de disposition des armatures verticales.

1.4 Ferraillage horizontal

- Les aciers horizontaux seront disposés perpendiculairement aux faces du voile.
- Elles doivent être munies de crochets à (90°) ayant une longueur de 10Φ .
- Dans le cas où il existe des talons de rigidité, les barres horizontales devront être ancrées sans crochets si les dimensions des talons permettront la réalisation d'un ancrage droit.

Règles communes.

Dans le calcul du ferraillage des voiles, le RPA 99/v2003 préconise les règles suivantes :

• L'espacement des barres horizontales et verticales doit être inférieur à :

Avec : a est l'épaisseur du voile ;

• Les deux nappes d'armatures doivent être reliées au moins avec quatre épingles au mêtre carré dans chaque nappe ; les barres horizontales doivent être disposées vers l'extérieur.1e diamètre des barres verticales et horizontales des voiles (à l'exception des zones d'about) ne devrait pas dépassée 1/10 de l'épaisseur de voile.

1.5 Armatures transversales

Les armatures transversales perpendiculaires à la face du voile sont des épingles en nombre au moins 4 épingles au mètre carré, servant à retenir les deux nappes d'armatures verticales.

Remarque:

Après avoir fait le calcul du ferraillage pour tous les voiles, nous avons constaté qu'il est possible d'adopter le même ferraillage pour un certain nombre de niveaux. Pour cela nos ferraillons nos voiles par zones :

- Zone I: RDC, 1^{ème}, 2^{ème}, 3^{ème} niveau.
- Zone II : 4^{ème}, 5^{ème}, 6^{ème} niveau.
- Zone III: $7^{\text{ème}}$, $8^{\text{ème}}$, $9^{\text{ème}}$ niveau.

2. Ferraillage des trumeaux :

La méthode utilisée est la méthode de RDM qui se fait pour une bande de largeur (d).

2.1 Exposé de la méthode :

La méthode consiste à déterminer le diagramme des contraintes à partir des sollicitations les plus défavorables (N, M) en utilisant les formules suivantes :

$$\sigma_{max} = \frac{N}{\Omega} + \frac{M V}{I}$$

$$\sigma_{min} = \frac{N}{\Omega} - \frac{M V}{I}$$

Avec Ω: section du béton

I : moment d'inertie du trumeau

 \mathbf{V} et \mathbf{V} ': bras de levier, sachant que $\mathbf{V} = \mathbf{V}' = \frac{\mathbf{L}}{2}$

Le découpage du diagramme des contraintes en bandes de largeur (d) donnée par la formule suivante :

$$d \le \min\left(\frac{h_e}{2}; \frac{2}{3} L_c\right)$$

Avec h_e: hauteur entre nus du plancher du voile considéré.

L_c : la longueur de la zone comprimée.

$$L_{c} = \frac{\sigma_{max}}{\sigma_{max} + \sigma_{min}} \cdot L$$

 L_t : longueur tendue $L_t = L - L_c$

Tab VI.1. Caractéristiques des voiles.

Voile		L	[m]			Ω	[m²]			I [1	m ⁴]	
Axe 1	2,5	2,35	2,55	3,45	0,5	0,47	0,51	0,69	0,26	0,22	0,27	0,68
Axe 2	1	8,	,25			1	,65	•		9,	36	•
Axe 3		3,	,65		0,73				0,	81		
Axe 4	2,6	0	4,	00	0,52 0,8			(),29	1	1,07	
Axe A		9	,3			1	,86			13	,40	
Axe B	4,3	3	3,	95	0	,86	0	,79	1	1,32	1	1,03
Axe C	2,55				0	,51			0,	27		
Axe D	6,1			1	,22			3,	78			
Axe E	6,1	.0	3,	40	1	,22	0	,68	3	3,78		0,65
Axe F	5,00			1,00				2,	08			
Axe G	5,45			1,09				2,	70			
Axe H		3,	,55		0,71			0,74				
Axe I		4,	,40		0,88			1,42				
Axe A'		4,	,95		0,99			2,02				
Axe B'		3,	,60		0,72				0,	78		
Axe C'		3,	,70			0	,74			0,	84	
Axe D'		4,	,50			(),9			1,	52	
Axe E'	4,55			0,91				1,	57			
Axe F'	4,10			0,82			1,15					
Axe G'	3,9	9 5	4,	30	0	,79	0	,86	1	,03	1	1,32
Axe H'		9,	,30			1	,86			13	,40	

Les efforts normaux dans les différentes sections sont donnés en fonction des diagrammes des contraintes obtenus :

Section entièrement comprimée :

$$N_{i} = \frac{\sigma_{max} + \sigma_{1}}{2} \cdot d \cdot e$$

$$N_{i+1} = \frac{\sigma_1 + \sigma_2}{2} \cdot d \cdot e$$

Avec:

e : épaisseur du voile.

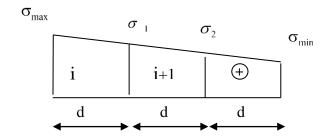


Fig.VI.3. : Diagramme d'une section entièrement

❖ Section partiellement comprimée :

$$N_{i} = \frac{\sigma_{min} + \sigma_{1}}{2} \cdot d \cdot e$$

$$N_{i+1} = \frac{\sigma_1}{2} \cdot d \cdot e$$



Fig.VI.4. Diagramme d'une section partiellement

Comprimée

Section entièrement tendue :

$$\mathbf{N'} = \frac{\sigma_{\text{max}} + \sigma_1}{2} \, \mathbf{d} \times \mathbf{e}$$

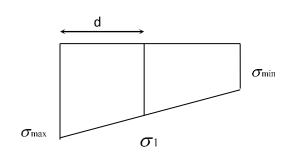


Fig.VI.5. Diagramme d'une section entièrement

Armatures verticales:

a) Section partiellement comprimée :

$$A_{\rm v} = \frac{N_{\rm i}}{\sigma_{st}}$$

b) Section entièrement tendue :

A l'ELU:
$$A_{v} \geq \frac{N_{i}}{\sigma_{st}}$$

$$\sigma_{\rm st} = \frac{\rm fe}{\gamma_{\rm s}}$$
 Contrainte de l'acier = 348 MPa.

A l'ELS:
$$A_v \ge \frac{N_i}{\sigma_s}$$

$$Avec: \quad \overset{-}{\sigma_s} \geq min \bigg\{ \frac{2}{3} \, f_e \, ; max \, (0.5 f_e \, ; 110 \sqrt{\eta \, f_{tj}}) \bigg\} \quad \text{pour une fissuration pr\'ejudiciable}.$$

$$\overline{\sigma}_s \ge \min \left\{ \frac{2}{3} f_e; 90 \sqrt{\eta f_{tj}} \right\}$$
 Pour une fissuration très préjudiciable.

 $\eta = 1.6$ pour les barres de HA de diamètre au moine gal à 6mm.

c) Section entièrement comprimée :

$$A_{vi} = \frac{N_i - \Omega \cdot f_{bc}}{\sigma_c}$$

Armatures minimales:

> Compression du béton :

 $A_{\min} \ge 4cm^2$ Par mètre de parement mesuré perpendiculaire à ces armatures.

