REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE 25/84

MINISTÈRE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

ECOLE NATIONALE POLYTECHNIQUE

PROJET DE FINADATUDES

# CHAUFFAGE CENTRAL D'UN GRAND BATIMENT

Dirigé par:

Mr TOMCZAK

Etudié par :

Sassine NAJJAR

# REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTÈRE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

ECOLE NATIONALE POLYTECHNIQUE

PROJET DE FINDES

# CHAUFFAGE CENTRAL D'UN GRAND BATIMENT

Dirigé par :

Mr TOMCZAK

Etudié par :

Sassine NAJJAR

#### Remerciements

Je tiens à remercier vivement Monsieur TOMCZAK pour les conseils qu'il m'a prodigués et pour son suivi tout au long de mon travail.

Ma gratitude va aussi à tous les enseignants qui ont contribués à ma formation.

Je n'oublierai pas enfin d'exprimer ma profonde reconnaissance au Gouvernement Algerien, qui m'a fourni tous les moyens nécessaires à ma formation d'ingénieur.

## Dédicaces

Je dédie ce modeste travail à ma Nation Libanaise sanglante et son peuple résistant.

#### TABLES DES MATIERES.

```
CHAPITRE I Introduction et généralités.
I-1- introduction.
I-24 generalites .
I-3 presentation du sujet. *
   I-3-1- But du projet. X
   I-3-2- Bases de calcul.
   I-3-3- Données de calcul. planche.
CHAPITRE ? Types de chauffage utilisés dans le batiment
2-1- Chauffage central
 a-chauffage à eau chaude
 b-chauffage à air chaud
  c-chauffage à vapeur
?-2- Chcix du type de chauffage.
 a-mode de chauffage.
 b-installation à eau chaude par gravité.
 e-installation à eau chaude accélérée par pompe. X MAN Che
. d-mode de distribution:
                        -distribution supérieurl
                        -distribution inférieur & *
 e-corps de chauffe
CHAPITE 3 Notion théoriques de base.
3-1- Théorie générale du phánomána de l'échange de chaleur.
 a-per rayonnement
b-par convection
 c-par conduction
7-2- Tlux de chaleur.
3-3- Coefficient de conductivité.
3-4- Resistance thermique.
-5- échange de chaleurentre deux ambiances séparés par une paroi,
     éguation de la densité du flux à travers la paroi progrement dite
      (echange par conduction).
-5-2- coefficient d'échange thermique de surface.
-5-5- résistance thermique globale R 👡
 -5-4- coefficient de transmittion thermique globale K .
 -5-5- coefficient de transmition thermique moyen Km .
 MPITEE Le calcul des installation de chauffage et les bases de la technique K
        calorifique.
        rac{1}{2} - les besoins calorifiques . \chi
       2-les besoins calorifiques pour pertes par transmition.
        ₹-1- les principes de calcul. 🗶 🛠 🛠 🛪
       2-2- les deperditions calorifiques par transmition Qo.
```

```
2 3- les coefficients K des parois, fenétre, plancher et toitures. V
     2-4- les hypothéses de température.
    7 3- les majorations. 太太
     3-1- Le coefficient D. 🙏
     3-2- la majoration Zu pour intérruption d'exploitation.
     3-3-la majoration 3a pour compensation des parois extérieures froides.
     3-4- Groupement des mojorations Zu et Ea. *
     3-5- La mojoration Zh pour orientation. *
   4 les besoins calorifiques pour pertes par ventilation. **
     4-1- les principes de calcul.
     4-2- permeabilité des fenétres et portes 8 (aL).
     4-4- la caracteristique d'immeuble H.
     143- la caracteristique de local R.
     4-5- la majoration pour fenétre d'angle Ze
     5+ conduite des calculs.
     5-1- besoins calorifiques pour pertes par transmitten.
     5-2- besoins calorifiques pour pertes par ventillation
CHAPITRE 5 Problémes d'écoulement
    5 - les lois de l'écoulement dans les conduites
   5-2-1lecoulement d'un fluide idéal,
    5-1-2 écoulement d'un fluide réel.
    5-2- les partes de charge dans les réseaux de tuyauterie.
    5-2-1- les pertes de charge dans les conduites réctilignes.
     5-3- résistances particulières
CHAPITRE 6 Calcul des réseaux de tuyauteries.
    6-1- Bares de calcul.
    6-1-1- les tronçons partiels et leurs pertes de charge.
    6-1-2- deux groupes de problémes.
  - 6-1-3- calcul provisoire et calcul définitif.
    6-1-4- hypothéses sur la vitesse.
    6-2- Planches pour le calcul des réseaux de chauffage.
HAPPERS 7 Poste central de priduction d'eau chaude sanitaire.
    7-1- Généralités.
    7-2- Introduction.
    7-3- Calcul des diamétres des tuyauteries de distibution.
    7-4 Débits instantanés et débits simultanés.
    7.3- Perte de charge.
    7-6- Pression metrice ou disponible.
    7-7- Calculs.
```

7-8 Calcul des pertes de chaleur dans les tuyauteries.

7-9- Détermination des diamètres "retours".

#### CHAPITRE 8 Echangestet Pompe

8-1- échangeurs de chaleur.

8-1-1- introdution.

8-1-2- dimensions des échangeurs.

8-2- Calcul de la pompe.

8-3- Puissance du réchauffeur.

8-4- Détermination de la pompe de l'eau sanitaire.

8-5- organes de sécurité.

8-6- Tubes des tuyauteries.

8-7- Régulation en chauffage central.

8-7-1- introduction.

8-7-2- but de la regulation.

# Chapitre -1Introduction et Généralités

# I-1. Introduction

C'est le but des installations de chauffage, de créer dans les salles de séjour et de travail le climat nécessaire quelles que soient les perturbations extérieures et intérieures.

La notion de "Climat" comprend aussi bien des composantes thermiques comme les températures de l'air et des murs, que des caractéristiques et grandeurs physiques de l'air, telles que pureté, humidité et intensité de mouvement.

Pour le calcul des installations, du point de vue calorifique, il suffit en general de s'en tenir aux phénoménes permanents de transfert de chaleur. Ceci est également valable pour déterminer les besoins calorifiques des bâtiments à chauffage normal, avec arrêt ou ralentissement durant la nuit, pour autant que les températures intérieurs et extérieurs bien que variant périodiquement, puissent être représentées par des valeurs moyennes sur une durée de 24 heures (état quasistationnaire), l'energie calorifique supplémentaire nécessaire pour la mise en route peut le plus souvent être determinée d'une manière suffisamment précise à l'aide de calculs approchés.

# I\_ 2. Génératités:

La chaleur nécessaire du chauffage de plusieurs pièces est produite en un seul endroit (chaufferie centrale) et distribuée dans celles-ci par l'intermédiaire d'un véhicule de chaleur, on se trouve en présence d'un "chauffage central". On distingue suivent la nature du véhicule de chaleur, les chauffages à eau chaude, à vapeur, ou à air chaud. Les systèmes les plus courants pour les chauffages normaux d'immeubles sont les chauffages à eau chaude (à des températures de départ de la chaudière allant jusqu'a 100 c) et les chauffages à vapeur basse pression (inférieure ou égale à 0,5 atm)

Par rapport au chauffage ou moyen de poêles, le chauffage central offre une série d'avantages, la production de la chaleur avec un seul feu permet d'améliorer la conception technique du foyer dans lequel il est produit. La conduite du feu et le réglage sont simplifiés, la plupart du temps, l'efficacité se trouve améliorée.

la chauffe au coke ou au combustible liquide; généralement employée pour les installations de faible et moyenne puissance, garantit une combustion sans fumée et sans suie. En general, une chaufferie centrale est mieux surveillée et mieux conduite que plusieurs feux individuels. D'autres avantages du chauffage central résident dans le fait que les piéces d'habitation ne sont plus salies par la manutention du combustible et des cendres, que les corps de chauffe sont moins encombrants, et qu'il devient possible de chauffer également outre les piéces principales, les piéces secondaires, les escaliers, les salles de bains, et partout ou de nombreuses piéces d'un même bâtiment doivent être chauffées simultanément, il y'a lieu d'installer un chauffage central.

## I-3 Presentation du sujet:

/I-3.1 But du projet:

A travers cette étude, on se propose d'assurer le chauffage des locaux, ainsi que la production d'eau chaude sanitaire pour 50 logements, chaque logements comportant une cuisine contient un évier d'eau chaude et une salle de bain contient une baignoire et un lavabo.

# I\_3\_2. Bases de calcul:

Pour calculer une installation de chauffage, il faut calculé? Ses besoins calorifiques, et pour cela il est nécessaire de connaître certaines données concernant le bâtiment à chauffer.

- Plan de situation du bâtiment.
- Il doit montrer l'orientation ainsi que l'exposition au vent, on doit donc également avoir des indications sur la hauteur des bâtiments voisins et sur d'autres facteurs d'influence.
- Plans du bâtiment
- Comportant les dimensions de construction y compris les mesures intérieures des fenêtres et portes.
- Coupe du bâtiment avec indication;

  Des hauteurs libres des locaux, des hauteurs d'étage prises de niveau supérieur de plancher à niveau supérieur de plancher et hauteur des portes et fenêtres.

- Données sur le type des murs, planchers et couvertures. Les types inhabituels sont à decrire de façon suffisamment détaillée pour que les coefficients de transmission globaux puissent être calculés.
- Données sur les fenêtres

Construction des fenêtres (fenêtre simple, composées ou doubles) matériaux des fenêtres (bois, matiére synthetique, acier, métal) Dimensions des vantaux ouvrants ou indication des longueurs de joints.

Données sur les portes

Avec ou sans seuil.

Données sur les destinations des locaux, y compris un tableau des heures d'utilisation (heures de chaffage à pleine puissance) car le mode d'exploitation de l'installation et les majorations pour le calcul des besoins calorifiques sont à fixer en conséquence?

I-3-3 Données de calcul.

On obtient à l'aide des abaques et tableaux numériques les données de calcul suivant.

Température extérieure + 10°C

Température des locaux:

Chambre à coucher, salle de sejour, chambre d'enfants, cuisine + 20°C.

Salle de bains + 24°C

Cage d'escalier, couloir ouvert à l'extérieur = + 10°C Vide manitaire, 7 à 8°C

Données nécessaires pour le calcul des besoins calorifiques:

Hauteur d'étage: 2,8m

Hauteur des locaux: 2,50

Murs extérieurs: Briques de laitier (DIN 398)

Briques de laitier Hs 100 et Hs 150,38cm
densité brute > 1800 Kg/m3

Murs intérieurs: Briques de laitier (DIN 398) Briques de laitier HS 100 et HS 150

25cm, 12cm, densité brute > 1800 Kg/m3

Prafond en béton armé avec solimes: 30 cm

Fenêtre : doubles en bois.

Porte de balcon: bois avec remplissage laine de verre, porte

Porte intérieurs sans seuil.

Condition de vent: région normale, site découvert, maison d'alignement.

Température de l'au chaude samitaire : 60°C.

## Chapitre - 2 -

Types de chauffage utilisés dans le BATIMENT.

# 2-1 : Chauffage central:

Suivant la nature du fluide utilisé on distingue un chauffage à eau chaude, à air chaud, et à vapeur.

## a- chauffage à cau chaude:

Ce type de chauffage est trés utilisé actuellement. Selon que l'installation communique ou non avec l'atmosphére. On dit qu'on a un chauffage à eau chaude basse pression ou haute pression. On remocratze des systèmes de circulation de l'eau chaude par pompe (circulation accélérée) ou par gravité.

b- chauffage à air chaud: Suivant le procédé employé pour rechauffer l'air, on distingue les chauffages à air chaud: - à foyer

- à la vapeur
- à l'eau chaude

Dans le premier cas, l'air se réchauffe directement au contact des parois du foyer du générateur:

Dans les deuxieme et troisieme cas, l'air à réchauffer est envoyé sur des surfaces de chauffe chauffée elles - mêmes à la vapeur ou à l'eau chaude. Si la circulation de l'air se fait naturellement, on à affaire à des chauffages à air chaud par gravité, qui, dans la pratique, ne sont guére utilisés que pour réchauffer directement l'air des locaux à chauffer eux-mêmes.

Les chauffages à air chaud peuvent être neuf, à air de reprise ou à air mélangé (neuf et de reprise). Le "chauffage à air neuf" ne fait appel qu'a l'air extérieur qui est rejeté aprés moir cédé sa chaleur utile. Dans le "chauffage à air de reprise" c'est toujours le même air qui travaille, sans qu'il soit fait appel à l'air neuf. Le "Chauffage à air mélangé" est une combinaison des deux premiers systèmes dans laquelle une partie de l'air ayant cédé sa chaleur utile est renvoyée de nouveau dans le local (air de reprise), tandis que l'autre partie rejetée à l'extérieur est remplacée par de l'air neuf.

Les chauffages à air neuf sont fort peu économiques. On ne peut y avoir receurs que lorsque la ventilation de la piéce doit être trés active ou lorsqu'il s'agit de trés courtés durées de chauffage.

## c. Chauffage à vapeur:

Dans ce cas le fluide chauffant est de la vapeur d'eau produite par des générateurs de chalcur (chaudiéres).
Cette vapeur d'eau peut être a bass ou haute préssion mais, limitée

par la reglementation, d'oû nécessité d'un contrôle rigoureux et constant.

# 242. Choix du type de chauffage:

Il n'est pas aisé de faire le choix d'un type de chauffage, car diversité, type de construction et manière d'exécution etc... ne permet pas de comparer en un temps limite les avantages et les inconvenients dans chaque cas particulier - Cependant certains facteurs premient la priorité sur l'autre pour l'étendue du choix.

# a - Mode de chauffage;

On impose au fluide utilisé en chauffage certaines conditions à savoir :

- une bonne accumulation de chaleur
- un pouvoir d'écoulement acceptable
- une composition chimique neutre ( pour éviter la corresion des canalisations)

l'eau detisfait à ces conditions - Nous opterons donc pour un chauffage à eau chaude d'autent plus que l'eau est trés abondante dans la nature - un notera qu'il est utile de traiter l'eau avant son utilisation pour éviter l'entartrage des conduites d'eau chaude.

b- INSTALLATION A RAU CHAUDE PAR GRAVITE.

lien que l'on n'utilise plus aujourd'huiles chauffages par gravité - de sont des chauffages à eau chaude avec circulation uniquement natucelle ( par thermosphon) que pour les petits bâtiments. Le principe de fonctionnement est representé par le système simplifié de la figure 1, ne comportant qu'une chaudière et un radiateur. Il sera admis que les variations de température de l'eau s'effectuent uniquement dans le radiateur etdans la chaudière mais non dans la tuyauterie.

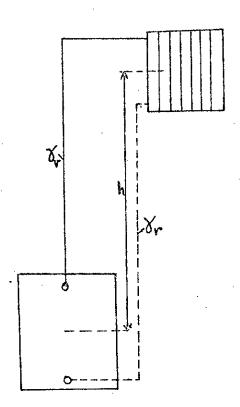



Fig 1. Schema d'un chauffage par gravité.

#### b.1 Charge motrice:

La forçe qui maintient l'eau en circulation est produite par la différence de poids entre la colonne d'eau de la tuyauterie de retour et celle plus légére de la tuyauterie de départ.

On aura alors l'équation:

$$H = h (\forall r - \forall v) (Kgp/m2)$$

H la charge motrice , en Kgp/m2

h la différence de hauteur entre axes chaudière et radiateur V le poids volumique de l'eau dans la tuyauterie de départ en KgP/m3. The poids volumique de l'eau dans la tuyauterie de retour, en KgP/m3 c - lnstallation à eau chaude accélérée par pompe. Dans ces installations, la pression motrice est donnée macaniquement par une pempe ou un accélérateur une pempe est constituée d'une roue centrifuge actionnée par un moteur éléctrique.

Un accélérateur (ou circulateur) est constitué en général par une roue hélicoidale actionnée par un moteur éléctrique.

Le type de circulation par pompe (ou accelérée) est de plus en plus utilisé de nos jours.

Nous choisissons donc ce système pour son prix de revient acceptable et son adaptation au chauffage de locaux sur une surface étendue.

d - Mode de distribution:

On distingue deux modes de distribution

- distribution supérieure encore appelée " parapluie"

dans ce système le collecteur de départ (eau chaude) passe
à la partie supérieure du bâtiment, le collecteur de retour (eau
refroidie) passe à la partie inférieure, l'airet le gaz dissous
s'évacuent içi automatiquement (si la pente est dans le bon sens)
au fur et à mesure de leur production.

Dans les installations thermosphen les radiateurs sont toujours placés su-dessus de la chaudière.

inférieure
- Distribution dite encore en "chandelle"

Dans ce système les collecteurs de distribution passent à la partie basse de l'installation et desservant les colonnes verticales. Pour évacuer l'air et les gaz dissous on place aux points hauts soit des purgeurs, soit un réseau de purge (cu d'event) dont le niveau est situé au-dessus de la ligne d'eau dans le vase d'expansion.

Le choix entre la distribution inférieure et la distribution supérieure dépend des conditions architecturales, possibilité de passage en cave ou dans le grenier etc...

Distribution supérieur "monstube" qui utilisent des colonnes servant à la fois pour "Faller" et le retour. Mais l'émission des radiateurs n'est pas constante, on choisie pour notre installation une distribution per en dessous (inférieure) placée en vide sanitaire pour des raisons économiques.

e - Corps de chauffe.

Cet élément de l'installation doit chauffer l'ambiance d'un local donné par convection et par rayonnement - le fluide véhiculant la chaleur étant de l'eau chaude.

On choisira donc un appareil appelé (radiateur) - C'est un échangeur de chaleur qui doit avoir une faible resistance thermique et une surface de chauffe en fonction des déperditions thermiques du local considéré.

On choisit un tube radiateur en fonte 60 largeur 110mm, fluide chauffant 80°C, hauteur hors 550 mm.
Distance des raccords: 500 mm

Ecart admissible 7 0,3 mm

#### Chapitre - 3 -

# Notions Théoriques de Base

3.1 - Théorie générale du phénoméne de l'échange de chaleur.

La température traduit la vitesse d'agitation des particules élémentaires de la matière, Entre deux corps dont la température est différente se produit inévitablement un flux calorifique, la chaleur se déplaçant du corps chaud vers le corps froid jusqu'a ce qu'il y ait équilibre de température. Aucun moyen ne permet d'empêcher l'échange de chaleur, seule son intensité peut être modifiée.

L'échange de la chaleur s'effectue de trois manières différentes:

## a) par rayonnement

Tous les corps solides et liquides émettent, par leur surface, de l'énergie sous forme d'ondes éléctromagnétique. Si une énergie rayonnée rencontre un corps absorbant ces longueurs d'ondes elle se transforme en chaleur. Ce transfert ne nécessite aucun support matériel et se produit même dans le vide.

Exemple: le soleil chauffe la terre par rayonnement.

#### b) Par convection

Le mode d'échange thermique est propre aux fluide (gaz ou liquide). Les molécules directement au contact d'une surface solide absorbent ou cédent de la chaleur suivant les températures respectives de la surface et des fluides.

Les différences de température provoquent des différences de masse volumique qui engendrent les mouvements de convection (les molécules les plus chaudes étant les plus légéres et ayant tendance à monter)

Exemple: le radiateur de chauffage central éléve la température des molécules d'air au contact de ses éléments, molécules, qui devenues plus légéres par dilatation, montent vers le plafond et sont remplacées par d'autres molécules.

## c) par conduction

La conduction traduit l'échange de chaleur s'effectuant par propagation à l'intérieur d'un solide.

Exemple: la propagation de la chaleur le long d'une barre de métal dont une extrémité est soumise à l'action d'une flamme s'effectue par conduction.

## REMARQUES:

Ces trois modes d'échanges se produisent simultanément comme nous le verrons dans l'étude du mécanisme de l'échange de la chaleur à travers une paroi.

La conduction pure n'existe pas dans les matériaux de construction du fait de la présence d'alvéoles plus ou moins gros et réguliers. Il s'agit d'une conduction apparente, tenant compte des phénomènes de rayonnement et de convection à l'intérieur des alvéoles.

3 - 2 FLUX de chaleur.

Le flux de chaleur (symbole  $\Phi$ ) est la quantité de chaleur (Q) échangée par unité de temps (t):

$$\Phi = \frac{Q}{L} \tag{3-1}$$

Il exprime une énergie par unité de temps, c'est-à-dire une puissance et se mesure en Watts.

In est à noter que les thermiciens continuent à utiliser, comme unité de flux de chaleur la Kcol/h (unité qui n'est plus légale)

Il est commode, pour le calcul des déperditions de chaleur dans le bâtiment, de rapporter le flux à l'unité de surface A . Ce rapport s'appelle la densité de flux.

symbole 
$$\varphi$$
):  $\varphi = \Phi / A$  (3-2)

La densité de flux se mesure en Watts par métre carré: W/m2.

## 3-3 Coefficient de conductivité:

La conductivité thermique d'un corps est par definition la densité du flux le traversant pour une différence de 1°C entre les températures des deux faces séparées par un mêtre d'épaisseur.

Le symbole de la conductivité thermique est la lettre grecque  $\lambda$  (lambda)

Ce coefficient  $\lambda$ , compte tenu de sa definition, s'exprime:

- dans le système S.I; en W/m2.c
- dans le système des thermiciens en Kccl/h.m.C° plus le lambda ( $\lambda$ ) d'un corps est faible, plus ce corps s'oppose ou transfert de chaleur, plus il est isolant.

## REMARQUES:

Le  $\lambda$  n'est jamais nul. Cela explique pourquoi un isolant ne peut que ralentir l'échange de chaleur.

Le Avarie avec la température du corps considéré.

Il augmente si la temperature croît et, inversement, diminue lorsque la temperature baisse: l'augmentation de temperature, en effet, occasionne une augmentation du rayonnement, de la convection et de la conduction.

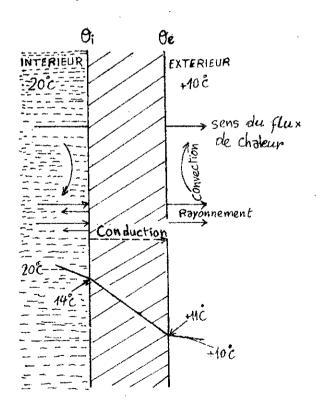
Les matériaux de construction contiennent toujours une certaine quantité d'humidité qui accroit leur conductivité.

# 3.4 Resistance thermique:

Dans les calculs à effectuer en isolation thermique, on a besoin de connaître la resistance au flux de chaleur offerte par un corps d'épaisseur donnée. Cette resistance thermique, notée Ru, est proportionnelle à l'épaisseur du matériau et inversement proportionnelle à sa conductivité

$$Ru = \frac{e}{\lambda} \quad \text{en } m^2 \quad \text{oC/W} \qquad (3.3)$$

- e: épaisseur du matériau est exprimée en métre.
- 3.5 échange de chaleur entre deux ambiances séparées par une paroi.


Le phénoméne de l'échange de chaleur entre deux ambiances (intérieure et extérieure) de température différente (Ti>Te), séparées par une paroi,

par une paroi, s'effectue de la façon suivante:

La chaleur issue du milieu intérieur est transmise à la paroi par rayonnement et convection. Elle traverse la paroi par conduction, puis elle est restituée au milieu extérieur par rayonnement et convection.

A L'intérieur de la paroi, la temperature n'est pas uniforme.

Dans un mûr homogéne, elle décroît régulièrement de la face interne vers la face externe.



3-5-1 équation de la densité du flux à travers la paroi proprement dite (échange par conduction)

Plaque simple: considérons une portion de 1m2 au centre d'une paroi de trés grande surface et composée d'un matériau homogéne. Les deux faces de cette paroi sont à des températures: di et de

(6 température de surface) intermédiaire entre les températures d'ambiance.

La différence de température crée un flux de chaleur dirigé de Oi vers e quand Oi > Oe. La densité de ce flux est proportionnelle à la différence de température et inversement proportionnelle à la resistance thermique de la paroi:

$$\mathcal{C} = \frac{\theta \mathbf{i} - \theta \mathbf{e}}{R \mathbf{u}} = \frac{\theta \mathbf{i} - \theta \mathbf{e}}{\mathbf{e}/\lambda}$$

Plaques juxtaposées: si une paroi est composée de plaques paralléles faites de matériaux différents, les resistances thermiques de chacune des plaques s'ajoutent pour s'opposer au passage du flux de chaleur:

$$\mathcal{C} = \frac{\theta_1 - \theta_2}{Ru_1 + Ru_2 + Ru_3 + \dots - Run}$$

On écrit d'une manière générale:

$$\mathcal{C} = \frac{e_1 - e_2}{\sum_{Ru}} = \frac{e_1 - e_2}{\sum_{A}}$$
 (3.4)

3-5 2 - Coefficient d'échange thermique de surface

Il s'agit en fait du coefficient d'échange superficiel.

Avant de tramverser la paroi, le flux de chaleur doit tout d'abord atteindre la face intérne de la paroi. Ce transfert s'effectue par rayonnement et convection. Il se traduit par un coefficient d'échange superficiel interne dont le symbole est hi.

Aprés avoir transversé la paroi par conduction, le flux de chaleur est transféré à l'ambiance extérieure par la face externe de cette paroi, par convection et rayonnement. Ce dernier transfert se traduit par le coefficient d'échange superficiel externe he

Les faces internes et externes de la parci opposent ainsi au passage du flux de chaleur des resistances dites resistances superficielles, inverses des coefficients d'échange superficiel et qui ont respectivement pour expression

Les valeurs de <u>1</u> et de <u>1</u> différent en fonction de l'inclinaison de la hi paroi he considérée et du sens du flux de chaleur.

La densité du flux entre l'air et la paroi est égale à:

$$\mathcal{C} = \frac{\text{Ti} - \theta i}{\frac{1}{\text{hi}}}$$
 (3.5) (côté interne)

et 
$$= \frac{\Theta e}{1} - \frac{Te}{he}$$
 (3.6) (côté externe)

La densité du flux thermique garde la même valeur en quelque endroit qu'on le considére.

Cecin'exprime par les égalités:

$$\mathcal{C} = \frac{\theta i - \theta e}{Ru} = \frac{Ti - \theta i}{1/hi} = \frac{\theta e}{1/he}$$
 (3.7)

3-53 - Résistance thermique globale R L'expression(3.7) peut s'écrire:

$$\mathcal{C} = \frac{\text{Ti} - \text{Te}}{\frac{1}{\text{hi}}} + \sum_{e} + \frac{1}{\text{he}}$$
 (3.8)

Le facteur:  $\frac{1}{hi}$  +  $\sum \frac{e}{\lambda}$  +  $\frac{1}{he}$  est appelé: resistance thermique globale R. Il s'exprime en m2°C/W.

En effet, le passage du fluc de chaleur à travers la paroi est freiné par la resistance thermique Ru propre à cette paroi (paroi homogéne: Ru = \_\_e\_

paroi hétérogéne: Ru = > e y à laquelle s'ajoutent les resistances superficielles 1 et 1 he .

Plus la resistance thermique R d'une paroi est grande et plus la densité du flux de chaleur la tra-versant est faible. Autrement dit, plus la valeur de R est élevée, plus la paroi considérée est isolante.

3-5 4 - Coefficient de transmission thermique utile K (tableau A 19, A 21)

L'inverse de la resistance thermique globale R est appelé: Coefficient de transmission thermique utile K.

$$K = 1 \quad \text{ou} \quad K \leq 1 \qquad (3.9)$$

$$\frac{1}{\text{hi}} + \sum_{k=1}^{n} + \frac{1}{\text{he}}$$

Le coefficient K exprime la quantité de chaleur passant à travers une paroi séparant deux ambiances dont l'écart de température est de 1 degré, par métre carré de paroi, pendant l'unité de temps.

Il est l'expression de l'aptitude d'une paroi à permettre le passage de la chaleur. Plus le coefficient K est grand, plus la qualité thermique de la paroi est mauvaise.

Le coefficient K s'exprime donc:

- en W/m2t, ou en Kccl/m2.h.Co

La determination du coefficient K est a la base de tous les calculs thermiques du bâtiment:

- puissance des appareils de chauffage à installer
- temperature de surface des parois,
- bilan thermique
  - etc.

# 3-55 - Coefficient de transmission thermique moyen Km

Si une paroi est hétérogéne sur sa surface ( par exemple, mûr de remplissage en briques creuses entre des poteaux en péton armé), on calcul le coefficient de transmission thermique moyen Km en fonction de la valeur du coefficient K de chaque composant et de leur surface respective, à l'aide de la formule suivante:

$$K_{\rm m} = K_1 A_1 + K_2 A2 + \dots + K_n A_n$$
 (3.10)

Of  $K_1$ ,  $K_2$ , ----- Kn sont les coefficients K surfaciques correspondant aux surfaces  $A_1$ ,  $A_2$ , -----, An.

Chapitre - 4 Le Calcul

Des Installations de Chauffage

Et les Bases

De la Technique Calorifique.

## I. Les besoins calorifiques

- I. 1 Généralités
- I. 11 Les besoins calorifiques, caractéristique de la construction

Les besoins calorifiques d'un local sont une pure caractéristique de la construction, qui n'a rien à voir avec le système de chauffage projeté ou réalisé.

Ils dépendent des dimensions du local, du genre de construction de ses murs, des dimensions des fenêtres, etc. Pour l'entreprise de chauffage les besoins calorifiques constituent la base du dimensionnement des surfaces de chauffe et des chaudières. En premier lieu il faut installer assez de surfaces de chauffe pour pouvoir obtenir des températures intérieures suffisantes même en cas de froid rigoureux et durable. En deuxième lieu les dimensions des surfaces de chauffe de l'ensemble des locaux d'un bâtiment doivent être ajustées entre elles afin d'assurer un rechauffage uniforme de tous les locaux car il faut éviter d'avoir à surchauffer l'ensemble du bâtiment à cause de quelques locaux seulement.

Quand les températures intérieures et les conditions climatiques extérieures restent inchangées (état stationnaire), les besoins calorifiques d'un bâtiment sont identiques à la somme de toutes les déperditions de chaleur à travers l'enveloppe extérieure des locaux chauffés. Ces deperditions sont de deux genres:

- d'une part, à cause de la température intérieure plus élevée, de la chaleur est en permanence perdue vers l'extérieur (deperditions calorifiques par transmission) par les parois, fenêtres, planchers, etc... - d'autre part l'air traversant un bâtiment est réchauffé à la température intérieure entraine avec lui à l'extérieur une partie de la chaleur de chauffage fournie.

(déperditions calorifiques par ventilation)

#### I. 12 Méthode de calcul unifiée

Pour assurer des bases uniques ou dimensionnement des surfaces de chauffe locales et à la puissance de chauffage totale à installer la méthode de calcul des besoins calcrifiques a été normalisée (DIN 4701) (1) la norme rassemble en même temps les valeurs de calculs les plus importantes comme par exemple les températures intérieures et extérieures, les coefficients K des divers types de construction de parois, planchers et fenêtres, les valeurs des infiltrations d'air par les portes et les fenêtres.

## I. 13 Calcul normal et cas particuliers:

La norme DIN 4701 donne des régles précises de calcul des besoins calorifiques de la plupart des genres d'immeubles, ainsi par exemple pour: les bâtiments d'habitation et de bureaux, magasins, écoles... etc...

Les bâtiments exposés à des vents forts tombent également dans le domaine de validité de la méthode de calcul d'aprés DIN 4701.

- 2. Les besoins calorifiques pour pertes par transmission.
- 2. 1 Les principes de calcul-

La norme 4701 fait la distinction pour un calcul determiné entre pertes calorifiques par transmission  $\hat{Q}_{\bullet}$  et besoins calorifiques  $\hat{Q}_{T}$  correspondant à ces mêmes pertes.

Qo résulte de la somme des pertes par transmission globale de tous les éléments de l'enveloppe d'un local à la plus faible température extérieure. Mais d'autre facteurs d'influence sont introduits sous forme de majorations.

(1) DIN 4701. Regeln für die Berechnug des warmebedarfs Von Gebäuden, Janvier 1959.

Des depérditions calorifiques par transmission on déduit les besoins calorifiques correspondant à ces pertes, en multipliant celles-ci par un coefficient de majoration Z, qui contient les majorations partielles suivantes:

Zu pour intérruption d'exploitation du chauffage

ZA pour compensation des surfaces extérieures froides,

Z<sub>H</sub> pour orientation

Pour les besoins calorifiques de transmission  $\mathcal{Q}_{T}$  on peut donc écrire :

$$Q_{T} = Q_{0} (1 + Z_{U} + Z_{A} + Z_{H}) = Q_{0} Z$$
 (4.1)

2.2. Les deperditions calorifiques par transmission Qo

Les deperditions calorifiques par transmission qo se calculent pour chaque surface d'enveloppe d'un local, cédant de la chaleur d'aprés les lois de la transmission globale de la chaleur en régime établi.

$$q_0 \equiv KS (ti - ta)$$
 (4.2)

Où qo signifie les déperditions calorifiques horaires de l'élément de construction en Kool/h

S la surface de l'élément de construction en m2 ---, K le coefficient de transmission global de la chaleur en Kcol/m2-h°C

ti la température intérieure en C°

ta la température à l'extérieur ou dans le local voisin en Co

Si ta > ti c'est-à -dire si la température de l'air dans le local voisin est plus élevée, le calcul de  $q_0$  donne une valeur negative c'est-à-dire un gain de chaleur la somme des deperditions élémentaires  $q_0$  donne les deperditions par transmission  $q_0$  de la totalité du local, donc  $q_0 = \sum q_0$ 

2.3 Les coefficients K des parois, fenêtre, plancher et toitures. Le coefficient de transmission global K se determine par l'équation (3,9).

L'est ainsi possible de déterminer le coefficient des deperditions globale de n'importe quel type de parois DIN 4701 donne directement les valeurs K pour les types de parois, planchers et toitures les plus importantsen usage actuellement, les tableaux numeriques A 19 etA20 reproduisent partiellement ces valeurs.

## 2.4 Les hypothéses de température.

On choisit ordinairement pour température intérieure des locaux chauffés ti\_ + 20 °C° pour des locaux aux exigences de températures plus fortes ou plus faibles, le tableau numerique A 12 donne, d'aprés DIN 4701, les valeurs à garantir.

#### 3. Les majorations

Toutes les majorations sont appliquées aux deperditions calorifiques par transmission de tout le local. Une caractéristique importante pour les propriétés d'un local en matière de chauffage est le coefficient designé par D.

## 3.1 Le coefficient D

Physiquement le coefficient D peut être regardé comme la permeabilité moyenne de l'ensemble des éléments de l'enveloppe d'un local. Un coefficient D élevé signifie un mauvais isolement calorifique, donc de grandes surfaces de murs extérieurs avec une faible valeur d'isolement et une forte proportion de fenêtre.

Le coefficient D d'un local se calcul par la formule

$$D = \frac{Q_0}{S \text{ tot(ti-ta)}}$$
 (4.3.)

S tot( est la surface totale de toutes les enveloppes des locaux, donc des muzs extérieurs avec les fenêtres, des muzs intérieurs avec les portes, du plancher et de la couverture. Si un local ne perd de la chaleur qu'à travers ses murs extérieurs, le coefficient D peut également s'écrire:

$$D = \frac{K_{m} \text{ Sa (ti-ta)}}{\text{S tot (ti-ta)}} = \frac{K_{m} \text{ Sa}}{\text{S tot}}$$
(4.4)

Sa est la surface des murs extérieurs comprises

Km le coefficient de transmission global moyen des parois extérieures.

3.2 - La majoration Zu pour intérruption d'exploitation. Le but des majorations Zu est de le permettre en plus de l'exploitation continue, qui naturellement n'exige aucune majoration pour intérruption, il faut distinguer les trois modes d'exploitation suivants:

Mode d'exploitation I : exploitation continue avec toutefois réduction d'exploitation nocturne (bâtiment)

Mode d'exploitation II: intérruption journalière de fourniture de chaleur d'une durée de 8 à 12 heures (bureaux, magasins)

Mode d'exploitation III: intérruption journalière de fourniture de chaleur d'une durée de 12 à 16 heures (écoles, bâtiments d'usines)

Les majorations Zu augmentant avec la durée de l'intérruption d'exploitation. De plus elles sont échelonnées également d'aprés les valeurs D. Des petites valeurs de D demandent de grosses majorations; et des grandes valeurs, de petites majorations.

3.3 La majoration  $Z_A$  pour compensation des parois extérieures froides.

Comme le; confort de l'homme dans un local ne dépend pas seulement de la température de l'air, mais également de la température moyenne de l'enveloppe du local, des locaux avec des parois extérieures grandes et minces ou avec des grandes fenêtres, sont sur le plan climatique du local plus défavorables que d'autres avec des murs épais ou des petites fenêtres;

De même des piéces d'angle sont plus défavorables que des locaux encastrés sur trois faces.

La température moyenne de l'enveloppe du local se retrouve dans le coefficient D, car celui-ci dépend du coefficient K moyen des parois extérieures et du rapport des dimensions des parois extérieures à la totalité de l'enveloppe du local.

Le coefficient D sert donc également de mesure, aux majorations  $\mathbf{Z}_{\mathbf{A}}$ .

3.4 Groupement des majorations Zu et ZA.

Les deux majorations dependent du coefficient D et peuvent donc, malgré leur signification physique tout a fait différente, être groupée pour le calcul en une majoration unique  $\mathbf{Z}_{D}$ . Comme la majoration  $\mathbf{Z}_{D}$  diminue quand le coefficient  $\mathbf{Z}_{D}$  augmente, pendant que la majoration  $\mathbf{Z}_{A}$  croît, la majoration résultante  $\mathbf{Z}_{D}$  varie beaucoup moins avec le coefficient  $\mathbf{Z}_{D}$  que ses constituents.

Les majorations  $Z_D$  sont rassemblées dans le tableau numerique A 14. Comme on peut considérer que dans le mode d'exploitation I les majorations  $Z_D$  sont indépendantes du coefficient D, il n'est pas nécessaire du tout dans ce cas fréquent de déterminer le coefficient D.

# 3.5 - La majoration $\mathbf{Z}_{\mathbf{H}}$ pour orientation

La valeur des majorations qui doivent tenir compte des différences d'insolation est à prendre dans le tableau A 14 pour l'appreciation de l'orientation d'un local, il faut retenir pour des locaux encastrés sur 3 faces la position de la paroi extérieure et pour des locaux d'angle la direction du coin de la maison.

4 - Les besoins calorifiques pour pertes par ventilation.

## 4.1 - Les principles de calcul.

La quantité d'air qui pénétre sous l'effet du vent dans un local par les jointures des portes et fenêtres fermées, dépend des dimensions des zones non étanches des parties de bâtiment situées au vent et des différences de préssion entre l'extérieur et l'intérieur. Sur la face extérieure, régne dans le cas le plus défavorable direction du vent perpendiculaire - une pression dynamique correspondant à la vitesse du vent; à l'intérieur s'établit une pression qui est influencée par la resistance à l'écoulement du volume d'air introduit ainsi que par une éventuelle dépression sur les faces de l'immeuble non touchées par le vent. A cet égard, les maisons individuelles isolées se comportant différement des maisons alignées ou de bâtiments d'un étage avec plusieurs appartements complétement aépa-

Pour caractériser les particularités d'un immeuble, dues à sa situation son lieu et son mode de construction on se sert de la " caractéristique d'immeubles " H.

Les résistances à l'écoulement de l'air sont concrétisées par une caractéristique de local  $R_*$  Si l'on tient compte également dans  $R_*$  de la chaleur spécifique de l'air et des conditions spéciales des piéces d'angle par un facteur de majoration  $Z_E$ , les besoins calorifiques pour compenser les pertes par ventilation  $Q_L$  peuvent être calculés par l'équation:

 $Q_L^o = \sum (aL)_A RH (ti-ta) Z_E (Kcol/h) (4.5)$ Les lettres signifient:

∑(aL)A la permeabilité des fenêtres et portes au vent,

R la caractéristique de Local.

H la caractéristique d'immeuble

ti - ta la différence de température entre l'air intérieur et extérieur,

ZR le facteur de majoration pour fenêtres d'angle.

# 4.2 - Permeabilité des fenêtres et portes ∑(aL)

Si l'on designe par a la permeabilité à l'air d'un joint de fenêtre cu de porte par m de longueur pour une différence de pression donnée, la permeabilité de toutes les fenêtres et portes ayant chacune des joints d'une longueur L et exposées au vent dans les conditions les plus défavorables est donnée par  $\sum (aL)_A$ .