 $0.2\% \le A_{\text{min}}/\Omega \le 0.5\%$ Avec Ω :section du béton comprimé.

> Traction simple:

$$A_{min} \ge \frac{0.23B.f_{c28}}{f_{e}} \qquad (BAEL91 \ modifi\'e \ en \ 99).$$

B: Section du béton tendu.

Les barres horizontales doivent être munies de crochets à 135° ayant une longueur de $\Phi10$.

D'après le BAEL91
$$A_H \ge \frac{A_V}{A}$$

D'après RPA2003
$$A_H \ge 0.15\%\Omega$$

2.2 Vérifications

2.2.1 Vérification à l'ELS

Pour cet état, il considère :

$$N_{ser} = G + Q$$

$$\sigma_b = \frac{N_s}{\Omega + 15 \cdot A} \le \overline{\sigma}_b$$

$$\overline{\sigma}_b = 0.6 \cdot f_{c28} = 15 \text{ MPa}$$

Avec:

N_{ser}: Effort normal appliqué.

Ω : Section du béton.

A : Section d'armatures adoptée.

2.2.2 Vérification de la contrainte de cisaillement

✓ D'après le RPA99 version 2003 :

$$\tau_{_{\scriptscriptstyle II}} \leq \bar{\tau}_{_{\scriptscriptstyle b}} = 0.2 \times f_{\scriptscriptstyle c28}$$

$$\tau_b = \frac{V}{b_0 \cdot d} \qquad V = 1.4 \ V_{u, calcul}$$

Avec:

b₀: épaisseur du linteau ou du voile.

d: Hauteur utile (d = 0.9 h).

h: Hauteur totale de la section brute.

✓ D'après le BAEL 91 modifié 99 :

Il faut vérifier que :

 $\tau_u \leq \bar{\tau}_u$ Avec τ_u : Contrainte de cisaillement.

$$\tau_{u} = \frac{V_{u}}{b \cdot d}$$

$$\tau_u = min \left(0.15 \frac{f_{c28}}{\gamma_b}, 4MPa \right)$$
; Pour la fissuration préjudiciable.

Exemple de calcul

Soit à ferrailler le voile de l'axe (G') le plus sollicité.

Tab VI.2. Ferraillage vertical du voile plein

Zone	M [kN.m]	N [kN]	$\sigma_{max}[MPa]$	$\sigma_{min}[MPa]$	Type
RDC 1, 2, 3	17213,32	1692,12	6,67	-5,27	SPC
4, 5, 6	7199,66	1024,6	3,05	-1,95	SPC
7, 8, 9	1871,49	417,89	0,87	-0,42	SPC

Tab VI.3. Calcul du ferraillage

d [m]	$\sigma_1[MPa]$	N _u [MN]	A ₁ [cm ²]	A ₂ [cm ²]	A _v [cm ²]	A _{min} [cm ²]	A _{RPA} [cm ²]	A _h [cm ²]
	3,54	1,19	34,21	6,67	40,88	37,2	6,8	27,90
1,53	1,22	0,43	12,30	2,27	14,57	37,2	6,8	27,90
	0.27	0,09	2,56	0,43	2,97	37,2	6,8	27,90

Selon l'article 7.7.4.3 du RPA 99/2003 le diamètre des barres ne devrait pas dépasser le 1/10ème de l'épaisseur du voile : Ø v $\leq 20/10 = 2$ cm donc nous optons pour des Ø16.

Pour l'espacement on opte pour :

- En zone courante St = 15cm
- En zone d'about (L/10) St = 10 cm

Tab VI.4. Choix d'armature verticale

A _v [cm ²]	A [cm²/face/ml]	Choix d'armature
40,88	13,35	7HA16
37,2	12,16	7 HA16
37,2	12,16	7 HA16

 $A_H/face/ml = 2427,9/2 \times 9,3 = 1.5 \text{ cm}^2$

on opte pour: 4 HA8 avec un esspacement de 20 cm

Tableau VI.5. Sections d'armatures pour les voiles de la 1ème zone.

Voiles	M [MN.m]	N [kN]	$\sigma_1[MPa]$	N _u [MN]	A _v [cm ²]	A _h [cm ²]		illage opté e/ml
							$\mathbf{A_v}$	Ah
Axe 1	8,36	5658,65	-4,68	1,39	40,18	9,75	6НА16	4HA8
Axe 2	5,22	3510,21	1,21	0,57	16,01	24,30	6HA12	4HA8
Axe 3	3,74	1739,3	-0.085	0.75	21,64	11,25	6HA14	4HA8
Axe 4	1,21	1360,47	-0.96	-0.05	18,75	12,00	6HA14	4HA8
Axe A	14,6	637,32	3 ,25	1,07	37,10	27,90	6HA16	4HA8
Axe B	5,49	761,59	2,43	1,41	40,56	12,90	6HA16	4HA8
Axe C	0,45	390,15	0,77	0.05	17,79	7,95	6HA14	4HA8
Axe D	2,53	790,5	0,57	0,53	15,62	12,30	6HA12	4HA8
Axe E	8,56	523,27	3,41	1,33	38,36	18,15	6HA16	4HA8
Axe F	0,99	489,11	-0,05	0,19	14,18	11,25	6HA12	4HA8
Axe G	2,73	458,39	0,93	0,42	14,18	16,95	6HA12	4HA8
Axe H	1,28	155,87	0,57	0,40	14,18	11,55	6HA12	4HA8
Axe I	1,88	595,28	0,44	0,27	15,30	15,30	6HA12	4HA8
Axe A'	1,59	728,08	0,15	0,18	14,18	14,85	6HA12	4HA8
Axe B'	0,79	607,60	-0,38	0,08	18,48	10,80	6HA12	4HA8
Axe C'	0,97	1262,12	-1,13	-0,09	21,6	11,10	6HA14	4HA8
Axe D'	1,68	155,61	0,82	0,42	15,29	13,50	6HA12	4HA8
Axe E'	0,51	865,97	-1,60	-0,15	32,37	8,10	6HA16	4HA8
Axe F'	1,51	3010,12	-1,28	-0,036	25,47	12,60	6HA14	4HA8
Axe G'	17,21	1692,12	3,54	1,19	40,88	27,90	6HA16	4HA8
Axe H'	4,06	1276,25	0,91	0,88	26,54	12,02	6HA14	4HA8

Tableau VI.6. Sections d'armatures pour les voiles de la 2ème zone.