Le tableau A 15 indique les valeurs de calculs de la permeabilité apécifique à l'air a des plus importants types de fenêtre et de portes.

4.3 - La caractéristique de local R.

La caractéristique de local dépend de la permeabilité de toutes les fenêtres et portes  $\Sigma(aL)_A$  exposées au vent, ainsi que de la permeabilité des fenêtres et portes par laquelles l'air peut s'écouler du local. Si cette permeabilité est designée par analogie par  $\Sigma(aL)_N$  la caractéristique de local R exprime le quotient

$$R = \frac{1}{\sum (aL)A + 1}$$

$$\sum (aL)_{aL}$$
(4.6)

Dans la plupart des cas l'air ne s'écoule d'un local exposé au vent que par les portes intérieures. Ainsi donc les dimensions de ces portes et leur étanchéité sont déterminantes pour  $\Sigma(aL)_N$ . Si l'on utilise des fenêtres et des portes de type courant ,il n'ya pas de trop grandes différences dans la valeur de R des différents locaux d'un immeuble. La plupart du temps, enpeut donc renonçer au calcul de la caractéristique de local R par la formule (4.6) et prendre la valeur dans le tableau numerique A 16.

## 4.4 - La caractéristique d'immeuble H

La caractéristique d'immeuble H est donnée par le tableau numerique A 17 pour divers genres de constructions et influences du vent.

En ce qui concerne la situation d'un local par rapport à l'action du vent, on distingue trois cas:

Site protégé: c'est le cas des centres des villes de construction sérrée à condition que les immeubles ne dépassent pas sensiblement leur voisinage.

Site découvert: c'est le cas des maisons dans les cités ou les ensembles de bâtiments sont clairsemés ainsi qu'en ville, des maisons élevées, dépassant nettement leur voisinage.

Site exceptionnellement découvert: c'est le cas des maisons isolées construites sur des hauteurs.

# 4.5 La majoration pour fenêtre d'angle $Z_{\mathrm{E}}$

Ce facteur n'est à envisager que pour des fenêtres et portes situées immédiatement dans l'angle de deux murs extérieurs contigus. Alors

$$Z_E = 1.2$$

Pour toutes les autres fenêtres et portes on a donc

$$Z_{\rm E} = 1.0$$

#### 5. Conduite des calculs

Les besoins calorifiques  $Q^{\circ}$  d'un local se calculent par l'équation:  $Q^{\circ} = Q_{\rm L}^{\circ} + Q_{\rm L}^{\circ} = Q_{\rm O}^{\circ} (1 + Z_{\rm D} + Z_{\rm H}) + Q_{\rm L}^{\circ} (Kcal/h)$  (4.7)

5.1 - Besoins calorifiques pour pertes par transmission
Les abréviations suivantes seront utilisées pour caractériser
les éléments de la construction dans les diverses lignes de
l'exemple.

FS Fenêtre simple

FC Fenêtre composée

FD Fenêtre double

FZ Fenêtre double vitrage

IS Imposte simple

MI paroi intérieure

ID Impose double

ME Paroi extérieure

PI Porte intérieure

B Plancher

PE Porte extérieure

H Plafond

C Couverture.

5.2 Besoins calorifiques pour pertes par ventilation:

Le calcul commençe par la recherche de la direction du vent la plus défavorable pour chaque local; en même temps, on determinera les fenêtres et portes extérieures exposées à introduire dans le calcul. On determine la longueur de leur joint L sur les dessins des fenêtres Ou si le type de fenêtres n'est pas encore fixé avec précision - Par le rapport & L/S du tableau numerique A 15b. La valeur  $\sum (aL)_A$  de voutes les fenêtres et portes extérieures exposées du local considéré résulte alors de la permeabilité des joints a (tableau numerique A 15a).

Il faut retenir comme longueur de joint d'une fenêtre ou d'une porte par la longueur totale de toutes les bases d'aération.

La suite dans le calcul de projet:

|        |                                                                                          |                        |                    | Cal                             | cul                  | des                                 | suiface  | ·\$          | Calcu                                  | l des de                        | perdition                    | Maj                         | oratio                           | n                                      |                       |                              |                             |      |
|--------|------------------------------------------------------------------------------------------|------------------------|--------------------|---------------------------------|----------------------|-------------------------------------|----------|--------------|----------------------------------------|---------------------------------|------------------------------|-----------------------------|----------------------------------|----------------------------------------|-----------------------|------------------------------|-----------------------------|------|
|        | Abréviation                                                                              | Orientation            | 3 Epaisseur du mur | Longueur ou<br>Florgeur         | 3 Hauteur            | 3. Surface                          | Nombre   | 3. Déduction | 2 Chiffre retenu<br>2 pour les calculs | Coeffici                        | Différence de fempérature dt | K. K                        | D. Dependitions calonifiques par | ************************************** | K<br>H<br>Orientation | N Facteur de<br>+ majoration | A Besoins A calorifiques B. | labi |
|        |                                                                                          | _                      |                    |                                 |                      |                                     |          |              |                                        | Kcal<br>m².h.°C                 | Δt                           | Kcal<br>mf.h                | , ,                              | ZD                                     | ZH                    | Z                            | Kcol/12<br>Q'+ Q'= Q'       | P    |
|        | A                                                                                        | 0                      | E                  | L                               | Н                    | S                                   | N        | D            | C                                      | K                               | ΔΓ                           | Δt.K                        | <b>લ</b> ,                       | Z.D                                    | EH.                   | 2                            | व्यं + व्या - श्र           | ┨_   |
|        | Sa                                                                                       | ille da                | sejou              | r 4 ; L                         | .o*c ;               | V = 53,                             | 86 m3;   | Rez-         |                                        | aussée                          | •                            |                             |                                  |                                        |                       | 1                            | i                           | 14   |
| J<br>J | ME<br>ME<br>F D<br>B                                                                     | N E e                  | 38<br>38<br><br>30 | 5,27<br>3,65<br>2,14<br>5,27    | 2,80<br>2,80<br>4,30 | 14,75<br>40,22<br>2,74<br>49,23     | 1 1 1    | 2,74         | 14,15<br>7,47<br>2,74<br>19,23         | 1, 18<br>1, 18<br>2, 0<br>1, 15 | 10<br>10<br>10<br>12         | 11,8<br>11,8<br>20<br>13,86 | 174<br>88<br>55<br>266<br>583    | 7                                      | 5                     | 1,12                         | Q°T=653                     |      |
|        | В                                                                                        | e soins                | caloril            | fiques                          | de ve                | ntilatio                            | ·<br>''\ |              |                                        |                                 |                              |                             |                                  |                                        |                       |                              |                             | -    |
|        | Q'L = \(\( \( \)_R \) HR (T-ta) = \( \)_0 \( \) \( \) \( \)_3 (\( \)_0 - \( \)_0 \) = 65 |                        |                    |                                 |                      |                                     |          |              |                                        |                                 |                              |                             |                                  |                                        | QL= 65                |                              |                             |      |
|        | Salle de séjour 2,3,4,5,6,7,8,9 ; 20°C ; V=53,86m³ ; Rez-de-chaussée                     |                        |                    |                                 |                      |                                     |          |              |                                        |                                 |                              |                             | Q'=718                           |                                        |                       |                              |                             |      |
|        | ME<br>FD<br>B                                                                            | E<br>E<br>-<br>Besoins | 38<br>30<br>calori | 3,65<br>2,44<br>5,27<br>Figures | į                    | 10,22<br>2,74<br>19,23<br>ntilation | i        | -            | 7,47<br>2,74<br>19,23                  | 1,18<br>2,0<br>1,15             | 10 10 12                     | 11.8<br>20<br>13,8          | 266<br>410                       | 7                                      | 0                     | 1,07                         | Q* <sub>T</sub> =438        |      |
|        |                                                                                          | Ø.r =                  | Σ (aL              | )A HR                           | (t-ta)               | = 65                                |          |              |                                        |                                 |                              |                             |                                  |                                        |                       |                              | Q'L= 65                     |      |
| -      |                                                                                          |                        | *                  | <u></u>                         | · <del>* </del>      |                                     |          | <del> </del> | <del>- 1 - 111</del>                   | <u> </u>                        |                              |                             |                                  | <del></del>                            |                       |                              | Q'-503                      | - -  |

Q'=503

| A           | 0                              | 3                        | L.           | Н                   | <u>S</u>        | _N     | D        | C                              | K                           | Δt                   | Δt.K                       | e.                             | Zd | ZH | Z    | 8'++ Q'L=Q           |
|-------------|--------------------------------|--------------------------|--------------|---------------------|-----------------|--------|----------|--------------------------------|-----------------------------|----------------------|----------------------------|--------------------------------|----|----|------|----------------------|
|             | -Salle-d                       | e se jour                | r 40 ; £     | 20°C;               | V = 53,         | 86 m / | Rez.     | - de - c                       | hausse                      | ie                   |                            |                                | ,  |    |      | <b>.</b> .           |
| F           | ME S<br>ME E<br>D E<br>B -     | 38<br>38<br>             | 1 . [        |                     | 1               | •      | 2,74     | 14,75<br>7,48<br>2,74<br>13,23 | 1,18<br>1,18<br>2,0<br>1,15 | 10<br>10<br>10<br>12 | 11,8<br>11,8<br>20<br>13,8 | 144<br>88<br>555<br>266<br>583 | 1  | -5 | 1,02 | Q'T= <b>59</b> 5     |
|             |                                | - Σ (aL                  | ٧            |                     |                 | •      | ·<br>-   |                                |                             |                      |                            |                                | :. |    |      | Q' <sub>L</sub> = 65 |
|             | Salle de                       | c sejjour                | 1;20°C       | , V=                | 53,86 m         | s , 14 | , L eme, | 3 eme ét                       | age                         |                      |                            |                                | ·  |    |      | Ø.: 660              |
| D<br>M<br>F | 1E N<br>1E E<br>D E<br>Besoins | 38<br>38<br>-<br>celorif | . ,          | , 1                 |                 |        | 2,74     | 14,75<br>7,48<br>2,74          | 1,18                        | 10<br>10<br>10       | 11,8<br>11,8<br>20         | 174<br>88<br>55<br>317         | 7  | +5 | 1,12 | Q <sub>7</sub> :355  |
|             | Q'L                            | = Σ (al                  | )a HR        | (t-ta)              | = 65            | •      |          |                                |                             |                      | ,                          | ,                              |    | -  |      | QL= 65               |
|             | Salle de                       |                          |              |                     |                 |        |          |                                |                             |                      |                            |                                |    |    |      | Q'= 420              |
| M           | (E E<br>-D E<br>Besoins        | 38<br><br>calorifi       | 3,65<br>2,11 | 2,8<br>1,30<br>vent | 10,22  <br>2,74 | 1      | 2,74     | 7,48<br>2,74                   | 1, 18<br>2,0                | 10                   | 20 20                      | 88<br>55<br>14 3               | 7  | 0  | 1,07 | Q*153                |
|             |                                | Σ(aL)A                   | ,            | ,                   |                 |        | •        |                                | 1                           |                      |                            |                                |    |    |      | QL= 65               |
|             |                                | •                        |              |                     |                 |        |          | -                              |                             | -                    | •                          |                                |    |    | •    | Q= 218               |

|    | Carriero            |                      | ACT TOWARD OF A LAST MINE OF  |                                        | of the same are seen as the |                                     |                     |          |                                | _                           |                |                            |                               |      |     |        |                      |              |
|----|---------------------|----------------------|-------------------------------|----------------------------------------|-----------------------------|-------------------------------------|---------------------|----------|--------------------------------|-----------------------------|----------------|----------------------------|-------------------------------|------|-----|--------|----------------------|--------------|
|    | Ĥ                   | 0                    | E                             | L                                      | H                           | S                                   | N                   | <u>D</u> | _c_                            | K                           | \ \\_\_\_\     | At.K_                      | _6,°_                         | Zd - | ₹n- | - Z    | RTVEC:               |              |
| -  |                     |                      |                               |                                        |                             |                                     |                     |          |                                | ime éta                     |                |                            |                               |      |     |        | ·                    |              |
| ,  | ME<br>ME<br>FD      | S<br>E<br>E          | 38<br>38<br>-                 | 5,27<br>3,65<br>2,11                   | 2,8<br>2,8<br>1,30          | 14,76<br>10,22<br>2,74<br>ntilatio  | 1 1                 | 2,74     | 14,15<br>7,48<br>2,74          | 1,18                        | 10<br>10<br>10 | 11,8                       | 174<br>88<br>55<br>317        | 7    | -5  | 1,02   | Q <sub>1</sub> =323  | •            |
|    |                     |                      |                               | •                                      |                             | ) = 6                               |                     |          |                                |                             |                |                            |                               |      |     |        | Qip 65               |              |
| ·  | Sa                  | ille d               | e se'jo                       | ur 1;                                  | 20°C                        | ; V = 5                             | 3,86 m <sup>5</sup> | , 4 em   | 'étage                         |                             |                |                            |                               |      |     |        | <b>C</b> = 388       | -            |
| 29 | ME<br>ME<br>FD<br>T | N<br>E<br>E<br>-     | 38<br>38<br>-<br>30<br>calori | 5,27<br>3,65<br>2,41<br>5,27<br>figues | 2,8<br>2,8<br>1,30          | 14,75<br>10,22<br>2,74<br>19,24     | 1<br>1<br>1         | 3,165    | 14,75<br>7,05<br>2,74<br>19,24 | 1,18<br>1,18<br>2,0<br>1,15 | 10 10 10       | 11,8<br>11,8<br>20<br>11,5 | 174<br>88<br>55<br>221<br>538 | 7    | +5  | 1,12   | ଷ*r= 603             | 4-3 Suite X) |
|    | €                   | y, r = 3             | (ملـ)                         | AHR                                    | (t-ta)                      | = 65                                | •                   |          |                                |                             |                |                            |                               |      |     |        | Q'L= 6               | 5            |
| -  |                     |                      | _                             |                                        |                             |                                     |                     |          |                                | ; 4 eme él                  | u              |                            |                               |      |     | · ·. · | Q= 66                | 3            |
|    | ME<br>FD<br>T       | E<br>E<br>-<br>soins | 38<br>30<br>calorif           | 3,65<br>2,11<br>5,27<br>iques          | 2,8<br>1,30<br>de ver       | 10,22<br>2,74<br>13,24<br>ntilation | 1<br>1<br>1         | 3,165    | 7,05<br>2,74<br>19,24          | 1,18<br>2,0<br>1,15         | 10 10          | 11,8<br>20<br>11,5         | 88<br>55<br>221<br>365        | 7    | 0   | 1,07   | Q'T= 390             |              |
|    | . (                 | Q' L =               | Σ(aL)                         | AHR                                    | (t-ta)                      | = 65                                |                     |          |                                |                             |                |                            |                               |      |     |        | Q' <sub>L</sub> = 65 | 5            |
|    |                     |                      |                               |                                        |                             |                                     |                     | ,        |                                |                             |                |                            |                               |      |     |        | Q' = 455             | <del>-</del> |

|                            | 1<br>1<br>4<br>1                                                                                   | ·                                                                                                                                                                                                                       |                                                                                |                                              |
|----------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------|
| des solutions are serviced |                                                                                                    | T.4-1 (suite 3)                                                                                                                                                                                                         |                                                                                |                                              |
| Qi. + Qi. = Q'             | Q: 549<br>Q: 549<br>Q: 614                                                                         | 64= 504<br>61= 65<br>61= 65                                                                                                                                                                                             | QK = 325<br>QL = 65<br>QZ = 390                                                |                                              |
| M                          | 4,02                                                                                               | 7,7                                                                                                                                                                                                                     | 4,04                                                                           |                                              |
| N.                         |                                                                                                    | <u>+</u>                                                                                                                                                                                                                | 0                                                                              |                                              |
| -22                        | 7                                                                                                  | <b>1</b> -                                                                                                                                                                                                              | 7-                                                                             |                                              |
| êi-                        | 2 00 00 00 00 00 00 00 00 00 00 00 00 00                                                           | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                 | 20 € 60 € 60 € 60 € 60 € 60 € 60 € 60 €                                        | 146<br>888<br>62                             |
| A'-K-                      | 44,8<br>44,5<br>44,5                                                                               | 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                 | 43,65<br>13,60,62                                                              | ## 25 P. |
| 12                         |                                                                                                    | 10<br>10<br>12<br>12<br>12<br>12<br>12<br>12                                                                                                                                                                            | 277 79                                                                         | 2227                                         |
| ス                          | 1 1 2 2 2 3 3 3 4 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5                                                  | 74 148 4.18 33 4.18 4.18 4.18 4.15 4.15 4.15 4.15 4.15 4.15                                                                                                                                                             | 1,48<br>1,48<br>1,45<br>-Ta) = 2<br>2.58¢4                                     | 11011<br>6002<br>8008                        |
| 2                          | 3° 44,45<br>44,45<br>19,23<br>19,23<br>A HR (F                                                     | 4 7,48<br>2,74<br>8,03<br>46,43<br>45,73<br>45,73<br>45,73<br>45,73                                                                                                                                                     | 24.0% I                                                                        | 12,34                                        |
| 4                          | 2, 2, 34<br>Σ(a4)                                                                                  | Σ(al) A F                                                                                                                                                                                                               | 2,74   2<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1 | 2,74                                         |
| Z                          | 7 7777 B                                                                                           | # TTTT                                                                                                                                                                                                                  | 45. 20. 22. 22. 23. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25                     | 7777                                         |
| 5                          | ; V = 53,8%<br>30 2,74<br>30 2,74<br>19,23<br>49,23<br>49,23<br>0°C; V = 45                        | 25 100 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                           | 20,22<br>27,44<br>6,43<br>6,43<br>alien                                        | 45,33<br>8,034<br>8,03                       |
| Ŧ                          | 1,20°C ; V                                                                                         | 2 2,8 42,<br>2,80 8,0<br>2,80 8,0<br>2,3,4,5,6,7,8,                                                                                                                                                                     | 2,8<br>2,13<br>2,10<br>10,20°C                                                 | 0101 401<br>00 00 40 00                      |
|                            | W W - W                                                                                            | = 4 × 60 + 4                                                                                                                                                                                                            | Markey                                                                         | 2,42                                         |
| س                          | 36 jour 10; 38 3,52 3,65 30 5,2 30 5,2 3,6 5,2 3,6 5,2 3,6 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 | 38 4 4 38 30 4 30 4 4 20 20 4 4 20 20 4 4 20 20 4 4 20 20 4 4 20 20 4 4 20 20 4 4 20 20 4 20 20 4 20 20 4 20 20 4 20 20 4 20 20 20 4 20 20 20 4 20 20 20 4 20 20 20 4 20 20 20 4 20 20 20 20 20 20 20 20 20 20 20 20 20 | 38 3,61<br>12 2,81<br>30 4,44<br>calorifiques                                  | 33                                           |
| 0                          | Salle de le E                                                                                      | Besoins Chambre                                                                                                                                                                                                         | Oessins<br>Chambre                                                             | 000 I                                        |
| Œ                          | 있 표표면<br>및 구                                                                                       | 포류진 H & 역                                                                                                                                                                                                               | 유명점<br>- 영 의                                                                   | 유민단                                          |

|          |                          | • •       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                  |                         |                                                 |                                       |                 |
|----------|--------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------|-------------------------|-------------------------------------------------|---------------------------------------|-----------------|
| a, de co | Ø <sub>1</sub> : 459     | <b>S</b>  | <b>₩</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$9 E = 20                |                                  | Q                       | 23                                              | യിക                                   |                 |
| 23       | 4,02                     | -         | 1,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 1.03                             | ••<br>·                 | 1,02                                            |                                       |                 |
| ZN<br>K  | -5                       | •         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | 0                                |                         | ر<br>بر                                         |                                       |                 |
| A R      | 7-                       |           | <i>T</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                         | <i>T</i> -                       |                         | -                                               |                                       |                 |
| ؠٛ       | 223                      |           | 100 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | 00 00 00<br>00 00 00<br>00 00 00 | •                       | 2002                                            | . •                                   | 146             |
| Ar.K     | 13,8                     |           | 44,8<br>20,20<br>7,72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a a a                     | 74,8                             |                         | # # # 3 + + + + + + + + + + + + + + + +         |                                       | 11,8            |
| At-      | 12                       | ٠,        | 2227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | z 65<br>3em ekage         | 997                              | = 65<br>= 3e            | 6684                                            | 292                                   | 40              |
| *        | 1,15<br>(f-ta)           | egu itage | ナイタイ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (f -fa)                   | 1,93                             | (t-ta)=65, 3 em elage   | 1,401,<br>2,40,6                                | R (F-1a)                              | 1,18            |
| 2        | 16,13<br>A HR            | 2 ears 2  | 76.<br>24.43<br>34.43<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36.44<br>36 | Σ(αL)A HR<br>V= 45m³;4    | 1,0%<br>1,0%<br>1,0%<br>1,0%     | Σ(aL) A HR              | 5,40,80<br>4,55,50                              | Σ(al)A H                              | 12,37           |
| A        | -  <br>= \( \( \alpha \) | 5-        | 2,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11 ->                     | 2,74                             | ַ װ ָּבּ                | 2,14                                            | - 1 5,                                | 2,34            |
| Z.,      | لـ                       | 45 m3     | ~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . a.                      | ~ ~ ~                            | . Q.L.                  | 7777                                            | E                                     | 77              |
| S        | - 16,43 ventilation      | 7         | 12,37<br>10,22<br>2,44<br>8,03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ventilation, 5,6,4,8,9    | 10,22<br>2,44<br>8,03            | ventilation,            | 12,04<br>14,08<br>14,08<br>10,08                | #   #   #   #   #   #   #   #   #   # | 12,37           |
| I        |                          | 20%       | 8,8,5°°<br>8,0°,5°°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | de ven, 3,4,5,6           | 01 - 501<br>00 40 00             | 7                       | क्राच्या मुख्य<br>क्षाच्या प्रका                | A .                                   | 97.97<br>80.88, |
| -        | 4,42 ques de             | cher 1;   | 4690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>⇔</i>                  | 2,65                             | calorifiques de coucher | 22,65                                           | calorifiques<br>à coucher &           | 4,42 3,65       |
| ıı       | 30 4,4 calorifiques      | a coucher | 2 00 00<br>00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | calorifiques<br>à coucher | 3 60 60                          | دهاها                   | 90 00 14 15 15 15 15 15 15 15 15 15 15 15 15 15 |                                       | 33.88           |
| 0        | S - Besains              | Chambre   | 300 l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Besoins<br>Chambra        | 001                              | Bessins<br>Chambre      | 0001                                            | Besoins<br>Chambre                    | 20              |
| α        | න<br>දැ                  | <u> </u>  | E E C E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • J                       | E L T                            |                         | Z X L X<br>H H O H                              |                                       | X X<br>m m      |

T.4-1 (suite 4)

| 0to.       | 64:462<br>94:65<br>94:523                                  | 9.7.786<br>9.1.286                                          | Q'r = 424<br>Q'r = 65<br>Q'r = 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q' = 364                                          |
|------------|------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| M          | S. S                   | 7,03                                                        | 7,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,04                                              |
| ZH         | <b>\</b>                                                   | •                                                           | \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} | 0                                                 |
| <b>4</b> % | l <del>-</del>                                             | 71-                                                         | To-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| Ģ.         | 55<br>4 86<br>4 13                                         | 7 2 20 20 20 20 20 20 20 20 20 20 20 20 2                   | 126695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 340223                                            |
| ∆K         | 20 3.86                                                    | 2, 24, 3                                                    | ## 38. 7.<br>8. 8. 8. 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1. 403 4 E. J.<br>8, 00 4 E. J.<br>8, 00 8, 00 R. |
| ΔÌ         | 40 - 4<br>10 - 4<br>23°                                    | 10 70 (c. 1                                                 | 8 40<br>40<br>5 -4<br>5 -65<br>etage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 292-29                                            |
| ×          | 2,0<br>1,93<br>1,45<br>(r-fa)                              | 7, 45, 45                                                   | 44024 Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.4.6.1.4.4. 4.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   |
| J          | 1285 X 382                                                 | 2,74<br>2,74<br>2,74<br>2,93<br>46,13<br>4,6,13<br>4,000 HR | 12,34<br>2,94<br>2,94<br>16,13<br>X (al) A 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 12 12 12 12 12 12 12 12 12 12 12 12 1          |
| 0          | 2 2 2 46 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                   |                                                             | 1 2 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,44                                              |
| N          | 444 9 3                                                    | 6                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 777077                                            |
|            | 4,30 2,74<br>2,8 8,03<br>de ventilation<br>2,3,4,5,6,7,8,9 | \$0 2,74. 4<br>8,03 4<br>16,13 4<br>Ventilation             | 12,33<br>10,22<br>16,33<br>16,13<br>18,14,15;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,21,21,01<br>2,32,43<br>2,32,43                  |
| 1          | 1,30<br>2,8<br>de ver<br>2,3,4,5,                          | 10 1 de 10 10 10 10 10 10 10 10 10 10 10 10 10              | 200 1 20 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,01,40,01<br>0,000<br>0,000                      |
|            | = E 2                                                      | 38   3,65   12,41   2,87   30   4,42   calorifiques         | 38 4,42 2,8 42,37<br>2,3 40,29<br>12 2,37 2,3 40,29<br>30 4,42 - 16,43<br>30 4,42 - 16,43<br>30 coucher M,12,13,14,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0           |
|            |                                                            |                                                             | 35 5 5 18 18 18 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1          |
| C          | Desoins<br>Chambre                                         | Orambre                                                     | Se Chambre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000111                                            |
| G          | l a H                                                      | EUK-                                                        | # # EGE -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Haarra<br>Haarra                                  |

| Q=315     |          |         |                      |                                         |       | = 46               | (aL), HR (t-ta)                       | LL), HA                                 | M         | & .<br>& .     | vertilation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | de ve                              | calori fiques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                        | Besolns           |          | 3             |
|-----------|----------|---------|----------------------|-----------------------------------------|-------|--------------------|---------------------------------------|-----------------------------------------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------|----------|---------------|
| Q'1=2.73  | F0'Y     | 0       | 41                   | 250                                     | 2002  | 4664               | 2005<br>7767                          | 3,22                                    | 1113      | A              | 2 2 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 080,000                            | 35.7<br>25.7<br>25.7<br>25.7<br>25.7<br>25.7<br>25.7<br>25.7<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 0 0 0                                  | ा । (मार्म्स      | DAS B    | E             |
| Ø: 489    | <u> </u> | _       | _                    | _                                       | •     | 425                | (t-fa)=                               | char<br>A HR                            | ky-da-    | برود<br>مار سا | ventilation $V = Ab, 68$ c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | de ven                             | , 20°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                        | Besoins           |          |               |
| P. 7. 364 | 4,04     | 0       | -44                  | 250 250 250 250 250 250 250 250 250 250 | 37.25 | 22122              | \$000 m                               | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 1 1 1 7 | n a but a a    | 10,46,24<br>20,24<br>20,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30,24<br>30, | वंग दर्भन् ,                       | 20,50<br>20,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50<br>10,50 | 1 1 m 10 0                               | 111000            | HARA WAR | (3 othes) 1 - |
| Q :339    | ·        | 1380    | . · ·                | -<br>-                                  | _     | a) = 125<br>relage | , , , , , , , , , , , , , , , , , , , | V=34m3;                                 | 0°C;      |                | ventilation<br>2, 13,14,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A, 1                               | calorifiques<br>à conches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (F                                       | Bessins<br>Chambr |          | 1.T           |
|           | 8        | 0       | 4                    | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 13,88 | . 61666            | مرسيما بربد ز                         | 4,62.65                                 |           | ~ ~ ~ ~ ~      | 40204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | क व्याप्त क्रम्<br>क व्याप्त क्रम् | 2,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100 1 1 00 00 00 00 00 00 00 00 00 00 00 | 11000             | RESER    |               |
|           | can.     |         | ()<br>11<br>22<br>25 | × 0,41 (£0-49)                          |       | x3,75 x 4,5 x 0,9  | 4 1/2                                 | 7. (F.                                  | E(al), H  | Q'L=           | ventiletion:<br>2,13,14,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>₹</i> ~                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | calorifiques<br>à conches                | Besoins (         | င် စုံ   |               |
| R         | 63       | 63<br>8 | Ü                    | a;                                      | E.X   | A.                 | Х                                     | C                                       | 9         | Z              | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •••                                      | 0                 | 7        |               |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 23/2                                                    | 2705.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q. = 403<br>Q. = 403<br>Q. = 450            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 0°C.; V=45,68.°; ,45,2°C=3.9°C=4.00ge  2,80   5,18   1,45,2°C=3.9°C=4.00ge  3,10   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1,43   1 | N       |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20,                                         |
| 20°C.; V=45,68°°, J4°, 2°°2°, 3°°0°° clage  2,8° 5,18° 1,4° 2°°2°, 3°°0° clage  2,8° 5,18° 1,4° 1,5° 1,4° 1,0° 1,0° 1,0° 1,0° 1,0° 1,0° 1,0° 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ä       | •                                                       | STEEDWARD LA THE CONTRACT OF T | 0                                           |
| 20°C.; $V = 45,68$ %, $A = 10^{-10} - 10^{-10} - 10^{-10}$ $A = 1$ | 2       | F-F                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·       |
| 20°C.; V=45,68°C; ,4°C.,2°C,2°C,3°C,0°C,2°C,2°C,2°C,3°C,2°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,2°C,3°C,3°C,3°C,3°C,3°C,3°C,3°C,3°C,3°C,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ġ.º     | 2882                                                    | 00 63 C3 3 -4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70000000000000000000000000000000000000      |
| 20°C, V=45,68°C, AE, 2°C, 3°C, 6120°C, V=45,68°C, AE, 2°C, 3°C, 6120°C, V=45,68°C, AE, 2°C, 2°C, 3°C, 6120°C, V=45,68°C, AE, 2°C, 2°C, 3°C, 6120°C, V=45,68°C, AE, 2°C, AE, 3°C, 2°C, AE, 3°C, A | 1 - 1   | 7.00<br>2.00<br>2.00<br>2.00                            | 4834<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANT WHOW A X                                |
| 20°C, V=45,68°C, 45,2°C, 3°C, 47,26 2,80 2,80 2,80 2,80 2,80 2,80 2,80 2,80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | <del></del>                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4444444                                     |
| 20°C; V=45,68°C; JE; Zegz, 3°C; Ze | Tage 1  |                                                         | 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2000 C. |
| 20°C, V=45,68°C, 20°C, 20° | 1) 6    |                                                         | भ्यत् का क्षा भ्र                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | THE     |
| 20°C, V=45,68°C, 20°C, 20° | 1 ! 1 " | 1, 26, 1, 1, 26, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | 1,36<br>- 25 (a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | Land ce                                                 | 4444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45,68   | 1,35<br>19,55<br>10,16<br>10,16                         | 25.95<br>25.95<br>37.95<br>37.95<br>37.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A SESEE EST                                 |
| 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | > >     | ୍ଦର ହୈତ୍ତ 🐧                                             | व्यन्त्य । न्ते न                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4 -0101 01 -4 -6                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7       | 3,22<br>3,22<br>40,22                                   | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 min 120 min 100 min 100 min              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22 - 22 - 42 - 42 - 42 - 42 - 42 - 42 -     |
| Sala Sala Sala Sala Sala Sala Sala Sala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | असा । क्षेत्र<br>श्री १९                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9011111                                     |
| ### ##################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                         | War-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |

| Q: + 6: + C. |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96                       | QT: 335<br>Qt: 43<br>Q:438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z            |           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del>.</del>             | £ 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Z.4.         |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                        | <u>o</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | <i>pr</i> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| O.           |           | 7665657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 40000 20 54 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100          |           | 25.05. 14.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15.05. 15                                                                                                                                                                                                                                                                                                                                                                                                                         | · 10                     | Stantonto<br>Stantonto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                       | न्यं व्यवस्थान                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | Son alage | 10114-1011<br>3000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HR (r-ta)                | TA 2503 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| J            | -         | 7,04,64.4<br>2,659.25,684.4<br>3,659.25,684.4<br>3,659.25,684.4<br>3,659.25,684.4<br>3,659.25,684.4<br>3,659.25,684.4<br>3,659.25,684.4<br>3,659.25,684.4<br>3,659.25,684.4<br>3,659.25,684.4<br>3,659.25,684.4<br>3,659.25,684.4<br>3,659.25,684.4<br>3,659.25,684.4<br>3,659.25,684.4<br>3,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,684.4<br>4,659.25,68 | (7:<br>(2)               | 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4            | 14.2 sais | 201118-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 = 2 (                  | 8. Z. (2. |
| Σ            | į         | alled and all all all all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | all all all only all all all all all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| S            | \C_       | できるようという。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ventiletion<br>= 12,6 m² | 25 25 25 25 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| *            |           | ୬ ଚଥାଚାଚାଚାଚାଚାଚା<br>ଅତିଷ୍ଟି ଅଟି ଅନ୍ତି                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ار<br>ار الا             | 258886001 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1            | , 24°C    | 2 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | calorifiques             | 25 25 25 25 25 25 25 25 25 25 25 25 25 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |           | ७ । ७५५ । ज                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0            | Sile de   | 0011711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Persons                  | 00111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |           | HAHHHARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T. LA                    | ESHEHHELE LE LE Suita 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

### Chapitre 5

#### Problémes D'écoulement

Dans les phénomènes d'écoulement intéressant la technique du chauffage et de la ventilation, les vitesses sont généralement tellement basses que les mêmes lois de base peuvent s'appliquer aux gaz, vapeurs et liquides susceptibles de se mettre en gouttelettes.

## 5.1 - Les lois de l'écoulement dans les conduites:

5.11 L'écoulement d'un fluide idéal: a travers une conduite de section variable s'écoule en régime permanent pendant l'unité de temps une quantité de fluide de volume V.

Si la densité du fluide rêste constante, le débit-volume sera le même pour toute section.

Si S<sub>1</sub>, S<sub>2</sub> et S<sub>3</sub> representent les sections en 1,2 et 3 et W<sub>1</sub>, W<sub>2</sub>, W<sub>3</sub> les vitesses correspondantes, la condition de continuité s'écrit:

$$\dot{V} = S_1 \quad \dot{V}_1 = S_2 \quad \dot{V}_2 = S_3 \quad \dot{V}_3$$
 (5.1)

où 
$$W_1/W_2 = S_2/S_1$$
,  $W_2/W_3 = S_3/S_2$ 

Ce qui signifia que les vitesses varient en sens inverse des sections.

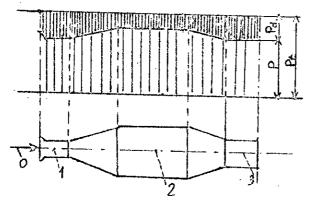



Figure de pression statique, dynamique et totale d'un écculement sans pertes.

Alors le théorème de l'énergie donne, la forme suivante à l'équation de Bernoulli.

$$P_{4} = P_{1} + Pd_{3} = P_{2} + Pd_{2} = P_{3} + Pd_{3}$$
 (5.2)

- $P_t$  est la pression totale constituée de la pression statique P et de la pression dynamique  $P_t$  . Nous definissons:
- 1. La pression statique (P) est la pression interne d'un fluide s'écoulant en ligne droite, donc la pression qu'indiquerait un appareil de mesure de la pression entrainé par le courant fluide à la même vitesse, la pression statique est également la pression exercée sur la paroi d'un canal par un fluide s'écoulant-parallélement à celle-ci.
- 2. La pression dynamique P est l'augmentation maximale de pression constatée dans un écoulement fluide devant le centre d'un obstacle et s'identifie a la pression nécessaire à l'accélération du fluide au repos jusqu'à la vitesse considérée elle se calcule par la formule:

$$P_{d} = \frac{\sqrt{2}}{2} \rho$$

Des lettres significat:

V la vitesse moyenne de l'écoulement

Pla densité du fluide

3. La pression totale est la somme algébrique des pressions statique et dynamique

Le théorème de Bernoulli signifia donc que, pour une même hauteur géodésique, la pression totale reste constante. Aux endroits rétrecis de la conduite où les vitesses et aussi la pression dynamique sont élevées, la pression statique doit donc être petite et inversement.

5.12 - Ecoulement d'un fluide Réel

Dans les fluides réels, il se produit une transformation de l'énergie mécenique en chaleur; par suite du frottement interne; la pression totale & diminue constamment le long de la conduite.

L'équation (5.2) appliquée a deux sections s'énonce maintenant:

$$P_1 + P_{d_1} = P_2 + P_{d_2} + \Delta P$$
 (5.3)

 $\Delta P = P_1 - P_2$ ;  $\Delta P$  est la perte de pression définitive sur le parcours de la section 1 à la section 2 .

5.2 Les pertes de charge dans les réseaux de tuyauterie.

On distingue les pertes de charge dans les tronçons rectilignes des tubes des pertes de charge dues aux resistances particulières. Les resistances particulières comportent tous les échangements de direction, les dérivations, la robinetterie et les appareils et aussi tous les rétrécissements et élargissements de la conduite.

Dans les deux cas on écrit que la perte de charge définitive est proportionnelle à la pression dynamique

$$\Delta \rho \sim \frac{V^2}{2} \rho \tag{5.4}$$

5-21 Pertes de charge dans les conduites réctilignes:lorsqu'un fluide s'écoule à travers un tube rectiligne de section constante, la pression dans le fluide diminue uniformément le long de la conduite.

Si le tube a une longueur de L m et si la pression initiale= $P_1$  et la pression finale  $P_2$  on appelle

P<sub>1</sub> - P<sub>2</sub> la perte de charge

( P1 - P2) /L la perte de charge au métre courant.

Dans la technique du chauffage, la perte de charge au métre courant est généralement désignée par la lettre R. R dépend de la pression dynamique du fluide, et aussi du diamétre intérieur du tube et d'un facteur  $\lambda$  fonction du type d'écoulement et de la qualité du tube. On l'appelle " coefficient de frottement du tube" parfois aussi coefficient de resistance.

La perte de charge du métre courant est donc:

$$R = \frac{P1 - P2}{L} = \lambda \frac{1}{d} = \frac{V^2}{8} \rho \qquad (5.5)$$

et pour la perte de charge totale:

$$P_1 - P_2 = RL = \lambda L V^2$$
 (5.5a)

5.3 Résistances particulières

Selon la formule (5.4) la porte de charge dans les resistances particulières est également proportionnelle à la pression dynamique. Dans les techniques de chauffage on utilise pour cette perte de charge la lettre Z.

$$z = 2 \frac{v^2}{2}$$
 (5.6)

Oû West la vitesse dans une section représentative le coefficient (frésulte en premier lieu de la forme de la resistance particulière; il est suffisamment indépendant d'autres facteurs tels que poids apécifique viscosité ou vitesse du fluide en écoulement pour que ces facteurs puissent être négligés.

Le coefficient de resistance & représente donc un pur coefficient de forme de la resistance.

## Chapitre - 6 -

### Calcul des réseaux de tuyauteries

#### 1. Bases de calcul.

## 1.1 Les tronçons partiels et leurs pertes de charge.

suivant l'équation (5.5), la chute de pression, dans une section rectiligne de tuyau, est fonction du diamétre d, de la vitesse W ainsi que du coefficient de resistance À, fonction lui-même de d et de W. Les vitesses de circulation n'étant pas uniformes dans un réseau de tuyauterie, il est nécessaire de le diviser en tronçons partiels pour le calcul de la chute de pression totale. Un tronçon partiel est une partie du reseau à vitesse de circulation et diamétre constants:

Il peut donc y avoir des résistances localisées et des changements de directions, mais non des dérivations. Lorsque la densité du liquide a véhiculer reste constante, la vitesse de circulation dans le tronçon partiel ne change pas.

Suivant description dans le chapitre 5 la chute de préssion dans un tronçon partiel 12 de longueur L est:

$$P_1 - P_2 = RL + Z = \lambda \frac{L}{d} - \frac{V^2}{2} \beta + \xi \frac{V^2}{2} \beta$$
 (6.1)

Dans les calculs pratiques la vitesse du fluide n'est généralement pas connue au départ, mais plutôt la quantité à véhiculer dans L'unité de temps, donc le débit.