Voiles	M [MN.m]	N [kN]	$\sigma_1[MPa]$	N _u [MN]	A _v [cm ²]	Ah [cm²]	Ferra Ado /faco	pté
							$\mathbf{A}_{\mathbf{v}}$	A _h
Axe 1	3,46	561,65	1,32	0,80	37,79	9,75	6HA16	4HA8
Axe 2	1,96	505,31	0,44	0,21	24,30	24,30	6HA14	4HA8
Axe 3	1,84	1075,1	-0,33	0,29	18,48	11,25	6HA14	4HA8
Axe 4	0,41	888,6	-0,54	-0,03	14,18	12,00	6HA12	4HA8
Axe A	6,45	247,63	1,45	0,48	27,90	27,90	6HA16	4HA8
Axe B	2,13	5718,3	-0,98	0,30	31,80	12,90	6HA16	4HA8
Axe C	0,12	234,09	-0,49	-0,06	14,18	7,95	6HA12	4HA8
Axe D	0,92	166,40	0,36	0,24	16,40	12,30	6HA12	4HA8
Axe E	3,06	524,89	0,90	0,38	24,20	18,15	6HA14	4HA8
Axe F	0,28	303,34	-0,24	-0,005	15,00	11,25	6HA12	4HA8
Axe G	1,32	323,89	0,38	0,18	22,60	16,95	6HA14	4HA8
Axe H	0,42	314,94	-0,15	0,04	15,56	11,55	6HA12	4HA8
Axe I	0,56	263,44	0,05	0,06	20,40	15,30	6HA14	4HA8
Axe A'	0,61	410,61	-0.07	0.03	19,80	14,85	6HA14	4HA8
Axe B'	0,41	324,25	-0,2	0,04	14,40	10,80	6HA12	4HA8
Axe C'	0,38	920,78	-0,5	-0,01	14,80	11,10	6HA12	4HA8
Axe D'	0,53	978,54	-0,35	-0,01	18,00	13,50	6HA14	4HA8
Axe E'	0,17	65,12	-0,12	0,06	10,80	8,10	6НА8	4HA8
Axe F'	0,64	881,88	-0,64	-0,08	17,20	12,60	6HA12	4HA8
Axe G'	7,20	1024,6	1,22	0,43	37,20	27,90	6HA16	4HA8
Axe H'	1,43	960,89	-0,23	0,16	16,00	12,02	6HA12	4HA8

Tableau VI.7. Sections d'armatures pour les voiles de la 3ème zone.

Voiles	M [MN.m]	N [kN]	$\sigma_1[MPa]$	N _u [MN]	A _v [cm ²]	Ah [cm²]	Ferra Ado /faco	pté
							Av	Ah
Axe 1	1,15	329,46	0,37	0,47	14,36	9,75	6HA12	4HA8
Axe 2	0,45	399,15	-0,13	-0,01	32,4	24,30	6HA16	4HA8
Axe 3	0,74	521,23	-0,4	0,06	15,00	11,25	6HA12	4HA8
Axe 4	0,14	418,70	-0,09	0,02	16,00	12,00	6HA12	4HA8
Axe A	1,9	161,36	0,38	0,13	37,2	27,90	6HA16	4HA8
Axe B	0,59	307,4	0,01	0,08	17,20	12,90	6HA12	4HA8
Axe C	0,03	117,04	-0,13	-0,01	10,06	7,95	6НА8	4HA8
Axe D	0,17	132,19	-0,06	0,01	16,40	12,30	6HA12	4HA8
Axe E	1,17	361,17	0,17	0,10	24,20	18,15	6HA14	4HA8
Axe F	0,07	78,07	-0,06	-0,01	15,00	11,25	6HA12	4HA8
Axe G	0,43	190,48	-0,09	0,01	22,60	16,95	6HA14	4HA8
Axe H	0,1	80,13	-0,04	0,01	15,56	11,55	6HA12	4HA8
Axe I	0,15	17,9	0,06	0,03	20,40	15,30	6HA12	4HA8
Axe A'	0,21	185,45	-0,09	0,01	19,80	14,85	6HA14	4HA8
Axe B'	0,18	98,39	-0,16	-0,02	14,40	10,80	6HA12	4HA8
Axe C'	0,13	432,65	-0,13	0,02	14,80	11,10	6HA12	4HA8
Axe D'	0,22	27,58	0,10	0,05	18,00	13,50	6HA12	4HA8
Axe E'	0,05	196,76	-0,22	-0,01	10,80	8,10	6НА8	4HA8
Axe F'	0,23	280,80	-0,18	-0,02	17,20	12,60	6HA12	4HA8
Axe G'	1,87	417,89	0.27	0,09	37,20	27,90	6HA16	4HA8
Axe H'	0,36	484,17	-0,38	-0,04	16,00	12,02	6HA12	4HA8

• Remarque

On adoptera ces résultats pour le ferraillage les niveaux : 4, 5, 6,7. Les niveaux 8 et 9 seront ferraillés avec les sections minimales.

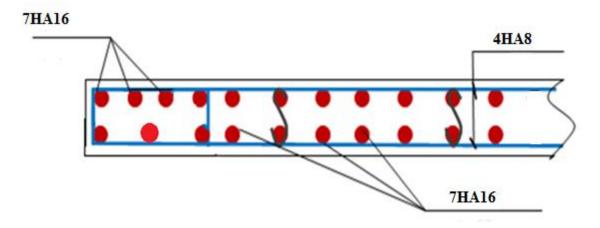


Fig.VI.6. Schéma de ferraillage du voile de l'axe G'

3. Ferraillage des linteaux

Les linteaux seront étudiés comme des poutres encastrées à leurs extrémités.

Les linteaux doivent être conçus de façon à éviter leur rupture fragile et ils doivent être capables de reprendre l'effort tranchant et le moment fléchissant.

3.1. Calcul le ferraillage

Afin de déterminer les armatures nécessaires pour reprendre l'effort de cisaillement, nous devons comparer la contrainte de cisaillement avec 0.06 fc28 = 1.5 (article 7.7.3 des RPA99).

$$\tau_b = \frac{1.4V}{b_0 x d} > 0.06 f_{c28}$$

Nous somme dans le cas où $\tau b \geq 0.06$ fc28. En plus du ferraillage habituel (longitudinal, de peau et transversal) on devra disposer des armatures en diagonales qui reprendrons les efforts M et V.

Armatures diagonales

$$A_D = \frac{V}{2f_e sin \propto}$$
 Avec : $\propto = arc \ tg \left(\frac{h - 2d'}{L} \right)$

• Armatures longitudinales

$$A_l = A'_l = 0.15\%. b. h$$

• Armatures transversales

$$\tau$$
 b \leq 0.025 fc28 = 0.625 At \geq 0.15 % b.St
 τ b $>$ 0.025 fc28 At \geq 0.25 % b.St

$$S_t = \frac{h}{4}$$

• Armatures de peau (répartition)

$$A_c \geq 0.2\%.\,b_0.\,h$$

Tab.VI.7. Ferraillage des linteaux

linteau	h _{linteau}	V [KN]	τb	α^{0}	$\mathbf{A_l}$	A _c [cm ²]	$\mathbf{A}_{\mathbf{D}}$	$\mathbf{A_t}$
			[MPa]		[cm ²]		[cm ²]	[cm ²]
L1	1,06	236,24	1,73	40,29	3,18	4,24	4,56	1,32
L2	1,06	217,68	1,59	35,24	3,18	4,24	4,20	1,32
L3	1,06	256,65	1,88	35,24	3,18	4,24	4,96	1,32
L4	0 ,76	162,62	1,66	26,86	2,28	3,04	3,14	0,95
L5	1,06	210,35	1,54	40,29	3,18	4,24	4,06	1,32
L6	0 ,76	171,65	1,76	26,86	2,28	3,04	3,32	0,95
L7	0,76	157,65	1,61	26,86	2,8	3,04	3,05	0,95
L8	1,06	249,35	1,83	40,29	3,18	4,24	4,82	1,32
L9	1,06	243,35	1,78	35,24	3,18	4,24	4,70	1,32
L10	1,06	257,32	1,89	40,29	3,18	4,24	4,97	1,32
L11	1,06	212,02	1,55	40,29	3,18	4,24	4,17	1,32