Ceci est particuliérement valable dans les installations de chauffage pour lesquelles les pertes par frottement dans les conduites constituent la majeure partie des pertes de charges. Si nous introduisons à la place de la vitesse \( \mathbb{W} \) le débit de fluide \( \mathbb{M} \), nous obtenons comme premier membre de l'équation (6.1)

$$\mathbf{BL} = \lambda \frac{\mathbf{L}}{a^{\frac{3}{2}}} \frac{\dot{M}^2}{\beta} = \frac{8}{77} 2 \tag{6.2}$$

Cette équation, comme l'équation (6.1) est valable dans tout système cohérent d'unités. En unités du système M.K.S (longueurs en métres, masses de fluide en Kg et temps en secondes) la perte de charge RL s'obtient en N/m2, unité qui, dans le système de mesures utilisés dans la technique, vont 0,102 KgP/m2
Les deux équations (6,1) et (6,2) constituent la base des différents modes de calculs de tuyauteries.

## 1.2 Deux groupes de problémes

Dans les problémes de réseaux de tuyauteries, il faut distinguer deux groupes différents.

Dans le premier groupe de problème, est donné le tracé du reseau dans toutes ses parties, à savoir:

Les longueurs de tous les tronçons, les diemétres des tuyaux le nombre et les caractéristiques des résistances particulières.

En outre, est également donnée, la quantité de liquide à véhiculer par unité de temps ou, ce qui revient ou même, la vitesse de circulation. On cherche la chute de pression P<sub>1</sub>-P<sub>2</sub>. Les problèmes de ce groupe ne présentent aucune difficulté, les équations (6.1) et (6.2) conduisent au resultat recherché.

Le deuxième groupe de problèmes, le plus important, s'énonce de la façon suivante: sont donnés, le tracé du reseau y compris le nombre et les caractéristiques de resistances particulières, le débit ainsi que la chute de pression admissible P<sub>1</sub>-P<sub>2</sub> on cherche le diamétre des tuyauteries.

## 1.3 Calcul provisoire et calcul définitif

On admet qu'il est possible d'évaluer par l'experience les parts approximatives des resistances de frottement et des resistances particulières par rapport à la pression disponible. Ce rapport est, naturellement, trés variable et en relation avec les particularités du réseau, conduites à distance, réseau à colonnes, etc... si l'on designe par (a) la quote-part des resistances particulières par rapport à la chute de pression totale, on obtient:

.../ ...

- Pour les resistances particuliéres

$$z = a (P_1 - P_2) = \sum (R_1 - P_2) = \sum (R_2 - P_1)$$
 (6.3)

- pour les parties rectilignes

$$^{\prime}$$
  $KL = (1 - a) (P_1 - P_2) = \lambda \frac{L}{d^5} \frac{M^2}{f} \frac{8}{77^{-2}}$  (6.4)

Dans la plupart des cas, le calcul provisoire est exécuté à partir de la 2eme relation, le calcul définitif s'impose non tant à cause de l'érreur possible à la suite de l'estimation de la valeur de(a), mais plutôt parce qu'il ya lieu de remplacer le diamétre donné par le calcul, par un diamétre normalisé.

## 1.4 Hypothéses sur la vitesse.

Dans ce cas l'évaluation porte sur la vitesse de circulation Pour les dimensions moyennes et grosses des conduites celle-ci est de:

- pour la vapeur
- entre 20 et 70m/S
- Pour l'eau chaude et l'eau surchauffée entre 0,5 et 3 m/s
- 2. Planches pour le calcul des réseaux de chauffage.

Le calcul de la perte de pression ou des diamétres de réseaux de conduites se simplifie sensiblement lorsqu'on transcrit les rapports des différents termes des équations

(6.3) et (5,4) en tableaux numériques ou en abaques.

Des planches se trouvant dans l'annexe permettent <u>d'appliquer</u> les procédés de calcul les plus importants:

La planche nº 4 nous permet, connaissant les besoins calorifiques de déterminer le gradient de la perte de pression R en (mm CE/m), la vitesse de l'eau W en (m/S) et le diamétre normal du tuyau en (mm)

La planche n° 5 nous permet, connaissant les diamétres des tubes et les paramétres de <u>l'écculement</u>, de déterminer les modules de résistance (5%) et par suite les résistances particulières  $\neq$  en (mm CE)

| ,                                 | T.6                    | (LaT : 1).                       | leave donn                                                          | ant les                                           | pulssano                        | es calc         | rifique        | §                                    |              |
|-----------------------------------|------------------------|----------------------------------|---------------------------------------------------------------------|---------------------------------------------------|---------------------------------|-----------------|----------------|--------------------------------------|--------------|
| Numero da                         | local (piùsa)          | Valeur da la de kontra (Koal /h) | Teaptichery<br>moyeane de Phaida<br>teaptichere<br>ambiente Atilok) | Puissance<br>calorifique par<br>alements (Keal/h) | Nombre<br>d'eléments<br>retenus | Longueur<br>(m) | Largeur<br>(m) | Puissance<br>cabolifique<br>(Kcal/h) | Dobits (1/h) |
| Sejeur                            | 4                      | 718                              | 60                                                                  | 84                                                | 9                               | 0,54            | 110            | 729                                  | 37           |
| Séjour 2<br>5,6,7,8               | ,3,4,                  | 503                              |                                                                     |                                                   | 7                               | 0, 42           | <u>-</u>       | 567                                  | 28           |
| Séjour                            | 40                     | 660                              | _                                                                   | <u> </u>                                          | 3                               | 0,54            | ***            | 729                                  | 37           |
| Chamb                             | ner 1                  | 563                              | _                                                                   | _                                                 | 7                               | 0,42            | -              | 563                                  | 28           |
| Chambi<br>Jouche<br>4,5,6,        | r 2,3,                 | 330                              |                                                                     | -                                                 | 5                               | 0,30            |                | 4 05                                 | 21           |
| Chamb                             | ore à er 10            | 524                              |                                                                     |                                                   | 7                               | 0,42            | -              | 567                                  | 28           |
| Cuisin<br>3,4,5,0<br>9,40         | ics 1,2,<br>6,7,8,     | 319                              | -                                                                   | _                                                 | 4                               | 0,24            | _              | 324                                  | 16           |
| Salles<br>bain<br>3,4,5,<br>8,9,1 | 4,2,                   | 450                              | 56                                                                  | 76                                                | 6                               | 0,36            |                | 456                                  | 23           |
| 3 pr · 6                          |                        |                                  | R                                                                   | 3 - de                                            | - chaus                         | sée             |                |                                      |              |
| Séjou                             | up d                   | 420                              | 60                                                                  | 84                                                | 6                               | 0,36            | 110            | 486                                  | 25           |
| Sejour 5,8,7,                     | ւ <i>ደ,3,</i> 4<br>8,9 | 218                              | _                                                                   | _                                                 | 3                               | 0,18            | _              | 243                                  | 12           |
| Séjeu                             | r 10                   | 388                              | -                                                                   |                                                   | 5                               | 0,30            | _              | 405                                  | 21           |
| Chan                              |                        | 349                              | _                                                                   |                                                   | 4                               | 0,24            | _              | 324                                  | 17           |
| Chamle<br>Couche<br>5,6,7,        | s 2,3,4                | 152                              | _                                                                   |                                                   | 2                               | 0,12            | _              | 162                                  | 08           |
| Char                              |                        |                                  |                                                                     |                                                   | 4                               | 0,24            |                | 324                                  | 16           |
|                                   |                        | <u> </u>                         |                                                                     |                                                   |                                 |                 |                |                                      |              |

| <u> </u>     |                                        |                |                                              |                                 | suite 1)                                          |                                                                       |                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         |
|--------------|----------------------------------------|----------------|----------------------------------------------|---------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Debits (1/h) | (Ked/h)                                | Largeur<br>(m) | Longueur<br>(m)                              | Nombre<br>d'éléments<br>refenus | Puissance<br>calorifique par<br>eléments (Kial/h) | Température<br>moyenne du fluids<br>- Pempérature<br>ambients: Dr (%) | Vakus da la<br>Liperchilipes<br>(Ked/N) | local (pièca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Numbro da                                                                               |
| ?8           | 567                                    | 440            | 0,42                                         | 7                               | 8 4                                               | 60                                                                    | 483                                     | er<br>, M,15<br>E à                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chalate<br>coulche<br>1et to<br>M, 12, 13,<br>Chamb                                     |
| £ 1          | 405                                    |                | 0,30                                         | 5                               | delengen                                          | _                                                                     | 333                                     | iling<br>Thing<br>JAJA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | confedence<br>of 13 est<br>\$1,42,43                                                    |
| 12           | 243                                    | _              | 0,18                                         | 3                               | _                                                 | _                                                                     |                                         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chisin<br>Sh,5,<br>3,60<br>Falls                                                        |
| £3           | 456                                    |                | 0,36                                         | 6                               | 76                                                | 56                                                                    | 36 o                                    | 4,2,3,<br>,7 ,8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | palis<br>posin<br>4,5,6,<br>9,10                                                        |
| ļ            |                                        |                | étage                                        | et 3 eme                        | er, 2 cmc                                         | ۸'                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |
| 87           | 729                                    | 110            | 0,54                                         | 3                               | 81                                                | 60                                                                    | 668                                     | AT A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Seljev                                                                                  |
| 25<br>33     | 486                                    |                | 0,36                                         | 6                               |                                                   |                                                                       | 1,55                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | la,5,6,                                                                                 |
|              |                                        | -              | 0,48                                         | 8                               | -                                                 |                                                                       | 614                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                       |
| 28           | 567                                    |                | 0,42                                         | 7                               | _                                                 |                                                                       | 527                                     | aze L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | couch                                                                                   |
| 20           | 405                                    |                | 0,30                                         | 5                               | _                                                 | _                                                                     | 351                                     | bn à<br>w 2,3,<br>5,7,8,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cham<br>couch<br>4,5,6                                                                  |
| 24           | 486                                    |                | 0,36                                         | 6                               | _                                                 | _                                                                     | 486                                     | ndric<br>he 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chan                                                                                    |
| 28           | 567                                    |                | 0,42                                         | ₹                               | _                                                 |                                                                       | 489                                     | ibra à<br>liss H,<br>18,14,65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | } coac                                                                                  |
| 16           | 324                                    |                | 0,24                                         | 4                               | - quee-                                           |                                                                       | 304                                     | ne 1,<br>15,6,7,<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13,3,4<br>10,9,                                                                         |
|              | 729<br>486<br>648<br>567<br>405<br>486 | 110            | 0,54<br>0,54<br>0,36<br>0,42<br>0,30<br>0,36 | et 3 eme  3 6 8 7               | 81                                                | \                                                                     | 6 6 8 4 5 5 6 1 4 5 2 7 3 5 1 4 8 6     | 1 2,3,5 w das à 2,3,5 co à 4,5 | Sejan<br>Sejan<br>Sejan<br>Cham<br>Cham<br>Cham<br>Cham<br>Cham<br>Cham<br>Cham<br>Cham |

| ब्द्धाः <u>विश्ववः</u> (१९५१) | ,                         | ***                                     | r_ 6.4                                                              | (suite &)                                       | r.                              |                 |                |                                      |               |
|-------------------------------|---------------------------|-----------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|---------------------------------|-----------------|----------------|--------------------------------------|---------------|
| Numbers da                    | local (pièca)             | Valence de la<br>dejescalita<br>(Ked/h) | Tenciature<br>moyenne du Paide<br>- Pespérature<br>ambiante: AP(EK) | Puissana<br>calorifique per<br>clements (Ked/1) | Nombre<br>d'eléments<br>retenus | Longueur<br>(m) | Largeur<br>(m) | Puissance<br>calorifique<br>(Kcal/H) | De'bits (1/h) |
| Salle<br>bain<br>3,4,5,       | 4, <b>2,</b><br>6,₹,<br>0 | 438                                     | 5 6                                                                 | 76                                              | 6                               | 0,36            | 440            | 456                                  | 23            |
|                               |                           | Herno etag                              | e .                                                                 | P                                               | uissance                        | et Débit        | totaux         | 78275                                | 3913          |

| Tableo                     | u T. 6        | 5-2. « Récapitulation des ve                                                                                                                                                                                    | aleurs                | de 1                             | <b>7</b> >>                      |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|----------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trongon                    | Nombre        | Désignation                                                                                                                                                                                                     | ٢/١                   | WELL                             | Va(d)<br>V                       | d d                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a                          | Ь             | C .                                                                                                                                                                                                             | d                     | e                                | f                                | 3                             | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                          | 1 2 1         | distributeur (sortie) vanne coudes arrondis Té, biburcation, passage direct                                                                                                                                     | 3                     | -<br>-<br>-<br>1                 | 1 1 1 1                          | 1 1 1 1                       | 0,5<br>0,2<br>0,6<br>0<br>E1=1,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2345                       | 1 1 1 1 1     | Té, bifurcation, passage direct<br>Té, bifurcation, passage direct<br>Té, bifurcation, passage direct<br>Té, bifurcation, passage direct<br>coude arrondi<br>robinet d'arrêt                                    | -<br>-<br>-<br>3      | 0,86<br>1,49<br>0,7<br>0,72<br>- | 1 1 1 1 1                        | 1<br>0,78<br>1<br>0,8<br>-    | 0,14<br>0,20<br>0,3<br>0,5<br>0,3<br>0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6<br>7<br>8<br>5           | 1 1 1 1 1 1 1 | Té, bifurcation, passage direct<br>Té, bifurcation, passage direct<br>Té, bifurcation, passage direct<br>Té, bifurcation, passage direct<br>raccordement, desagage (coude DN 15)<br>radiateur avec raccordement |                       | 1,37<br>0,77<br>1,17<br>0,55     | 1 1 1 1 1                        | 1<br>0,66<br>1<br>-<br>-      | 0,28<br>0,23<br>0,2<br>0,45<br>0,5<br>5,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11                         | 1             | raccordement, dégazage (conde DN 15)<br>radiateur avec raccordement                                                                                                                                             | 4 -                   |                                  | -                                | _                             | Σ₹=5,5<br>0,5<br>5,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12                         | 1 1           | pièce courbe<br>Loude arrondi                                                                                                                                                                                   | -<br>1                | _                                | _                                | _                             | 27-5,5<br>0,5<br>0,5<br>27-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13                         | 1 1           | pièce courbe<br>couche arrondi                                                                                                                                                                                  | -<br>1                | -                                |                                  | -                             | 0,5<br>0,5<br>\(\Sigma_5 = 1\)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 14<br>15<br>16<br>17<br>18 | 1 1 1 1 1 1   | Te', jonction, passage direct<br>Te', jonction, passage direct<br>Te', jonction, passage direct<br>Te', jonction, passage direct<br>Te', jonction, passage direct<br>coude arrondi<br>robinet d'arrêt           | 3                     |                                  | 0,57<br>0,7<br>0,77<br>0,43<br>- | 0,66<br>4<br>0,75<br>0,8      | 1,5<br>0,6<br>0,5<br>0,3<br>0,8<br>0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 49<br>20<br>21<br>22       | 1111211       | Te', jonction, passage direct Te', jonction, passage direct Te', jonction, passage direct Te', jonction, passage direct coudes arrondis collecteur (entrée) vanne                                               | -<br>-<br>-<br>3<br>- |                                  | 0,73<br>0,7<br>0,84<br>-<br>-    | 1<br>0,78<br>1<br>1<br>-<br>- | 0,3<br>\(\begin{align*} \begin{align*} \delta,8 & \\ \delta,0 & \\ \delta,5 & \\ \delta,6 & \\ \delta,6 & \\ \delta,2 & \\ \delta, |
| 23                         | 1 1 2         | distributeur (sortic) vanne coudes arrondis                                                                                                                                                                     | -<br>-<br>3           | -                                | -                                | -                             | 区第=4,8<br>0,5<br>0,2<br>0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

T. 6-2 (suite 1)

|          | <u> </u>          | 1,6-2 (suite 1)                                                                                                                                                                                                      | )                     |                              |                                          |                        |                                                       |
|----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|------------------------------------------|------------------------|-------------------------------------------------------|
| FOR G ON | a Nembr           | De'signation.                                                                                                                                                                                                        | r/d                   | Wa(d)                        | <u>Va(d)</u>                             | da                     | 7                                                     |
| a        | Ь                 | c                                                                                                                                                                                                                    | d                     | e                            | F                                        | 1 9                    | 1                                                     |
| 2        | 3 1               | Te', bifurcation, passage direct                                                                                                                                                                                     | -                     | 4                            | _                                        |                        | 0                                                     |
| 2        | 456 1 1 1 1 1     | Te', bihurcation, passage direct<br>Te', bihurcation, passage direct<br>Te', bihurcation, passage direct<br>Te', bihurcation, passage direct<br>coude arrondi<br>robinet d'arrêt                                     | 3                     | 0,92<br>1,38<br>0,66<br>1,04 |                                          | 0,8 0,78 0,8 -         | E (= 1,3<br>0,24<br>0,29<br>0,34<br>0,4<br>0,3<br>0,3 |
| 2:3333   | 9 1<br>0 1<br>1 1 | Te', bifurcation, passage direct<br>Te', bifurcation, passage direct<br>Te', bifurcation, passage direct<br>Te', bifurcation, passage direct<br>saccopolement, de'sazage (coude DN15)<br>sadiateur avec saccordement | -<br>-<br>-<br>-<br>1 | 0,8<br>1,4<br>0,71<br>0,95   |                                          | A<br>0,75<br>A<br>0,66 | 0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,5<br>5,0  |
| 3        | 3 1               | raccordement déjazage (coude DN 15)<br>radiateur avec raccordement                                                                                                                                                   | 1                     | _                            | -                                        |                        | ∑₹=5,5<br>0,5<br>5,0                                  |
| 34       | 1 1               | raccordement désagage (conde DN 15) radiateur avec raccordement                                                                                                                                                      | 1 -                   | -                            |                                          | <b>-</b> .             | 2 \$=5,5<br>0,5<br>5,0                                |
| 3:       | 5 1               | pièce courbe<br>coude arrondi                                                                                                                                                                                        | -1                    | _                            |                                          | _                      | ∑}=5,5<br>0,5<br>0,5                                  |
| 3(       | 1 1               | pièce courbe<br>coude arrondi                                                                                                                                                                                        | -<br>1                | -                            |                                          | ~                      | 0,5<br>∑₹=1 0,5 0,5                                   |
| 3        |                   | pièce courbe<br>Loude arrondi                                                                                                                                                                                        | -<br>1                | -                            |                                          |                        | Σξ: 1<br>0,5<br>0,5                                   |
| 339044   | 1 1 1 1 1 1       | Te', jonction, passage direct  Te', jonction, passage direct  Te', jonction, passage direct  Te', jonction, passage direct  coude arrondi  robinet d'arrêt  Te', jonction, passage direct                            | 3                     | -                            | 0,59<br>0,7<br>0,75<br>0,83<br>-<br>0,64 | 0,75                   | Σξ=1<br>0,8<br>1,0<br>0,3<br>0,5<br>0,3<br>0,3        |
| 43446    | 1 1 1 2 1         | To', jonction, passage direct Te', jonction, passage direct Te', jonction, passage direct Te', jonction, passage direct condes arrondis collecteur (entree) vanne                                                    | 3 -                   | - 0                          | 0,64                                     | 1 78<br>0,8<br>1 -     | Σ 3 = 1,4<br>0,3<br>0,3<br>0,6<br>0,6<br>0,2          |
| 47       | 1 1               | distributeur (sortie)<br>vanne                                                                                                                                                                                       |                       |                              | -                                        |                        | 0,5<br>0,2                                            |
| i        |                   | / 🔿                                                                                                                                                                                                                  |                       |                              |                                          |                        |                                                       |