3.2. Ferraillage final

Le ferraillage final des linteaux se résume comme suit :

- $Al = 3.18 \text{ cm}^2 \text{ soit 2 HA 16.}$
- At = $1,32 \text{ cm}^2 \text{ soit } 1 \text{ cadre HA } 10.$
- $Ac = 4,24 \text{ cm}^2 \text{ soit 4 HA 12.}$
- $AD = 4.96 \text{ cm}^2 \text{ soit } 8 \text{ HA } 10.$

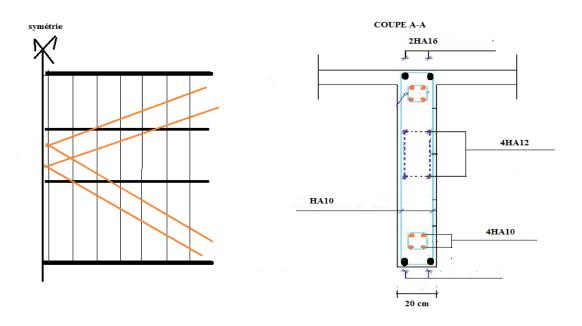


Fig.VI.7. Ferraillage du linteau

CHAPITRE VII ETUDE DES FONDATION

1. Introduction

Les fondations sont des éléments qui permettent de transmettre les charges de la superstructure au sol. Leur dimensionnement nécessite une bonne connaissance des caractéristiques du sol en plus des sollicitations dans la structure.

Il existe plusieurs types de fondations, le choix ce fait selon la nature et la capacité portante du sol, les charges à transmettre au sol, le type d'éléments porteurs, et l'aspect économique du projet.

Le dimensionnement et le ferraillage des fondations se fait suivant la réglementation parasismique RPA 99/2003, à l'aide des deux combinaisons de charges suivantes : $G+Q\mp E$ et 0 ,8 $G\mp E$.

2. Choix du type de fondation

Les résultats obtenus dans l'étude géotechnique sont considérées suffisantes pour choisir le type de la fondation à adopté. Suivant les résultats des essais de laboratoire et des essais in situ, les structures projetées peuvent être fondée sur un radier général. Le radier sera soumis à une pression uniforme due à la pression du sol et de l'action du poids du bâtiment et du moment créé par la charge sismique.

3. Dimensionnement des fondations

les efforts à la base de la structure obtenues lors du calcul dynamique selon CBA93/eurorcode7 et selon le RPA99 /2003 comme suit :

Selon CBA93/eurorcode7

- ELU: 1.35 G + 1.5 Q
- ELS: G + Q

Selon le RPA 99 révisé 2003 :

- \bullet G+Q+E
- 0.8 G + E

Tab.VII.1: Les efforts à la base de la structure

Combinaison	N [MN1]	Moment M x [MN.m]	Moment M y [MN.m]
G+Q+E	50,21	329,89	384,83
0,8G+E	37,12	217,21	245,39

Chapitre VII: Etude des fondations

La surface nécessaire pour le radier est :

$$S_{\text{necesaire}} = \frac{N}{\sigma} = \frac{50,21}{0,25} = 200,84 \text{m}^2 < 351 \text{ m}^2 \text{ (surface d'impact du bâtiment)}$$

 $\frac{\text{S necessair}}{\text{S batiment}} = \frac{200,84}{351} = 0,57 > 0,5$ ce qui confirme bien le choix d'utilisation du radier générale.

L'utilisation des semelles filantes est à éviter car il y'aura un risque de chevauchement et pour qu'elle soit applicable il faut que $\frac{S \text{ necessair}}{S \text{ batiment}} < 0.5 \text{ ce qui n'est pas le cas.}$

Parmi les avantages du radier générale on trouve :

- * L'augmentation de la surface de la semelle, minimise la forte pression apportée par la structure.
- * La réduction des tassements différentiels.
- * Néglige les irrégularités ou l'hétérogénéité du sol.
- * La facilité d'exécution.

3.1. Prédimensionnement du radier

Le radier fonctionne comme un plancher renversé, dont les appuis sont constitués par des refends linéaires, soumis à la réduction du sol agissant du bas vers le haut d'une manière uniforme (radier supposé infiniment rigide), son épaisseur doit satisfaire les conditions suivantes :

• Conditions forfaitaires

$$\frac{L_{\text{max}}}{8} \le h \le \frac{L_{\text{max}}}{5}$$

$$L \max = 610 \text{ cm} \Rightarrow \frac{610}{8} \le h \le \frac{610}{5} \Rightarrow 76,25 \text{ cm} \le h \le 122 \text{ cm}$$

On prend h = 1.0 cm

• Condition de rigidité:

$$L_e \ge \frac{2L_{\max}}{\pi}$$

L_{max}: plus grande distance entre deux voiles parallèles:

L_e: longueur élastique.

$$L_e = \sqrt[4]{\frac{4E*I}{K*b}}$$

Chapitre VII: Etude des fondations

 $E = 3700\sqrt[3]{fc28}$ Représente le module de déformation longitudinale différé

I: inertie d'une bande d'1 m de radier. I = $\frac{bh^3}{12}$

K : coefficient de raideur du sol, rapporté à l'unité de surface pour un sol moyen $(K = 40 \text{ MN} / \text{m}^3)$.

b : largeur du radier (bande de 1m). D'où:

$$h \ge \sqrt[3]{\frac{48KL_{\max}^4}{E\pi^4}}$$

 $L_{max} = 6.1 \text{ m}, E = 34179.56MPA, K = 40 MPA$

• Calcul d'épaisseur de la table dalle

La dalle du radier générale doit satisfaire la condition $hr > \frac{lmax}{20}$.

avec un minimum de 25 cm, \Rightarrow hr> $\frac{6.1}{20}$ =0,31m on adopte un épaisseur de 0,4 m.

Epaisseur de la nervure

$$e_{table} \ge \frac{L max}{10} = \frac{6.1}{10} = 0.61 \text{m}$$
 on adopte un épaisseur de 0,7 m.

On adopte un h qui vérifie tous les conditions, par conséquent hr = 1,1 m.

Fig.VII.1. Coupe verticale du radier

Débord

Le BAEL nous impose un débord minimal qui sera calculé comme suit :

$$L_{d\acute{e}b} \ge \max \left(\frac{h}{2};30\,\mathrm{cm}\right) = \max \left(\frac{110}{2};30\,\mathrm{cm}\right) = 55\,\mathrm{cm}$$
; Soit: $L_{d\acute{e}b} = 80\,cm$.

3.2. Caractéristiques géométriques du radier

• Centre de gravité: X = 16.5298

Y = 3.7957

• **Moments d'inertie:** $I_X = 54302.57 \text{ m}^4$

 $I_{\rm Y} = 131733.49 \text{ m}^4$

• La surface du radier : $S_{rad} = S_{bat} + D_{\acute{e}bord} = 351 + 0,80*95,41 = 427,33 \text{ m}^2$

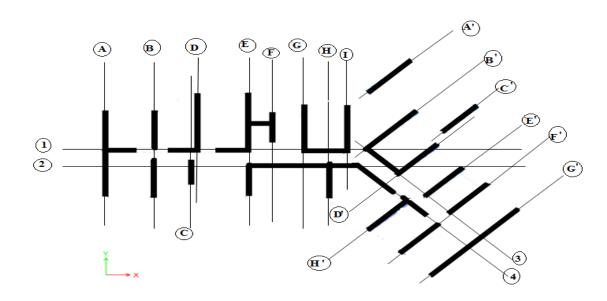


Fig.VII.2. Identification des voiles

4. Vérifications

4.1. Vérification au cisaillement

$$\tau_b = \frac{Vmax}{d \ x \ b} \le \bar{\tau}_b = 0.05 \ f_{c28}$$

Nous vérifions l'effort tranchant sous l'effet de l'effort normal ramené par voile le plus sollicité axe(G') qui devient un appui au radier renversé.

$$\tau_{u} = \frac{Vu}{bd}$$

$$V_U = \frac{N * L_{\text{max}}}{2} = \frac{(N / S_{rad}) * L_{\text{max}}}{2}$$

$$V_u = \frac{17,21 \times 9,3}{427,33 \times 2} = 0,19MN.$$

 $\tau_{u=\frac{0.19}{0.99}} = 0.19 \, \text{MPa} < 1.25 \, \text{MPa}, \, \text{la condition est vérifié}.$

• Détermination des efforts

Les charges dues à la superstructure sont

- Charge permanente : $G_{bat} = 24569,73KN$.
- Surcharge d'exploitation : $Q_{bat} = 6732.64 \ KN$.
- **Poids du radier** $P_{rad} = 4,27 \text{ MN}$
- Charge permanente apportée sur le radier G tot

$$G_{tot} = P_{(superstructure)} + P_{rad}$$

 $G_{tot} = 24,57 + 4,27 = 28,84MN$

4.2. Vérification au poinçonnement

Le poinçonnement se fait par expulsion d'un bloc de béton de forme tronconique à 45°.

la vérification se fait pour le voile le plus sollicité.

Dans notre cas le voile de l'axe(G') de longueur L = 9.3 m est le voile le plus sollicité.

Nous devons vérifier selon le règlement C.B.A art A.5.2.4.3

$$N_{\rm u} \leq \frac{0.045 \times \mu c \times h \times f c 28}{\gamma b}$$

N_u: charge de calcul à l'ELU du voile le plus sollicité, dans notre cas c'est le voile G'.

 μ_c : Périmètre de contour cisaillé , projeté sur le plan moyen du radier comme indiqué dans le schéma suivant :

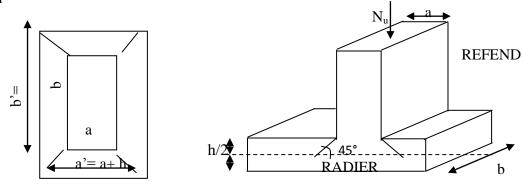


Fig.VII.3. Périmètre utile des voiles

$$\mu c = 2(a'+b')=2(a+b+2h)=2(0,2+9,3+2\times1,1)=23,4 \text{ m}.$$

$$N_u=2,38MN.$$

$$Nu \leq \frac{0.045\times23.4\times0.9\times25}{1.5}=15,25 \text{ MN}$$
Condition vérifié

4.3. Vérification de la stabilité au renversement

On doit vérifier que l'excentrement de la résultante des forces verticales gravitaires et des forces sismiques reste à l'intérieur de la moitié centrale de la base des éléments de fondation résistant au renversement (article 10.1.5 des RPA 99).

$$e=\frac{M}{N}\leq\frac{L}{4}$$

M = 384,83MN.m

N = 50,21 MN

L = 31.85

$$e = \frac{384,83}{50,21} = 7,66 \, m \le \frac{31,85}{4} = 7,96 \, v\'{e}rifi\'{e}$$

4.4. Vérification vis-à-vis des contraintes du sol

$$\sigma_{moy} = \frac{3\sigma_{max} + \sigma_{min}}{4}$$

Avec:

$$\sigma_1 = \frac{N}{\Omega} + \frac{M v}{I} \le 1.33 \sigma_{sol}$$

$$\sigma_2 = \frac{N}{\Omega} - \frac{M v}{I} \le 1.33 \sigma_{sol}$$

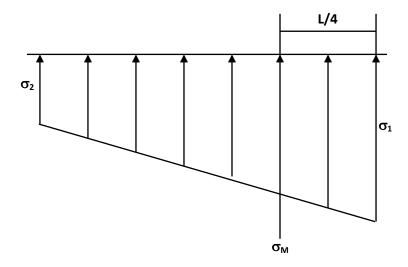


Fig.VII.4. schéma de la contrainte du sol

Tab VII.2. Vérification des contraintes

	0.8 G+E		G+	Q+E	
	Sens-X	Sens-Y	Sens -X	Sens-Y	
N [MN]	37	7,12	50),21	
M [MN.m]	217,21	245,39	329,89	384,83	
$\Omega [\mathrm{m}^2]$		427	7,33	1	
V [m]	11,77	15,92	11,77	15,92	
I [m ⁴]	54302,57	131733,49	54302,57	131733,49	
σ_1 [MPa]	0.134	0.116	0,188	0,163	
σ_2 [MPa]	0.047	0,030	0,046	0,070	
$\sigma_{moy}[MPa]$	0.112	0,095	0,152	0,140	
$\sigma_{adm}[MPa]$	0.33	0.33	0.33	0.33	
condition	vérifié				

4.5. Vérification de l'effort de sous pression :

Cette vérification justifiée le non soulèvement de la structure sous l'effet de la pression hydrostatique.

$$P \ge \alpha S_{rad} \cdot \gamma_w \cdot Z = 1.5 \times 0.01 \times 4 \times 427.33 = 17.31MN$$

P: Poids total du bâtiment à la base du radier.

 α : Coefficient de sécurité vis à vis du soulèvement $\alpha = 1,5$.

 γ_w : Poids volumique de l'eau ($\gamma_w = 10 \text{ KN/m}^3$),

Z: profondeur de l'ancrage (Z = 4 m).

P = 28,84MN > 25,64MN Pas de risque de soulèvement de la structure.

5. Ferraillage du radier

Le ferraillage du radier se calcule sous les sollicitations maximales obtenues par l'application des combinaisons les plus défavorables.

La charge maximale due à la réaction du sol est q_{sol} = 0,25 MPa.

On assimile le radier à un plancher renversé constitué de panneaux qui seront calculés à l'aide du logiciel SOCOTEC Dalle.