|                      |           | 7.6-2 (suite 2)                                                                                                                                                                                                |                  |                                   |                                     |                                  |                                                                                                                                                           |
|----------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------|-------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| ençon                | Nombre    | Désignation                                                                                                                                                                                                    | r/d.             | Wa (d)                            | Va(d)<br>√y                         | d a(*) d                         | 7                                                                                                                                                         |
| a                    | b         | C                                                                                                                                                                                                              | d                | e                                 | F                                   | 3                                | h                                                                                                                                                         |
| 47                   | 2<br>1    | coudes arrondis<br>Té, bifurcation, passage direct                                                                                                                                                             | 3                | ī                                 | 1                                   | -                                | 0,6<br>0<br>E{=1,3                                                                                                                                        |
| 48<br>49<br>50<br>51 | 11111     | Té, bifurcation, passage direct<br>Té, bifurcation, passage direct<br>Té, bifurcation, passage direct<br>Té, bifurcation, passage direct<br>conde arrondi<br>robinet d'arrêt                                   | -<br>-<br>-<br>3 | 0,8<br>0,75<br>1,2<br>1<br>-<br>- | 11111                               | 4<br>0,8<br>0,75<br>-            | 0,2<br>0,25<br>0,2<br>0,3<br>0,3                                                                                                                          |
| 52<br>53<br>55<br>56 | 1 1 1 1 1 | Té, bifurcation, passage direct<br>Té, bifurcation, passage direct<br>Té, bifurcation, passage direct<br>Té, bifurcation passage direct<br>raccordement, de gazage (coude DN15)<br>radiateur avec raccordement | -<br>-<br>-<br>1 | 0,73<br>0,77<br>1,47<br>0,6       | 11111                               | 1<br>0,66<br>1<br>-              | 2 = 0,7<br>0,27<br>0,23<br>0,4<br>0,5<br>5,0                                                                                                              |
| 57                   | 1         | raccordement, dégazage (conde DN 15)<br>radiateur avec raccordement                                                                                                                                            | 1 -              | _                                 | 1 1                                 | 1                                | 23=5,5<br>0,5<br>5,0                                                                                                                                      |
| 58                   | 1         | pièce courbe<br>coude arrondi                                                                                                                                                                                  | ī                | -                                 | 1 1                                 | -                                | 23-5,5<br>0,5<br>0,5                                                                                                                                      |
| 59                   | 1         | pièce courbe<br>conde arrondi                                                                                                                                                                                  | ī                | 1                                 | -                                   | j i                              | 23=1<br>0,5<br>0,5                                                                                                                                        |
| 60<br>61<br>62<br>64 | 444444    | Te', jonction, passage direct<br>Te', jonction, passage direct<br>Te', jonction, passage direct<br>Te', jonction, passage direct<br>Te', jonction, passage direct<br>coude arrondi<br>robinet d'arrêt          |                  | 1 1 1 1 1 1                       | 0,6<br>0,71<br>0,77<br>0,73<br>0,65 | 1<br>0,66<br>1<br>1<br>0,75<br>- | \(\frac{3}{4,5}\) \(\lambda_{,5}\) \(\lambda_{,5}\) \(\lambda_{,5}\) \(\lambda_{,5}\) \(\lambda_{,8}\) \(\lambda_{,3}\) \(\lambda_{,3}\) \(\lambda_{,3}\) |
| 65<br>67<br>88       | 1         | Te', jonction, passage direct Te', jonction, passage direct Te', jonction, passage direct Te', jonction, passage direct coudes orrondis collecteur vanne                                                       | 3                |                                   | 0,7<br>0,76<br>0,8<br>1<br>-        | 0,8                              | 2₹=1,4<br>0,5<br>0,5<br>0,5<br>0,5<br>0,6<br>1                                                                                                            |
| 63                   | 1 2 1     | distributeur vanne condes arrondis Tel, bifurcation, passage direct                                                                                                                                            | -<br>3<br>-      | -<br>-<br>1                       | 1111                                | -                                | ∑ ₹=1,8<br>0,5<br>0,2<br>0,6<br>0,6                                                                                                                       |
| 70<br>71             |           | Té, bifurcation, passage direct<br>Té, bifurcation, passage direct                                                                                                                                             | <br>             | 0,8<br>0,76                       | <del>-</del>                        | 1                                | ≥₹=1,3<br>0,20<br>0,24                                                                                                                                    |

T. 6-2 (suite 3)

| <u> </u>                   | Ţ           | T. 6-2 (suite 3)                                                                                                                                                                                                                    |                       |                                  |                                      |                             |                                                        |
|----------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|--------------------------------------|-----------------------------|--------------------------------------------------------|
| Tronçon                    | Numbre      | Désignation                                                                                                                                                                                                                         | r/d                   | Wa(d)<br>W                       | Va(d)<br>V                           | da(#)                       | 3                                                      |
| a                          | Ь           | C                                                                                                                                                                                                                                   | d                     | e                                | F                                    | 9                           | H                                                      |
| 72<br>73                   | 1 1 1       | Té, bifurcation, passage direct<br>Té, bifurcation, passage direct<br>coude arrondi<br>robinet d'arrêt                                                                                                                              | -<br>-<br>3<br>-      | 1,19                             | -                                    | 0,8                         | 0, £<br>0, 46<br>0, 3<br>0, 3                          |
| 74<br>75<br>76<br>77<br>78 | . –         | Te', bifurcation, passage direct Te', bifurcation, passage direct Te', bifurcation, passage direct Te' bifurcation, passage direct Te' bifurcation, passage direct Taccordement, degazage (conde DN 15) Tadiateur avec faccordement |                       | 1,41<br>0,8<br>1,15<br>0,59<br>- | 11111                                | 0,75<br>1<br>0,66<br>1      | 2 = 400<br>0,3<br>0,2<br>0,2<br>0,4<br>0,5<br>5,0      |
| 79                         | 1           | raccordement, de gazage (coude DN 15) radiateur avec raccordement                                                                                                                                                                   | 1<br>-                | -                                |                                      | -                           | ∑}=5,5<br>0,5<br>5,0                                   |
| 80                         | 1<br>1      | pièce condée<br>conde arrondi                                                                                                                                                                                                       | 1                     |                                  | -                                    | <del>-</del>                | 23=5,5<br>0,5<br>0,5                                   |
| 84                         | 1           | pièce courbe<br>coude arrondi                                                                                                                                                                                                       | 1                     | -                                | ·                                    | -<br>-                      | ≥ §=1<br>0,5<br>0,5                                    |
| 82<br>83<br>84<br>85<br>86 | 1 1         | Tel, jonction, passage direct coude arrondi robinet d'arrêt                   | 3                     | -                                | 0,59<br>0,70<br>0,77<br>0,75<br>0,57 | 1<br>0,66<br>1<br>0,75<br>1 | 27-1<br>1,5<br>0,55<br>0,45<br>0,4<br>1,5<br>0,3       |
| 30<br>38<br>88<br>88       | 1 1 2       | Te', jonction, passage direct Te', jonction, passage direct Te', jonction, passage direct Te', jonction, passage direct coudes arrondis collecteur vanne                                                                            | -<br>-<br>-<br>3<br>- | -                                | 0,7<br>0,77<br>0,81<br>1             | 0,8                         | Σ = 2,1<br>0,55<br>0, 7<br>0,5<br>0<br>0,6<br>1<br>0,2 |
| 91                         | 1           | Tél, bifurcation, branche dérivée<br>radiateur avec raccordement                                                                                                                                                                    | -                     | 0,23                             | -                                    | 1                           | Σξ=48<br>12<br>5,0                                     |
| 92                         | 1           | Té, l'ifurcation, branche derivée radiateur avec raccordement                                                                                                                                                                       | -                     | 0,2                              | -                                    | -                           | 28=17<br>12<br>5,0                                     |
| 93                         | 1 1         | pièce courbe<br>Te', jonction, branche de'rivée                                                                                                                                                                                     | _                     | -                                | 0,23                                 | 1                           | <b>と</b> ₹=47<br>0,5<br>0<br><b>2</b> ₹=0,5            |
| 94                         |             | pièce courbe<br>tel, jonction, branche défivée                                                                                                                                                                                      | -                     | -                                | 0,2                                  | -                           | 0,5<br>0<br>Σ {=0,5                                    |
|                            | <u>l</u> ., |                                                                                                                                                                                                                                     |                       |                                  |                                      |                             |                                                        |

T. 6-2 (suite 4)

| -        |                 |          | 1.6-2 (suite 4)                                                                                                                                                                                                                        |          |                             |                  |        |                                            |
|----------|-----------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------|------------------|--------|--------------------------------------------|
|          |                 | Numbre   | N. Common Promise                                                                                                                                                                                                                      | r/d      | Wa(d)                       | Va(d)            | da (#) | 7                                          |
| 1        | <del></del>     | <u> </u> | Désignation                                                                                                                                                                                                                            |          | W                           | Ÿ                | d      |                                            |
| <u> </u> | <u>a</u>        | 6        | С                                                                                                                                                                                                                                      | d        | e                           | F                | 3      | <u> </u>                                   |
|          | 95              | 4        | Té, bifurcation, branche dérivée<br>radiateur avec raccordement                                                                                                                                                                        | <u>-</u> | 0,3                         | <b>-</b> -       | -      | 42<br>5                                    |
|          | 96              | 1        | Té, bifurcation, branche dérivée radiateur avec raccordement                                                                                                                                                                           | -        | 0,25                        | -                | 1      | Σ7:47<br>48<br>5                           |
|          | 97              | 4        | pièce courbe<br>Té, jonction, branche dérivée                                                                                                                                                                                          | -        | -                           | 0,16             | 0,66   | Σξ=47<br>0,5<br>-2<br>Σξ=-45               |
|          | 98              | 1<br>1   | pièce courbe<br>Tc, jonction, branche dérivée                                                                                                                                                                                          | -<br>-   | -                           | _<br>0,14        | 0,66   | 0,5<br>-3,5<br>\(\bar{2}\)\(\bar{3}\)=-3   |
|          | 39              | 1<br>1   | Te', bifurcation, branche dérivée<br>radiateur avec raccordement                                                                                                                                                                       | -        | 0,20                        | 1                | -      | 12<br>5<br><del>23-17</del>                |
|          | 100             | A<br>A   | Té, bifurcation, branche défrivée radiateur avec raccordement                                                                                                                                                                          | -        | 0,20                        | 1                | -      | 12<br>5<br>5                               |
|          | 101             | 1        | pièce courbe<br>E, jonction, branche dérivée                                                                                                                                                                                           | -<br>-   | -                           | 0,13             | 0,66   | 0,5<br>-3<br>Z}=-2,5                       |
|          | 102             | 4        | pièce courbe<br>To', jonetion, branche défrivée                                                                                                                                                                                        | -        | -                           | 0,11             | 0,66   | 0,5<br>-5<br>Z7=45                         |
|          | 103             | 1        | Té, biturcation, branche dérivée radiateur avec raccordement                                                                                                                                                                           |          | 0,34                        | ) 1              | _      | 10<br>5<br>23=15                           |
|          | 104             | 1        | Te', bifurcation, branche dérivée<br>radiateur avec raccordement                                                                                                                                                                       | _<br>_   | 0,42                        |                  | 1 1    | 5<br>5<br>∑₹=10                            |
|          | 205             | 4        | pièce courbe<br>Té, jonction, branche dérivée                                                                                                                                                                                          |          | -                           | 0,12             | 0,5    | 0,5<br>-1,8<br>∑}=-1,3                     |
|          | 206             | 1        | Pièce courbe<br>Te', jonction, branche dérivée                                                                                                                                                                                         |          | -                           | 0,14             | 0,5    | 0,5<br>-1,1<br>E8=-46                      |
|          | 107             | 1 1      | Te', bifurcation, branche dérivée<br>robinet d'arrêt                                                                                                                                                                                   | _        | 0,77                        | <del>-</del>     | -      | 2,3<br>0,3<br>E = 2,6                      |
| -        | 105 100 111 112 | 1        | Te', bifurcation, passage direct Taccordament, degazage (coude DN 15) Te diateur avec raccordement | 1 1 1 1  | 0,75<br>0,77<br>1,2<br>0,58 | -<br>-<br>-<br>- | 1 0,66 | 0,25<br>0,29<br>0,2<br>0,42<br>0,42<br>0,5 |
| Name 2   | 413             | 1. 1.    | raciordement, dégazage (coude DN 15)<br>radiateur avec raccer dement                                                                                                                                                                   | -        | -                           | _                | -      | Σ₹=5,5<br>0,5<br>5<br>Σ₹=5,5               |
|          |                 | 1        |                                                                                                                                                                                                                                        |          |                             |                  |        |                                            |

T.6-2 (suite 5)

| 1.6-2 (suite 5)                 |            |                                                                                                                                                                                                                                                                                                                      |          |                           |                                      |                               |                                                                   |  |
|---------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------|--------------------------------------|-------------------------------|-------------------------------------------------------------------|--|
| Tempen                          | solendil   | Désignation                                                                                                                                                                                                                                                                                                          | r/d      | Wa(d)<br>W                | <u>Va(d)</u><br>V                    | da(#)                         | *                                                                 |  |
| ۵                               | Ь          | · ·                                                                                                                                                                                                                                                                                                                  | d        | e                         | t                                    | 9                             | <u> </u>                                                          |  |
|                                 | <u> </u>   | <u> </u>                                                                                                                                                                                                                                                                                                             | <u> </u> |                           | •                                    | 0                             |                                                                   |  |
| 444                             | 4          | pièce courbe                                                                                                                                                                                                                                                                                                         | 4        | -                         | -                                    | -                             | 0,5<br>0,5<br>Z{=1                                                |  |
| 115                             | 4          | pièce courbe<br>conde arrondi                                                                                                                                                                                                                                                                                        | 1        | -                         | 1                                    | í j                           | 0,5<br>0,5<br>EF-1                                                |  |
| 416<br>417<br>418<br>419<br>420 | 1          | Te', jonction, passage direct  Te', jonction, passage direct |          | -                         | 0,61<br>0,72<br>0,78<br>0,74<br>0,26 | 1<br>0,66<br>1<br>0,6         | 1.5<br>0,6<br>0,6<br>0,8<br>1<br>0,3<br>Z=1,3                     |  |
| 121                             | 1          | Té, bifurcation, branche dérivée robinct d'arrêt                                                                                                                                                                                                                                                                     | -        | 0,62                      | -                                    | _                             | 3,2                                                               |  |
| 122<br>123<br>121<br>121<br>121 | 1 1 1      | Te biturcation, passage direct<br>Te biturcation, passage direct<br>Te biturcation, passage direct<br>Te biturcation, passage direct<br>raccordement, degazage (coude DN45)<br>radiateur avec raccordement                                                                                                           |          | 0,76<br>1,41<br>0,73<br>1 | -                                    | 1<br>0,75<br>1<br>0,66<br>-   | 0,24<br>0,25<br>0,27<br>0,45<br>0,5<br>5<br>5<br>\$\overline{5}\$ |  |
| 127                             | 4 4        | raccordement, dégazage (conde DN 15)<br>radiateur avec raccordement                                                                                                                                                                                                                                                  | 1 -      | -                         |                                      | -                             | 0,5<br>5<br>Z\$=5.5                                               |  |
| 128                             | 1 1        | raccordement, dégazage (conde DN 15)<br>radiateur avec raccordement                                                                                                                                                                                                                                                  | 1        |                           | -                                    | -                             | 0,5<br>5<br>Z₹=5,5                                                |  |
| 129                             | 1          | pièce courbe<br>coude arrondi                                                                                                                                                                                                                                                                                        | Ī        | _                         |                                      | -                             | 0,5<br>5<br>\(\Sigma\)                                            |  |
| 130                             | 1 1        | pièce courbe<br>coude arrondi                                                                                                                                                                                                                                                                                        | 1        |                           | -                                    | <u>-</u>                      | 0,5<br>\(\frac{5}{5}\)=5,5                                        |  |
| 134                             | 1 1        | pière courbe<br>coude arrondi                                                                                                                                                                                                                                                                                        | Ī        | -                         | -                                    | -                             | 0,5<br>5<br>∑₹-5,5                                                |  |
| 431<br>433<br>433<br>433<br>433 | 5 4<br>5 4 | Te, jonction, passage direct Te', jonction, passage direct Te', jonction, passage direct Te', jonction, passage direct Te', jonction, pranche derivée robinet d'arrêt                                                                                                                                                |          |                           | 0,60<br>0,72<br>0,74<br>0,84<br>0,36 | 0,66<br>1<br>0,75<br>1<br>0,8 | 0,8<br>0,9<br>6,8<br>0,3<br>4,3<br>0,3                            |  |
| 43                              | 7 1        | Té, bifurcation, branche dérivée radiateur avec raccordement                                                                                                                                                                                                                                                         | -        | 0,28                      |                                      | _                             | ∑₹=4,3<br>18<br>5<br>∑₹=4₹                                        |  |
| 13                              | 8 4        | Télbifurcation, branche défivée radiateur avec raccordement                                                                                                                                                                                                                                                          | -        | 0,26                      |                                      | _                             | ∑₹£47<br>∑₹=47                                                    |  |

|             |               | T. 6-2 (suite 6)                                                 | •    |              |        |       |                                          |
|-------------|---------------|------------------------------------------------------------------|------|--------------|--------|-------|------------------------------------------|
|             | AI I          | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                            | r/d  | Wa(d)        | Va (d) | da(*) | 8                                        |
| Reaton      | Nombre        | Designation                                                      | /a   | Ŵ            | Ÿ      | d     | 1                                        |
| a           | Ь             | C                                                                | d    | e            | £      | 8     | h                                        |
| 26K         | 1             | Té, pilurcation, branche dérivée<br>madiateur avec raccordement  | **** | 0,12         |        | -     | 42                                       |
| 140         | <u>,</u><br>1 | pièce courbe<br>Te, jonction, branche dérivée                    |      | -            | 0,47   | 0,66  | 2.3=47<br>0,5<br>-2<br>58-45             |
| 44          | 1             | pièce courbe<br>Tel, jondion, branche dérivée                    | -    | <br> -<br> - | 0,16   | 0,66  | 0,5<br>-2,<br>\(\overline{\xi}\) = 4,5   |
| 142         | 4             | Pièce courbe<br>Té, jondion, branche dérivée                     |      | -            | 0,06   | 0,66  | 0,5<br>-3<br>\(\overline{\Sigma} \) = 25 |
| 143         | 1             | Te', biturcation, branche dérivée<br>radiateur avec raccordement |      | 0,2          |        | -     | 12<br>5<br><del>23</del> =47             |
| 144         | 4             | Te', bifurcation, branche désirée<br>radiateur avec raccordement | -    | -            | -<br>- | Non-  | 12                                       |
| <i>1</i> 45 | 1             | Te', bifurcation, branche dérivée<br>radiateur avec raccordement |      | 0,1          | _      | -     | Σ3=47<br>12<br>5<br>Σ3=47                |
| 146         | 1             | pièce courbe<br>Te, jondion, branche dérivée                     | -    |              | 0,12   | 0,66  | 0,5                                      |
| 147         | 1             | pièce courbe<br>le, jonction, branche dérivée                    |      |              | 0,44   | 0,66  | 2 = -3,5<br>0,5<br>-5<br>2 = -45         |
| 148         | 1             | pièce courhe<br>Té, jondion, branche dérivée                     | -    | -            | 0,05   | 0,66  | 0,5                                      |
| 449         | 1             | Tel, bifurcation, branche dérivée<br>radiateur avec raccordement |      | 0,4          |        | -     | 2 = -45<br>7<br>5                        |
| . 150       | 1             | To, bifurcation, branche dérivée radiateur avec raccordement     | _    | 0,26         |        | -     | 28=47<br>18<br>5                         |
| 451         | 4             | Te', bifurcation, branche dérivée radiateur avec raccordement    |      | 0,12         | -      |       | Σ3-17<br>12<br>5                         |
| 152         | 1             | pièce courbe<br>tel, jonction, branche dérivée                   | _    |              | 0,43   | 0,5   | 23-17<br>0,5<br>-0,5                     |
| 153         | 1             | pièce courbe<br>tel, jonction, branche dérivée                   |      | -            | 0,05   | 0,5   | 0,5                                      |
| 154         | 1 -           | pièce courbe<br>Tel, jondion, branche défivée                    | 4    | -            | 0,04   | 0,5   | 0,5                                      |
| 455         |               |                                                                  |      |              |        |       | F=-1,3                                   |
|             | <del></del>   |                                                                  |      | l            |        | 1     | 1                                        |