On adoptera le ferraillage du panneau le plus sollicité pour tout le radier

Tab VII.3. Panneau type 1 du radier, efforts et diagrammes.

panneau	sollicitation	position	Valeur max	diagrammes
	Mx [kN.m/ml]	(3,5;4,1)	168,11	MXX 96,41 98,41 98,41 1,75
		(1,46;4,1)	96,41	-84,05 -168,11 Min. global
Type 1	My [kN.m/ml]	(1,75;0)	85,73	32.88 Max. global 32.88 2.05 4,1 Y
		(1,75;1,46)	32,88	-42.88- -85.73 Min. global
	V _x [kN/ml]	(3,5;4,1)	346,07	349,37 Max. global 346,07
	Vy [kN/ml]	(3,5;0)	-284,30	12.7 64.24 Max. global 19.05
	[(3,5;4,1)	19,05	-142,15

Tab VII.4. Panneau type 2 du radier, efforts et diagrammes.

panneau	sollicitation	position	Valeur max	diagrammes
	Mx [kN.m/ml]	(4,1;1,2)	297,29	134,39 Max, global 126,37.
		(1,79; 1,2)	126,37	-148,89 - -297288Ja9 - Min. global
Type 2	My [kN.m/ml]	(2,05;4,8)	120,55	Mex. global 39,48 2,4 48
		(2,05;3,32)	39,48	-75,07120,55 -150,14
	Vx [kN/ml]	(0; 3,6)	157,66	TZX 421,29 Max. global 165,33 2,05 -167,66
	Vy [kN/ml]	(2,05;3,7)	172,66	TZY
		(2,05;4,8)	-94,02	94.02 -210.21 Min. global 94.02

Tab VII.5. Panneau type 3 du radier, efforts et diagrammes.

panneau	sollicitation	position	Valeur max	diagrammes
	Mx [kN.m/ml]	(0;4,1)	164,12	MXX 94.4 Max. global 92.64
		(1,46; 4,1)	92,64	-82,08164,12162,77 Min. giobal
Type3	My [kN.m/ml]	(1,75;2,05)	18,44	18.44 12.82 -16.34 Min. global Min. global
	V _x [kN/ml]	(3,5;4,1)	336,52	TZX 339,77 Max.global 336,52
	Vy [kN/ml]	(1,75;4,1)	19,11	19,11 Max, global 2,05 41 Y

Tab VII.6. Panneau type 4 du radier, efforts et diagrammes.

panneau	sollicitation	position	Valeur max	diagrammes
	Mx [kN.m/ml]	(3,98; 1,24)	293,98	Mox 290.76 Max global 152.46
		(2,39; 1,24)	152,46	.34138 38 -682.53
Type 4	My [kN.m/ml]	(3,52;1,43)	128,91	MYY 83,73 Max. global 37,99 4,95 Y
		(3,52;3,78)	37,99	-128,91 -182,19 -364,37 - Min. global
	V _x [kN/ml]	(7,05; 3,71)	543 ,43	7ZX 925,8 Mex. global 534,43 462,9 534,43 47,05 x 3,525 7,05 x
	Vy [kN/ml]	(7,05;0)	725,97	72X 925.8 Max. global 725,97
		(7,05;1,05)	-457,51	3,525 7,05 X -815,64 Min. global

Tab VII.7. Panneau type 5 du radier, efforts et diagrammes.

panneau	sollicitation	position	Valeur max	diagrammes
	Mx [kN.m/ml]	(0,0;2,3)	102,54	MXX 102,54 Max. global 102,54
		(2,47; 2,3)	189,07	-94,54 - -189,07 - -189,07 Min. global
Type 5	My [kN.m/ml]	(3,05;0,00)	134,13	MYY 38,11
		(3,05;1,47)	25,85	-83,37134,13 -166,74
	V _x [kN/ml]	(0;1,72)	540,21	TZX 540,21 Max. global 540.21
		(4,12; 1,72)	483,48	3,05 8,1 X
	Vy [kN/ml]	(4,57;0)	288,48	72Y 708,18 Max. global 354,09 - 288,48
	[m.v.m.]	(4,57;2,3)	-188,09	-188,09 -379,83 Min. global

5.1. Calcul du ferraillage

On considère une section rectangulaire de (100 x 30) avec un enrobage de 3cm.

Tabl.V.8. Récapitulatif des moments max et résultats du ferraillage des panneaux du plancher terrasse

Panneau	Sens	Position	Moment [kN.m]	Armatures sup. [cm ²]	Armatures inf. [cm²]
	Y	travée	32,88	-	2,65
Type 1	X	travée	96,41	-	7,91
	X	appuis	168,11	14,10	-
	Y	travée	39,48	-	3,19
Type 2	X	travée	126,37	-	10,47
	X	appuis	297,29	26,06	-
	Y	travée	18,44	-	1,48
Type 3	X	travée	92,64	-	7,60
	X	appuis	164,12	13,75	-
	Y	travée	128,91	-	10,68
Type 4	X	travée	152,46	-	12,73
	X	appuis	293,98	25,74	-
	Y	travée	25,85	-	2,20
Type 5	X	travée	102,54	-	8,43
	X	appuis	189,07	15,97	-

5.2. Vérification du cisaillement

Tab.VII.9. Vérification du cisaillement.

Panneau	Sens	Position	Effort tranchant max [kN]	τu [MPa]	Tlim [MPa]
T. 1	X	Appui	346,07	0,96	2,5
Type 1	Y	Appui	284,30	0,79	2,5
	X	Appui	157,66	0,44	2,5
Type 2	Y	Appui	172,66	0,48	2,5
	X	Appui	336,52	0,93	2,5
Type 3	Y	Appui	19,11	0,05	2,5
	X	Appui	543,43	1,51	2,5
Type 4	Y	Appui	725,97	2,01	2,5
	X	Appui	540,21	1,5	2,5
Type 5	Y	Appui	288,88	0,81	2,5

Pour faciliter l'exécution, on adoptera le même ferraillage pour tous les planchers.

- 8 HA16 dans les deux sens comme armatures inférieures avec e = 12 cm.
- 9 HA20 dans les deux sens comme armatures supérieures avec e = 10 cm.

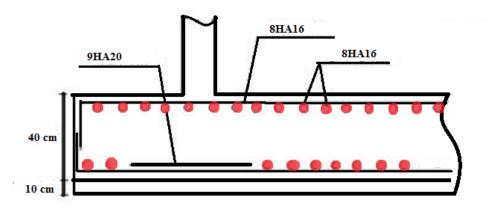


Fig.VII.5.Schéma de ferraillage du radier.

6. Ferraillage des nervures

Nous avons calculé les sollicitations des nervures les plus chargées dans chacun des sens Xet Y.

La transmission des charges des dalles aux nervures se fait en utilisant la méthode des lignes de ruptures. Cette méthode préconise de remplacer les charges triangulaires et trapézoïdales par des charges uniformes équivalentes sont présentée dans le tableau suivant :

Tab.VII.910. Transmission des charges

Elément	Trapèze	Triangle
P _V	$\left(\frac{1-\alpha}{2}\right)\frac{\mathrm{plx}}{2}$	plx 4
P_{M}	$(1-\frac{\alpha^2}{3})\frac{\mathrm{plx}}{2}$	<u>plx</u> 3

Avec:

Pv: charge uniforme équivalente pour le calcul de l'effort tranchant.