T.6-2 (suite 7)

|             | ۸۱ I        | N. Sanahar                                                         | 1/2 | Wald) |       | of a (#) | 7                                                           |
|-------------|-------------|--------------------------------------------------------------------|-----|-------|-------|----------|-------------------------------------------------------------|
| itongra     | Newbra      | Designation                                                        |     | . W   | Ÿ     | d        | -                                                           |
| a           | 6           | <u>C</u>                                                           | d · | e     | Γ     | 9        |                                                             |
| 156         | 4           | Te', bifurcation, branche de'rivee<br>radiateur avec mocordament   | -   | 0,25  | 1     |          | 12<br>5<br><b>Z</b> 8=17                                    |
| 157         | 1           | Te', bifureation, branche dérivée<br>radiateur avec raccordement   | -   | 0,22  | _     | -        | 12<br>5<br>2 7=47                                           |
| 158         | 1           | pièce courbe<br>To', jonchon, branche défivée                      | -   | -     | 0,09  | 0,5      | 0,5<br>-9.<br>\(\overline{2}\vert^2 = -\frac{1}{2}\vert^2   |
| <b>₹</b> 59 | 1           | pièce courbe<br>Té, jondion, branche désrivée                      |     | _     | 0,08  | 0,5      | 0,5<br>-2<br>\(\overline{2}\vert_{=-\frac{1}{2}\vert_{=}}\) |
| 160         | 4           | Té, bifurcation, branche dérivée radiatur avec raccordement        | -   | 0,84  | -     | -        | 12<br>5<br>E = 17                                           |
| 161         | 1           | Tel, bifurcation, branche del rivée<br>radiateur avec raccordement |     | 0,23  | -     | -        | 1.E<br>5<br>28=17                                           |
| 162         | 1           | Telbifurcation, branche dérivée<br>l'adiateur avec raccordement    |     | 0,£   | -     |          | 12<br>5<br>E = 13                                           |
| 463         | 1           | pièce courbe<br>te, jonation, branche dérivée                      | -   | -     | 0,15  | 0,66     | 0,5                                                         |
| 164         | 4           | pièce courbe<br>le', jonation, branche dérivée                     | -   | -     | 0,14  | 0,66     | 0,5<br>-3<br>∑₹=-2,5                                        |
| 16          | 5 4         | pièce courbe<br>le, jonction, branche dérivée                      | -   | -     | 0,72  | 0,66     | 0,5<br>-2,5<br>\(\Sigma = \frac{1}{2}\)                     |
| 15          | 6 4         | Tel bifurcation branche dérivée radiateur avec recordement         | -   | 0,17  | -     | -        | 12<br>5<br>5<br>5=47                                        |
| 16          | 7 1         | Te', bifurcation, branche obstivée radiateur avec raccordement     | -   | 0,16  |       | <u>-</u> | 28-17                                                       |
| 16          | 8 1         | Te', bisourcation, branche dérivée<br>radiateur avec raccordement  |     | 0,14  |       | -        | λ g<br>5<br>Σ g=47                                          |
| 16          | 9 1         | pièce courbe<br>le', jonction, branche de rivèle                   | _   | -     | 0,70  | 0,66     | 0,5<br>!,<br>∑₹=-3,5                                        |
| 17          | 40 4        | pièce courbe<br>tel, jonction, branche dérivée                     |     | _     | 0,1   | 0,66     | 0,5                                                         |
| 47          | 1 1         | pièce courbe<br>te, jondism, branche dérivée                       | _   |       | 0, 09 | 0,66     | 2 7 = 6                                                     |
| 1           | 72 <u>4</u> | To, bifurcation, branche defrivee, andiateur avec mucordament      | -   | 0,31  |       |          | 2₹±\G                                                       |

b) [

T.6-2 (suite 8)

|          |                          |        | 7.6-2 (suite 8)                                                                                                                                                                      |          |           |                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|----------|--------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| <u>.</u> |                          | Nombre | Dési gration                                                                                                                                                                         | r/d      | Wald)     | <u>Va(d)</u>                 | <u>da(*)</u>  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 14 0     |                          | Ь      |                                                                                                                                                                                      | d        | W<br>e    | Ł<br>^                       | <u>d</u><br>9 | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|          | a                        |        |                                                                                                                                                                                      |          |           |                              | <u>a</u>      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|          | 173                      | 1      | Tel bifurcation, branche dél'rivée radicteur avec reccordement                                                                                                                       | -        | 0,23<br>- | · _                          | _             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|          | 174                      | 1      | Te', bifurcation, branche dérivée<br>radiateur avec raccordement                                                                                                                     | -        | 0,20      | -                            |               | 27=47<br>12<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|          | 175                      | 1      | pièce courbe<br>Te', jonction, branche dérivée                                                                                                                                       |          | -         | 0,11                         | 0,5           | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| ,        | 176                      | 4      | pièce courbe<br>Te, jonction, branche dérivée                                                                                                                                        | <u>-</u> | -         | 0,08                         | 0,5           | 0,5<br>-2<br>Σξ1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|          | 177                      | 1      | pièce courbe<br>Tel, jonction, branche dérivée                                                                                                                                       | _        | _         | 0,07                         | 0,5           | 0,5<br>-2<br>\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\)\(\overline{\Z}\ |  |  |  |  |
|          | 178                      | 1      | Te', bifurcation, branche dérivée radiateur avec raccordement                                                                                                                        | _        | 0,27      | -<br>-                       | -             | 12<br>5<br>23=17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|          | 179                      | 1      | Te', bifurcation, branche de'rivée radiateur avec raccordement                                                                                                                       | _        | 0,22      | _                            | -             | 12<br>5<br>E8-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|          | 180                      | 1 1    | pièce courbe<br>12, jonction, branche dérivée                                                                                                                                        | -        |           | 0,1                          | 0,5           | 0,5<br>-2<br>\(\bar{\Z} = -1;\)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|          | 181                      | 1      | Pièce courbe<br>Te, jonction, branche dérivée                                                                                                                                        | -        | -         | 0,08                         | 0,5           | 0,5<br>-2<br>\(\Sigma\)=-1!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|          | 189                      | 4      | Te', bifurcation, branche dérivée robinet d'arrêt                                                                                                                                    | -        | 0,67      | -                            | -             | 3,2<br>0,3<br>\(\Sigma_3,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|          | 181<br>181<br>181<br>181 | 4 4 4  | Te', biturcation, passage direct<br>E', biturcation, passage direct<br>Te', biturcation, passage direct<br>Te', biturcation, passage direct<br>Taccordement, dega gage (coude DN 15) |          | 0,72      |                              | 0,66          | 6,8<br>0,8<br>4,5<br>0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|          | 188                      | 1      | fadiateur avec l'accordement<br>faccordement, de gazage (conde DN 15)<br>padiateur avec l'accordement                                                                                | 1.       |           | -                            | -             | Σξ-5,<br>0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|          | 489                      | 4      | Pièce courbe<br>coude arrondi                                                                                                                                                        | -        | _         |                              | 1 1           | Σ = 5,5<br>0,5<br>Σ = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|          | 49                       | 0 1    | pièce combe<br>conde arrondi                                                                                                                                                         | -        | _         | _                            | -             | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|          | 19                       | 12 1   | Te', jondion, passage direct<br>Te', jondion, passage direct<br>Te', jondion, passage direct<br>Te', jondion, passage direct                                                         | 1 1 1    | -         | 0,62<br>0,72<br>0,78<br>0,23 | 1 0,66        | Z = 1<br>1,8<br>0,8<br>0,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |

h

T.6-2 (suite 9)

| <u> ۲۰ با در </u> |        | T.6-2 (suite 9)                                                  | _        |       |            | •           |                                       |
|-------------------------------------------------------|--------|------------------------------------------------------------------|----------|-------|------------|-------------|---------------------------------------|
| L                                                     | Mr N   |                                                                  | ٢/٦      | Wa(d) | Vald)      | da(*)       | 7                                     |
| Tronson                                               | Nombre | 'De'signa lim                                                    | / O.     | W     | Ÿ          | d           | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| a                                                     | Ь      | Č                                                                | d        | e     | F          | 9           | h                                     |
| 195                                                   | 4      | Te, jondion, branche dérivée                                     |          |       | 0,23       | 0,6         | 1                                     |
| j                                                     | 1      | robinet d'arrêt                                                  | -        | _     | ·<br>      | -           | 53.13                                 |
| 196                                                   | 4      | Tel, bifurcation, branche derivée                                |          | 0,2   | ·<br>      | <del></del> | Σ₹=1,3<br>12                          |
|                                                       | 4      | radiateur avec raccordement                                      | _        | _     |            | -           | 5                                     |
| 197                                                   | 4      | Tel bifurcation branche deriver                                  | _        | 2,0   | •          | -           | 23=17<br>12                           |
|                                                       | 4      | Te, bifurcation, branche dérivée<br>radiateur avec raccordement  | _        | _     |            | -           | 5                                     |
| 198                                                   | 1      | vière courba                                                     |          |       |            |             | Σ₹=17<br>0,5                          |
|                                                       | 1      | pièce courbe<br>Te, j'onctim, branche détrivée                   |          | _<br> | 0,2        | 1           | 0                                     |
| 199                                                   | ,      |                                                                  |          |       | ·          |             | Σ}=0,5                                |
| 1,00                                                  | 1      | pièce courbe<br>le, jonction, branche dérivée                    |          | _     | 0,2        | 1           | 0,5                                   |
| 200                                                   |        | ,                                                                |          |       | ,          |             | Σ₹=0,5                                |
| 200                                                   | 1      | Te, bifurcation, branche dérivée radiateur avec raccordement     | _        | 0,13  | _          |             | 12 5                                  |
|                                                       |        |                                                                  |          |       |            |             | Σ3-17                                 |
| 201                                                   | 1      | Te, biturcation, branche dérivée<br>radialeur avec raccordement  | <u> </u> | 0,43  | -          | -           | 12.                                   |
|                                                       |        |                                                                  |          | _     | *          |             | Σ3-17                                 |
| 202                                                   | 1      | Pièce courbe<br>Te, jonction, branche dérivée                    | _        | _     | -/;        | -,          | 0,5                                   |
|                                                       | 1      | le, jonction, blanche derivee                                    | _        | -     | 0,14       | 1           | 23-45                                 |
| 203                                                   | 1      | pièce gourbe<br>Te, jonction, branche dérivée                    |          | _     | ·          |             | 0,5                                   |
|                                                       | 1      | le, jonchin, branche dérivée                                     | -        |       | 0,14       | 1           | <u>-5</u>                             |
| 204                                                   | 4      | Te, bifurcation, branche dérivée radiateur avec raccordement     | _        | 0,11  |            |             | 12                                    |
| , '<br> <br>                                          | 1      | radiateur avec raccordement                                      |          |       |            | -           | 5,0                                   |
| 205                                                   | 1      | Te bihurcation branche de rivee                                  | _        | 0,41  |            |             | Σ3-47<br>12                           |
|                                                       | 1      | Te', bifurcation, branche dérivée radiateur avec raccordement    | _        | _     |            | _           | 5                                     |
| 206                                                   | 1 1    | Dieles em cha                                                    |          |       |            |             | Σ3=47                                 |
|                                                       | 1      | Pièce courhe<br>Te, jonction, branche dérivée                    | _        | _     | .0,11      | 0,66        | -2                                    |
| 207                                                   |        |                                                                  |          |       | ,          |             | 27=-1,5                               |
| 407                                                   | 1      | pièce courbe<br>Te, jonction, branche dérivée                    | -        | _     | 0,41       | 0,66        | -2                                    |
| 208                                                   | ,      |                                                                  |          |       | , ,        | , , ,       | Z3=-1,5                               |
| . 706                                                 | 1 1    | Te', bifurcation, branche dérivée<br>radiateur avec raccordement | -        | 0,3   |            |             | 12 5                                  |
| 0-4                                                   |        |                                                                  |          |       |            |             | Σ3-17                                 |
| <b>2</b> 09                                           | 1. 1   | Tel, bifurcation, branche dérivée sadiateur avec raccor dement   | _        | 0,2   | -          | _           | 12                                    |
|                                                       | ] ,    |                                                                  | -        |       |            | _           | Σ3=17                                 |
| 210                                                   |        | pièce courbe<br>le, jonction, branche dérivée                    | -        | _     | 0 10       | -11         | 0,5                                   |
|                                                       | ı      |                                                                  | _        |       | 0,18       | 0,66        | 23=0,5                                |
| 211                                                   | 1      | pièce courbe<br>Te, jonction, branche défivée                    | -        | _     | 0,10       | 0,66        | 0,5                                   |
| <u> </u>                                              | 1      | ro, forestall orange actives                                     | <u> </u> |       | ما المارات | -/          | Σ ₹=-15                               |

T.6-2 (suite 40)

|           |          | T.6-& (suite 10)                                                |             | '        |              |       |                            |
|-----------|----------|-----------------------------------------------------------------|-------------|----------|--------------|-------|----------------------------|
| Transport | Moraha   | Désignation                                                     | r/a         | Wa(d)    | Va(d)        | 00(米) | 7                          |
|           | <u> </u> | 007, 313,1011                                                   | <del></del> | W        | Ÿ            | d     |                            |
| a         | Ь        | С                                                               | <u>d</u>    | e        | F            | 3     | h                          |
| 242       | 1        | Té, bifurcation, branche dérivée radiateur avec raccordement    | -           | 0,26     | - 1          | ~ -   | 12                         |
| 213       | 1        | Té, bifurcation, branche dérivée sadiateur avec raccordement    | -           | 0,13     | . <i>-</i> - | -     | 12                         |
| 214       | 1        | pièce courbe<br>To, jonetion, branche dérivée                   | -           | <u> </u> | 0,27         | ĩ     | 0,5                        |
| 215       | 1 1      | pièce courbe<br>Té, jonction, branche dérivée                   | -           | -        | 0,14         | Ī     | 0,5<br>-5                  |
| 216       | 1        | Te, bifurcation, branche dérivée<br>radiateur avec raccordement |             | 0,30     | - 1          | -     | 12 5                       |
| 217       | 1<br>1   | Té, bifurcation, branche dérivée radiateur avec raccordement    | -           | 0,17     |              | -     | 125-47<br>125-47           |
| 218       | 1 1      | pièce courbe<br>le', jonction, branche défivée                  | -           | -        | 0,20         | 0,66  | 0,5                        |
| £19       | ł        | pièce courbe<br>le, jonction, branche dérivée                   | ···· `      | -        | 0,1          | 0,66  | 23=0,                      |
| 220       | 1 1      | Té, bifurcation, branche dérivée radiateur avec raciordement    | -           | 0,25     | ,<br>,       | -     | 125                        |
| 221       | 1 1      | Té, biturcation, branche dérivée radiation avec raccordement    | -           | 0,12     | 1            |       | 12                         |
| 222       | 1 1      | pièce courbe<br>le, jondion, branche dérivée                    | -           |          | 0,15         | ō,66  | 0,5                        |
| 223       | 1 1      | pièce courbe<br>Te, jonction, branche dérivée                   | -           | _        | 0,08         | 0,66  | Σ } = 0,<br>0,5<br>-5      |
| 224       | 1 1      | Té, bifurcation, branche dérivée radiateur avec raccordement    |             | 0,51     |              | -     | 5, 25<br>5                 |
| 225       | 1 1      | Té, bifurcation, branche dérivée<br>rediateur avec raccordement | -           | 0,23     | -            | -     | 23=10,2<br>12<br>5         |
| 226       | 1 1      | pièce courbe<br>Rijonation, branche dérivée                     | -           | _        | 0,17         | 0,5   | 23=1<br>0,5<br>0,5         |
| 227       | 1 1      | pièce courbe<br>Te, jondion, branche dérivée                    | -           |          | 0,08         | 0,5   | 23=1<br>0,5<br>-2<br>23=-1 |
|           |          |                                                                 |             |          |              |       | -36                        |

T.6-2 (suite 11)

| ·           | <del></del> | T.6-2 (suite 11)                                              |          |          |          |              |                                            |
|-------------|-------------|---------------------------------------------------------------|----------|----------|----------|--------------|--------------------------------------------|
| Hoston      | Nambra      | Designation                                                   | r/a      | Wa(d)    | <u> </u> | da(***)      | 3                                          |
| a           | Ь           | <u> </u>                                                      | d        | e        | F        | 9            | <u>                                   </u> |
| 7118        | 4           | Tiliburcation, branche dérivée sadiateur avec raccordement    |          | 0,24     | -        | -<br>-<br>-  | 12 5                                       |
| 223         | 4           | Té, bissurcation, branche dérivée radiateur avec raccordement | -        | 0,15     | -        | <del>-</del> | 27=A7<br>12<br>5                           |
| <i>2</i> 30 | 1           | pièce courbe<br>le, jonction, branche dérivée                 | _        | _        | 0,25     | 1            | 23.47                                      |
| 231         | 1           | pièce courbs<br>Té, jonction, branche dérivée                 | -        | -        | 0,45     | 1            | 23-0,<br>0,5<br>-3,5                       |
| 232         | 1           | Té, bifurcation, branche dérivée radiateur avec raccordement  | <u>-</u> | 0,3      |          | <u>-</u>     | 125-5                                      |
| 233         | 1           | Te, bifurcation, branche dérivée radiateur avec raccordement  | <u>-</u> | 0,17     | .~       | -            | 23=17<br>12<br>5                           |
| 234         | 1           | pièce courbe<br>Té, jonction, branche dérivée                 | <u>-</u> | <u>-</u> | 0718     | 0,66         | 25=47<br>0,5<br>0                          |
| £35         | 1           | pièce courbe<br>Te, jonction, branche dérivée                 | -<br>-   | <u>-</u> | 0,11     | 0,66         | 0,5                                        |
| 236         |             | lé, bifurcation, branche dérivée radiateur avec raccordement  | 1 1      | 0,22     | _        |              | 12                                         |
| 237         | 1           | Télibiturcation, branche dérivée radialeur avec raccordement  | 1        | 0,13     |          | ~            | 23=11                                      |
| 238         | 1           | pièce courbe<br>Te, jonction, branche dérivée                 | _        | -        | 0,th     | 0,66         | 23=47<br>0,5<br>-5                         |
| <i>23</i> 3 | 1           | pièce courbe<br>téjonation, branche dérivée                   | -        | -        | 0,08     | 0,66         | 0,5                                        |
| 240         | 1           | Te', bifurcation, branche dérivée radiateur avec raccordement | -        | 0,3      | _        | -            | 25=372<br>12<br>_5<br>== '=                |
| 241         | 4           | Te', bifurcation, branche dérivée padiateur avec raccordement | -        | 0,13     | _        |              | 27-17<br>12<br>52 -                        |
| 242         | 1           | pièce courbe<br>te, jonction, branche dérivée                 |          | _        | 0,182    | 0,66         | 0,5<br>0,5                                 |
| 243         | 1           | pièce courbe<br>le, jonction, branche dérivée                 |          | -        | 0,08     | 0,66         | 6 = 11/5<br>-5<br>-5                       |
| 244         | 1           | Té, bifurcation, branche dérivée radiateur avec raccordement  |          |          |          | e            | ~5-1/2<br>5<br>27-17                       |