PM: charge uniforme équivalente pour le calcul du moment fléchissant.

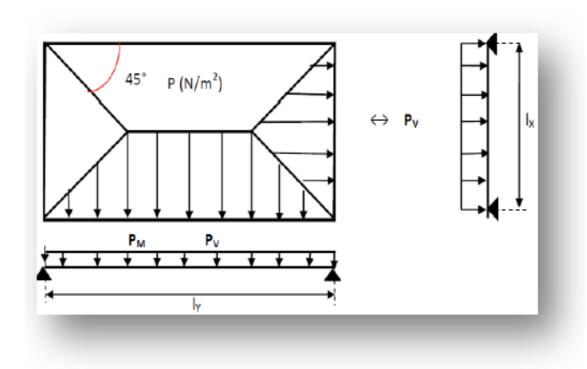


Fig.VII.6. Transmission des charges aux poutres

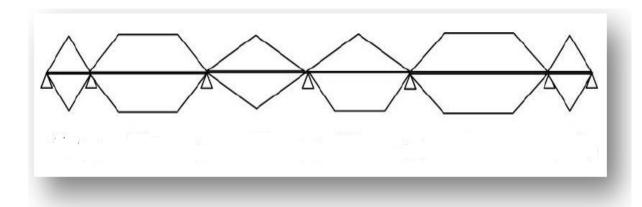
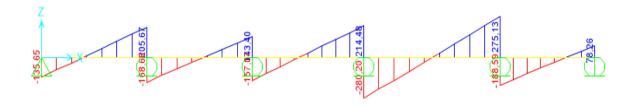



Fig.VII.7. Charges revenants aux nervures

Armatures longitudinales

Les efforts obtenus au niveau des appuis et travées des nervures dans chaque sens sont illustrés dans les figures VII.6 et VII.7.

A- Effort tranchant

B- Moment fléchissant

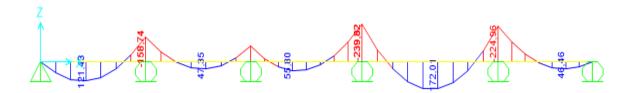
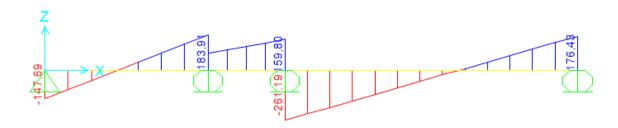



Fig.VII.8. Diagrammes des efforts dans la nervure sens X

A- Effort tranchant

B- Moment fléchissant

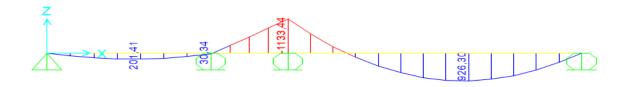


Fig.VII.9. Diagrammes des efforts dans la nervure sens X

Le tableau VII.10 résume les efforts maximaux en appui et en travée avec lesquels le ferraillage sera calculé :

Tab.VII.11. Moments et efforts tranchant dans les nervures

		Mmax [MN.m]	Tmax [MN]
G. W.	Appui	0,24	0.20
Sens X	X Travée	0,17	0,28
Sens Y	Appui	1,13	0.24
	Travée	0,93	0,26

Nous constatons que la nervure la plus sollicitée est celle du sens Y. Nous procéderons donc à son ferraillage, Ce dernier se calcul en flexion simple à l'ELU En considérant une section rectangulaire sur appuis et une section en T en travée.

Tab.VII.11. Ferraillage des nervures

		M [MN.m]	μ	As [cm ²]	As min	Choix des
					[cm ²]	armatures
C X 7	Appui	1,13	0,39	37,08	7	12HA20
Sens Y	Travée	0,93	0,08	27,98	7	9НА20

Vérification de l'effort tranchant

$$\bar{\tau}_b = min\left\{\frac{0.15f_{c28}}{\gamma_b}; 4MPa\right\} = 2.5 MPa$$

$$\tau_b = \frac{V_{max}}{h} = 0.41 MPa$$

 $\tau_b < \bar{\tau}_b$ condition vérifié

Donc les armatures de cisaillement ne sont pas nécessaires, nous calculons juste les armatures transversales minimales.

$$\Phi_{t} \leq \min \left\{ \frac{h}{35}; \frac{b_{0}}{10}; \Phi_{l} \right\} = 2 cm$$
 $S_{t} \leq \left\{ \frac{h}{4}; 12\Phi_{l} \right\} = 20 cm \text{ (Article 7.5.2.2 des RPA 99 - version 2003)}$

On opte pour : HA14 avec un espacement de 20 cm.

7. Etude du débord de radier.

Le débord fonctionne comme une console soumise à une charge uniformément répartie.

7.1. Caractéristique géométrique du débord

- portée = 0.5 m
- hauteur = 0.4 m

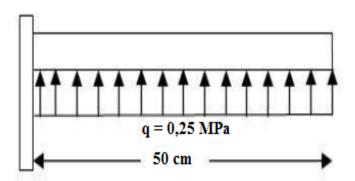


Fig. VII.10. Schéma statique et dimensions du débord

Les valeurs du moment, effort tranchant et les résultats du ferraillage sont donnés dans le tableau suivant :

Tab.VII.12. Ferraillage du débord

M [MN.m]	V [MN]	As [cm ²] As min [cm		Choix
				armatures
0,031	0,12	2,52	5,17	5HA12

7.2. Vérification au cisaillement

$$\bar{\tau}_b = min \left\{ \frac{0.15 f_{c28}}{\gamma_b}; 4MPa \right\} = 2.5 MPa$$

$$\tau_b = \frac{V_{max}}{h} = 0.33 MPa$$

 $\tau_b < \bar{\tau}_b$ condition vérifié

On adopte le même ferraillage du radier pour le débord, pour des raisons de sécurité et pour des raisons de pratique de réalisation.

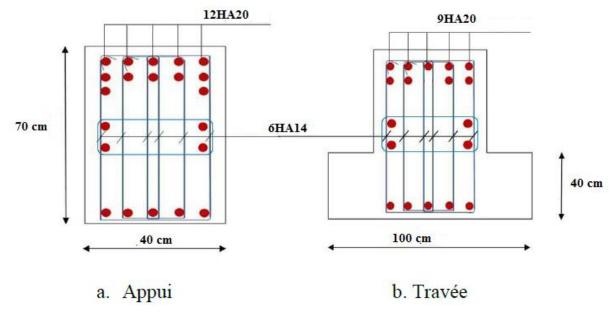


Fig.VII.11. Ferraillage de la nervure

8. Etude du voile périphérique

8.1. Dimensionnement:

D'après le RPA99/version 2003, le voile périphérique doit avoir les caractéristiques minimales suivantes:

- Epaisseur \geq 15 cm.
- Les armatures sont constituées de deux nappes.
- Le pourcentage minimum des armatures est de 0.10 % dans les deux sens (Horizontal et vertical)

On adopte une épaisseur e = 20 cm.

La hauteur du voile périphérique = 4 m.

8.2. Détermination des sollicitations:

Dans notre cas, le voile n'est plus un élément porteur, donc on est en présence d'un voile écran travaillant comme étant une dalle pleine encastré sur 4 cotés dont les charges qui lui sont appliquées sont les poussées des terres.

$$Q = \frac{p_i h}{2}$$

$$P_i = \gamma_d \cdot h \cdot k_b$$
.

 K_b : Coefficient de poussée $K_b = tg^2 [(\frac{\pi}{4}) - (\frac{\varphi}{2})]$.

h: la hauteur totale du voile. h = 4 m.

 γ_d : Poids spécifique du remblai $\gamma_d = 1.9 \text{ t/m}^3$.

 φ : Angle de frottement de remblai $\varphi = 30^{\circ}$.

$$K_b = 0.33$$

$$P_i = 2.51 \text{ t. } (h = 4 \text{ m})$$

$$P_0 = 0 t (h = 0 m)$$

$$P_{\text{mov}} = (P_0 + P_i) / 2 = 1,25 \text{ t}$$

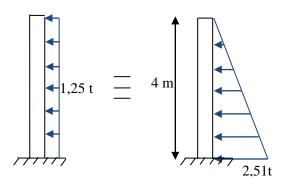


Fig. VII.12. Schéma statique du voile périphérique.

8.3. Ferraillage du voile périphérique :

Le voile périphérique le plus sollicité a comme largeur ly=9,3 m et comme hauteur lx=4m ; ceci revient à dimensionner une dalle sur 4 appuis.

On applique donc les règles du BAEL 91 pour ce type de dalles pour 1 mètre linéaire.

$$\alpha = \frac{lx}{ly} = \frac{4}{9.3} = 0.43 > 0.4$$
 la dalle travaille dans deux sens et on aura donc :

 $\mathbf{M}_{x} = \mu_{x} \times q \times l_{x}^{2}$: Moment dans le sens de la petite portée.

 $\boldsymbol{M}_{_{\boldsymbol{y}}}=\boldsymbol{\mu}_{_{\boldsymbol{y}}}\times\boldsymbol{M}_{_{\boldsymbol{x}}}\quad$: Moment dans le sens de la grande portée.

 μ_x et μ_y : Sont des coefficients donnés en fonction de α et de l'état limite considéré. On va considérer l'ELU on a donc :

A partir du tableau de Barres :

$$\mu_x = 0.105$$
 et $\mu_y \le 0.25$

le ferraillage se fait selon le sens-X.

Les moments pour les deux bandes de largeur sont:

$$M_{0x} = 0.105 \times 1.25 \times 4^2 = 21 \text{ KN.m/ml}$$

Tab .VII.13. Valeur de moment de calcul pour le voile périphérique.

	En travée (*0,75) [KN.m]	En appui (*0,5) [KN.m]
Sens X	15,75	10,5

Les résultats du ferraillage sont donnés dans le tableau suivant pour 1 m.l :

Tab .VII.14. Résultats de ferraillage du voile périphérique.

	En appui	En travée	Section Min
	[cm²]	[cm²]	RPA [cm ²]
Sens X	1,57	2,56	2

Pour le sens Y:

As (sens Y) = As(sens X)/
$$4 = 0.64 \text{ cm}^2$$

On disposera donc deux nappes, dans chaque nappe on aura 4HA10 verticalement et 4HA8 horizontalement en travée et en appuis (par mètre linéaire), suivant le schéma donné ci-dessous.

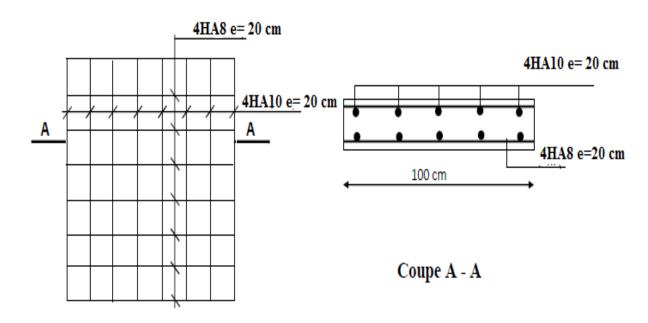


Fig. VII.13. Schéma de ferraillage du voile périphérique.

Chapitre VII: Etude des fondations

9. Conclusion.

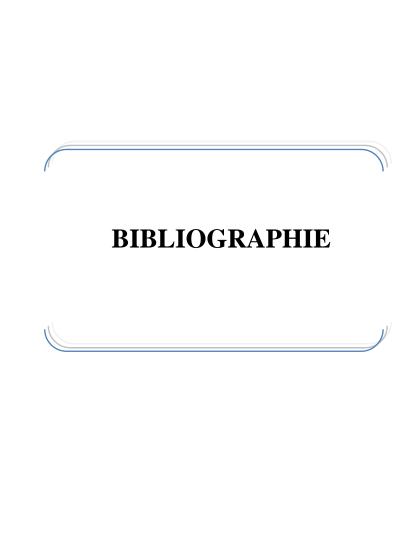
Le séisme en tant que chargement dynamique reste l'une des plus importantes et dangereuses actions à considérer dans le cadre de la conception et du calcul des structures.

Les combinaisons sismiques donnent les résultats les plus défavorables pour le dimensionnement des fondations, et elles ont influé directement sur le choix de radier comme type de fondation, afin d'assurer une meilleure répartition des contraintes sur le sol.

CONCLUSION GENERALE

Conclusion générale

La réalisation de ce travail nous a permis d'enrichir et d'approfondir nos connaissances dans le domaine de l'ingénierie en général et de mieux comprendre les principes du contreventement des structures et de la conception parasismique.


En effet, elle permet de donner une vision proche de la réalité du comportement de la structure après les vérifications nécessaires des codes réglementaires (RPA99 version 2003, C.B.A 93 et BAEL 91).

La forme irrégulière en plan du bâtiment a engendré des difficultés au niveau de la modélisation. Une collaboration entre l'ingénieur en génie civil et l'architecte dès le début du projet pour choisir le système structural (portique, mixte, voile) aurait été souhaitable.

Le pré dimensionnement est une étape nécessaire pour la suite de l'analyse.

L'analyse dynamique est l'étape la plus importante dans l'analyse de la superstructure.

Le choix du type de fondation dépend de la nature de sol et du volume des charges prévenant de la structure.

Bibliographie

Règlements:

- RPA99/Version2003 : Règles parasismiques Algériennes
- BAEL91 : Béton armé aux états limites
- CBA93 : Règle de conception et de calcul des structures en béton armé

Livre:

- Le projet de béton armé (Henry Thonier, édition 1995)
- Calcul des structures en béton armé (Belazougui)

Cours:

- Béton armé de 2ème année (ENP)
- Dynamique des structures de 3ème année (ENP)
- Cours de bâtiment de 2ème année (ENP)

Projet fin d'études traitées

Logiciels et programmes :

- AUTOCAD 2014 (Dessin)
- **ETABS V9.0.7** "Extended Three Dimensional Analysis of Building Systems" (Analyse des structures).
- SAP 2000 V13. Computer and Structures,
- Office2010 (Traitement de texte, calcul...etc)
- Dalle, V1.00.026. Socotec.1998.