|                                               |              | <del></del>    | T.6-2 (suite 12)                                                 |              |               |       |                                               |                              |
|-----------------------------------------------|--------------|----------------|------------------------------------------------------------------|--------------|---------------|-------|-----------------------------------------------|------------------------------|
| _                                             |              | M . la         | X1. h                                                            | r/d          | Wa(d)         | Va(d) | da(*)                                         | ~                            |
| Hora                                          | şon.         | Nombre         | Designation                                                      | /a           | W             | Ÿ     | d                                             | 3                            |
| a                                             |              | Ь              | С                                                                | d            | e             | t     | 9                                             | h                            |
|                                               | 245          | 4              | Tél, bifurcation, branche dérivée<br>radiateur avec raccordement | <del>-</del> | 0,27          | -     | _                                             | 12                           |
|                                               |              | •              |                                                                  |              |               | -     |                                               | <u>う</u><br>∑死行              |
| 2                                             | 46           | 1              | pièce courbe<br>le, jonction, branche dérivée                    |              | _             |       |                                               | 0,5                          |
| 16. A. C. |              | 1              | le, jonction, o fanche dérivée                                   | <u> </u>     | <b> </b> -    | 0,12  | 1                                             | -7                           |
| 1 2                                           | 47           | . 4            | pièce courbe                                                     |              | , <del></del> |       |                                               | 0,5                          |
|                                               |              | 1              | pièce courbe<br>Téljonation, branche de rivèe                    | _            | _             | 0,27  | 1                                             | -1,8                         |
| 2                                             | 48           | 4.             |                                                                  | o            | 0,14          |       |                                               | Σξ-43                        |
|                                               |              | 1              | Tel, bifurcation, branche dérivée radiateur avec raccordement    | _            | -             |       |                                               | 12                           |
| g                                             | 49           | , <u>, , .</u> |                                                                  | 4            | 0.20          | ,     |                                               | Σ}-17                        |
| ~                                             | 7            | 4              | Te, bifurcation, branche dérivée radialeur avec raccordement     | _            | 0,32          | -     |                                               | 11                           |
|                                               | ر ما<br>د ما | ı              |                                                                  |              | -             | _     |                                               | 23:46                        |
|                                               | <i>5</i> 0   | 1              | pièce courbe<br>Te, jonction, branche dérivée                    | -            |               | 0,083 | 0,66                                          | 0,5                          |
|                                               | _, ]         | _              |                                                                  |              | _             | 0,000 | 0,00                                          | <u>-3</u><br>Σ? <u>-</u> //5 |
| 2                                             | 51           | 1              | pièce courbe<br>Té, jonction, branche dérivée                    | ~            |               |       |                                               | 0,5                          |
|                                               |              | 7              | re, jonation, planche derivee                                    | _            | ·             | 0,2   | 0,66                                          | 0<br>58-05                   |
| 2                                             | 52           | 1              | Tc', bifurcation, branche dérivée radiateur avec raccordement    | _            | 0,60          | _     |                                               | 12                           |
|                                               |              | 1              | radiateur avec raccordement                                      | _            |               |       | -                                             | 5                            |
| \$                                            | 253          | 1              | Te, bifurcation, branche dérivée                                 |              | 0,25          | '     |                                               | 23=11                        |
|                                               |              | 1              | Té, bifurcation, branche dérivée radiateur avec raccordement     | _            | _             |       | , <u>, , , , , , , , , , , , , , , , , , </u> | 5                            |
| 9                                             | 54           | 4              | aise caucha                                                      |              |               |       |                                               | 双系                           |
|                                               |              | 1              | pièce courbe<br>Tel, jonction, branche de'rivée                  | _            | _             | 0,07  | 0,66                                          | -6                           |
|                                               | 7            | A              |                                                                  |              | _             | ,,,,, | ,                                             | 0,5<br>-6<br>23:-5,5         |
| Z                                             | 55           | 1              | pièce courbe<br>te, jonction, branche dérivée                    |              |               |       |                                               |                              |
|                                               | ا رسر ہ      |                | ·                                                                |              |               |       |                                               |                              |
|                                               | 56           | 1              | pièce courbe<br>Te; j'onction, branche dérivée                   | -            |               | -15   | - (                                           | 0,5<br>-3                    |
|                                               |              |                |                                                                  | -            | -             | 0,15  | 0,66                                          | -3<br>27-95                  |
| 2                                             | 57           | 1              | Te', bifurcation, branche dérivée<br>radiateur avec raccordement | _            | 0,2           |       |                                               | 12                           |
|                                               |              | . 1            | sadialeur avec saccordement                                      |              | -             | -     | - '                                           | 5<br>52-13                   |
| 2                                             | 58           | 1              | Te', bifurcation, branche dérivée<br>radiateur avec raccordement |              | 0,23          |       |                                               | 1/2                          |
|                                               |              | 1              | radiateur avec reecordement                                      | _            | -             |       | -                                             | 5                            |
| ۶                                             | 59           | 1              | Pièce courbe                                                     |              |               | :     |                                               | 23=11                        |
|                                               |              | 4 "            | fièce courbe<br>Te, jonction, branche dérivée                    |              | _             | 0,12  | 0,66                                          | -4,                          |
|                                               | 960          |                |                                                                  |              |               |       |                                               | 27=-35                       |
|                                               |              | 1              | pièce courbe<br>le, jonction, branche dérivée                    |              | _             | 0,14  | 0,66                                          | -3                           |
|                                               |              |                |                                                                  | ,            |               | / -   |                                               | Σ3-45                        |
|                                               |              |                |                                                                  |              |               |       |                                               |                              |
|                                               |              |                |                                                                  |              |               |       |                                               |                              |

Tableau 6-3: - Calcul de la conduite principale

| ).<br> -           |                     |                |                       |                            |              | ·                        |                           |                           | <del></del>               |                     |
|--------------------|---------------------|----------------|-----------------------|----------------------------|--------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------|
| 12,031             | Debit de<br>chaleur | Debit<br>J'osu | longuar du<br>Evençon | Dismetro de la trupamétria | Vitesse      | Perte de<br>Chouza povem | Resistance.<br>prollowant | Modeuler<br>da välistemäe | Residora<br>particulières | Recistana<br>Totale |
| N°                 | Keel/n              | Kg/n           | Mr.                   | d<br>mm                    | W<br>m/s     | P<br>MMCF                | L.P<br>Mmce               | Σħ                        | Z<br>MMCE                 | LR+Z<br>mmce        |
| а                  | Ь                   | С              | d                     | e                          | F            | g                        | h                         | i                         | K                         | L                   |
| 1 of 22<br>2 et 21 | 21357<br>18009      | 1068<br>900    | 18,58<br>16           | 32<br>32                   | 0,30<br>0,26 | 3,4<br>2,5               | 63,2<br>40                | 3,1<br>0,64               | 13,85<br>2,17             | 77,05<br>42,17      |
|                    | 12717               | 636            | 14                    | 2.5                        | 0,31         | 5,46                     | 72,24                     | 12                        | 5,38                      | 77,62               |
| 30/20              |                     |                | 16                    | 25                         | 0,22         | 2,99                     | 43,84                     | 1,1                       | 2,04                      | 50,48               |
| 405-19             | 9369                | 468            |                       |                            | 0)66         |                          |                           | 2,5                       | 3,15                      | 37,64               |
| 5 cr 18            | K                   | 264            | 15,40                 | 20                         | 0,16         | 2,24                     | 34,49                     | 0,5B                      | 1,39                      | 32,63               |
| 60 ii              | 3050                | 453            | 5,6                   | 15                         | 0,22         | 5,58                     | 34.24                     | 0,73                      | 1,02                      | 20,44               |
| 18-15              | 2356                | 148            | 5,6                   | 15                         | 0,17         | 3,46                     | 15,39                     | 00                        | 1,6                       | 35,94               |
| Bet 15             | 1646                | 82             | 5,6                   | 10                         | 0,20         | 6,13                     | 34,84                     | 0,8                       | 110                       | 13,88               |
| 20 14              | 342                 | 47             | 5,6                   | 10                         | 0,11         | 2,27                     | 12,71                     | 1,95                      | 1,17                      |                     |
| 10ct 13            | 485                 | 24             | 3,54                  | 10                         | 0,06         | 1,15                     | 4,07                      | 5,5                       | 1,2                       | 4,88                |
| 41ct12             |                     | 25             | 1,49                  | 10                         | 0,054        | 1,08                     | 1,60                      | 6,5                       | 9,3                       | 2,4                 |
| 23 6 48            | 23384               | 1169           | 10,58                 | 40                         | 928          | 2,43                     | 45,14                     | 3,1                       | 12,09                     | 57,23               |
| 2457               |                     | 905            | 46                    | 32                         | 926          | 2,52                     | 40,36                     | 0,54                      | 1,53                      | 41,89               |
| 25ctus             | . С                 | 737            | 114                   | 25                         | 0,36         | J.                       | 98                        | 0,59                      | 3,77                      | 101,77              |
| 260/43             |                     | 423            | 16                    | 25                         | 0,24         | 3,04                     | 48,68                     | 1,64                      | 3,08                      | 51,74               |
| 27ct43             |                     | 305            | 15,40                 | 20                         | 0,25         | 4,40                     | 67,76                     | 111                       | 6,8                       | 75,96               |
|                    | £ .                 | 254            |                       | 20                         | 0,20         | 3,13                     | 5375                      | 21                        | 1,4                       | 13,15               |
| 28ct 44            | A                   | 100            | 5,6                   | 2                          | 0,28         | 6 22                     | 116.64                    | 0,5                       | 5,65                      | 52,49               |
| 29ct 40            | 1                   | 1              | 5,6                   | 15                         | 0,20         | 8,33                     | 45,64                     | 1,29                      | 250                       |                     |
| gost39             |                     | 135            | 5,6                   | <i>1</i> 55                | 0,20         | 4,5                      | 25,2                      |                           | 2,58                      | 27,78               |
| 31ct38             |                     | 80             | 5,6                   | 40                         | 2,13         | 5,75                     | 32,20                     | 6,0                       | 1,8                       | 34<br>9,24          |
| 384135             | 1                   | 20             | 5,95                  | 10                         | 0,06         | 1,35                     | 8,04                      | 5,5                       | 4,2                       | 10-                 |
| 330536             | 1.                  | 26             | 3,74                  | 10                         | 0,05         | 4,35                     | 5,05                      | 6,5                       | 1,2                       | 6,25                |
| 3463               | 456                 | 23             | 1,25                  | 10                         | 0,05         | 1,08                     | 1,46                      | 6,5                       | 1,2                       | 2,66                |
| 4.7c 63            |                     | 830            | 18,59                 | 25                         | 0,14         | 8,60                     | 159,19                    | 3,1                       | 27,18                     | 136,97              |
| 48ct 63            | 13446               | 672            | 48                    | 35                         | 0,33         | 5,69                     | 94,84                     | 0,7                       | 3,70                      | 94,94               |
| 490x66             | 10207               | 514            | 14                    | 25                         | 0,25         | 3,53                     | 49,45                     | 0,85                      | 2,32                      | 5178                |
| 50065              |                     | 536            | 16                    | 20                         | 0,30         | 6,0                      | 56                        | 9.F                       | 3,45                      | 99,15               |
| 510:64             |                     | 198            | 45 HO                 | 15                         | 0,30         | 3,0                      | 158,6                     | 2.4                       | 9,35                      | 144.95              |
| 520 63             | 8945                | 446            | 5,6                   | 15                         | 6,22         | 5,42                     | 29,64                     | 1,07                      | 2,56                      | 31,23               |
| 5821.62            | 2368                | 413            | 5,6                   | 15                         | 0.17         | 3,3                      | 15,40                     | 9,73                      | 1,02                      | 19,50               |
| 546.61             | 1620                | 84             | 5,6                   | 40                         | 0,20         | 16                       | 28,6                      | 975                       | 1,5                       | 35,10               |
| 55et 60            | 942                 | 49             | 5.6                   | 10                         | 0,12         | 2,4                      | 13,40                     | 1,9                       | 1,33                      | 14,77               |
| 55d 50             | 646                 | 32             | 3,42                  | 10                         | 0,087        | 1,54                     | 2,26                      | 6,5                       | 2,6                       | 6,36                |
| 58ets              |                     | 16             | 1,64                  | 40                         | 9.038        | 0,77                     | 1,24                      | 6,5                       | 2,5                       | 1,74                |
| 69069              |                     |                | 48,50                 | 25                         | 0,42         | 6,93                     | 155,1                     | 31                        | 28,0                      | 193,92              |
| 3000               | 3 4375 <i>6</i>     |                | 16                    | 25                         | 0,34         | 6,17                     | 98,72                     | 0.7                       | 3,99                      | 102,71              |
| Met B              | 3 10641             | 534            | 14                    | 35                         | 0,36         | 3,76                     | 52.36                     | 0,94                      | \$,19                     | 55.95               |
| 72010              | F752                | 373            | 16                    | 20                         | 0,34         | 6,39                     | 52,76<br>402,24           | 6,89                      | 3,52                      | 55,95<br>165,76     |
| F3et?              |                     | 245            | 15,40                 |                            | 0,17         | 2,4                      | 35,96                     | 3,16                      | 4,5                       | 41,46               |
|                    |                     |                |                       |                            |              |                          |                           |                           | ]                         |                     |

6 C

| õ                                                | Ь            | C        | 4           | e        | F                | 9                    |                      | i                 | ķ                    | L                   |
|--------------------------------------------------|--------------|----------|-------------|----------|------------------|----------------------|----------------------|-------------------|----------------------|---------------------|
| F4er 05                                          | 3240         | 162      | 5,6         | 15       | 0,24             | 6,13                 | 34,65                | 9,7               | 2,03                 | 36,68               |
| 75et84                                           |              | 126      | 5,6         | 伤        | 0,19             | 3,9                  | 21,04                | 0,65              | 2.18                 | 90 04               |
| <b>16et3</b> 3                                   | 1182         | 89       | 5,6         | 10       | 922              | 7,15                 | 40,03                | 0,75              | 1,8                  | 28,01               |
| 11 et 02                                         | 1053         | 53       | 5,6         | 10       | 9.13             | 2,8                  | 15,60                | 1,91              |                      | 14,00               |
| 18 et 80                                         |              | 37       | 3,36        | 10       | 9,03F            | 1-0                  | 5,01                 | 6,5               | 1,53                 | 13, 24              |
| 19et@1                                           | 324          | 16       | 1,61        | 10       |                  |                      | 1011                 |                   | 2,4                  | 8,21                |
|                                                  | - 1-1        | "        | 100         | 10       | 0,030            | 9,77                 | 1,24                 | 6,5               | 9,5                  | 1,74                |
|                                                  | ****         |          |             |          |                  |                      |                      |                   | Total                | 2200                |
|                                                  |              |          |             |          |                  |                      |                      |                   | ·                    |                     |
| lat                                              | Heau         | 6.4:     | Calci       | el de    | racc             | ordem                | calo au              | :z -C01           | lonnes:              | montantes.          |
| 6 4 4 2 2                                        | 30.          |          |             |          |                  |                      |                      |                   |                      |                     |
| 1et 93                                           | 380          | 19       | 1,41        | 10       | 9,045            | 0,90                 | 1,27                 | 17,5              | 1,75                 | 3,02                |
| 32ct94                                           | 324          | 16       | 3,66        | 10       | 0,039            | 0,37                 | 2,03                 | 13,5              | 1,16                 | 3,99                |
| 15et97                                           | 380          | 19       | 1,41        | 10       | 0,048            | 0,9                  | 1,27                 | 17,5              | 2,13                 | 3,4                 |
| S 238                                            | 324          | 16       | 3,66        | 10       | 9038             | 9.77                 | 2,63                 | 15,5              | 1,03                 | 3,86                |
| Setto1                                           | <i>30</i> 0  | 13       | 1,41        | 40       | 0,045            | 0,9                  | 1,27                 | 14,5              |                      |                     |
| ०००ई१०३                                          | 324          | 16       | 3,66        | 40       | 0,040            | 0,88                 | 2,35                 | 12,5              | 1,45                 | 2,72                |
| 95 et 705                                        | 456          | 23       | 1,35        | 10       | 0,054            | 1,08                 | 1,46                 |                   |                      | 3,8                 |
| custos                                           | 367          | 28       | 3,43        | 40       | 0,067            | 3 25                 | 4,69                 | 13.7              | 1,67                 | 3,13                |
| 31 et 445                                        | 405          | 20       | 6,08        | 10       | 0,018            | 1,35                 | 501                  | 9,4               | 2,29                 | 6,98                |
| act (4)                                          | <i>\$</i> 00 | 19       | 1,55        | 40       |                  | 0,36                 | 5,86                 | 155               | 1,58                 | 7,44                |
| 196T 142                                         | 162          | v3       | 250         | 10       | 0,045            | 0,90                 | 4,39                 | 15,5              | 1,55                 | 2,94                |
| 50416                                            | 405          |          | 3,78        |          | 9,019            | 938                  | 1,43                 | 12,5              | 0,27                 | 1,7                 |
|                                                  |              | 20       | 608         | 10       | 0,048            | 995                  | 5,68                 | 135               | 1,35                 | 1,21                |
| MAGES                                            | 330          | 19       | 1,55        | 10       | gals             | 950                  | 4,39                 | 12,5              | 4,25                 | 2,64                |
| us et ale                                        | 162          | og       | 2,58        | 10       | 0,019            | <i>6,</i> 38         | 1,45                 | 18,5              | 9,34                 | 1,74                |
| vjeltsa                                          | 567          | 28       | 5,96        | 10       | 0,05%            | 4,35                 | 7,60                 | 12                | 2,93                 | 10,61               |
| 5 act is 8                                       | 380          | 49       | 1,55        | 10       | 3045             | 0,90                 | 4.39                 | 15,5              | 8,55                 | 2,94                |
| 51 <i>6</i> (54)                                 | 162          | 08       | <i>3</i> 78 | 10       | 9013             | 9,33                 | 1,43                 | 155               | 0,34                 | 1,77                |
| Cotes                                            | 455          | 23       | 1,49        | 10       | 9,054            | 4.03                 | 460                  | 5,5               | 1,89                 | 3,49                |
| 51e1159                                          | 405          | 20       | 3,6         | 13       | 3,013            | 0,98                 | 856                  |                   | 158                  | 5,14<br>5,14        |
| backs !                                          | 405          | 20       | 6,08        | 40       | 9,048            | 0,98                 | 5,98                 | 155<br>145        |                      |                     |
| \$ e115                                          | 324          | 16       | 3,66        | 10       | 0,038            | 983                  | 204                  | 14,5              | 1,45                 | 7,28                |
| श्चित्रका                                        | 360          | 19       | 155         | 10       | 0,015            | 0,90                 | 2,01                 | 45<br>80 E        | 4.11-                | 3,89                |
| 6d 463                                           | 405          | 20       | 6,08        | 10       | 0,048            | 0,96                 | 1,39                 | 14,5              | 1,45                 | 2,75                |
| (gatti                                           | 324          | 16       | 3,66        | 10       |                  | 038                  | 5,63                 | 13,5              | 1,5                  | 表出                  |
| Fc\$140                                          | 380          | 13       | 4,55        | 10       | 0,035            | 9,38                 | 2,61                 | 15,5              | 1,03                 | 3,84                |
| 2050                                             | 567          | 26       | 5,35        |          | 0,015            | 0,90                 | 1,39                 | 18,5              | 1,35                 | 2,74                |
| 4e1482                                           | 324          | 16       |             | 10       | 0,063            | 1,35                 | 6,04                 | 13,7              | 3,34                 | 14,38               |
|                                                  |              |          | 3,66        | 40       | \$ 433           | 9,74                 | 2,31                 | 49,5              | 1,03                 | 3,84                |
| 18 C/ UV                                         | 280          | i9       | 1,55        | 10       | 0,04%            | 93                   | 1.59                 | 15,5              | 4.F5                 | 2,94                |
| roger trail                                      | O 63°4       | 25       | 3,43        | 10       | o,clip           | 8,85                 | 4,00                 | 13,5              | 3,4                  | 8.09                |
| ₿ <i>a†1</i> 63                                  |              |          | ar areas l  | 10       | 0,054            | 8,00                 | 1,60                 | 15,5              | 2,06                 | 3,66                |
| Set 183<br>Poeten                                | 1956         | 25       | 6,09        |          | · · · · · ·      |                      |                      |                   |                      | <b>/</b> , 0 -      |
| 84176<br>84180<br>804181<br>864188               | 1956<br>273  | 13       | 2,72        | 49       | 0,029            | 0,56                 | 8,08                 | 135               | 0,72                 | 2.85                |
| 8at183<br>89 <i>a</i> t185<br>86at185<br>84at185 | 1456<br>145  | 13<br>12 | 2,72        | 40<br>10 | ્.ગર્સક<br>૦,૦29 | 0,56                 | 8,08                 | 135               | 0,72                 | <i>2,</i> 85        |
| 8at183<br>89 <i>a</i> t185<br>86at185<br>84at185 | 1956<br>273  | 13       | 2,72        | 49       | 0,029            | 0,56<br>0,56<br>0,56 | 2,03<br>0,93<br>2,03 | 135<br>135<br>135 | 0,73<br>0,73<br>0,55 | 2,85<br>1,7<br>2,63 |

| а                | Ь   | C  | d    | e  | 5     | 8    | h          | i     | K    | L     |
|------------------|-----|----|------|----|-------|------|------------|-------|------|-------|
| ista ps          | 243 | 乜  | 1,67 | 10 | 9,023 | 0,56 | 0,93       | 12,5  | 0,55 | 1,48  |
| DON'S            | 243 | 12 | 3,72 | 10 | 0,029 | 0,56 | 2,08       | 15,5  | 0,68 | 2,16  |
| 2050-201         | 243 | 12 | 1,67 | 10 | 0,029 | 0,56 | <i>693</i> | 15,5  | 0,68 | 1,61  |
| 208 et No        | 567 | 28 | 3,48 | 10 | 9,067 | 1,35 | 4,69       | 17,5  | 3,44 | 8,13  |
| 209at211         | 324 | 16 | 1,61 | 10 | 0290  | 0,17 | 1,23       | 15,5  | 1,20 | 2,43  |
| M2&214           | 486 | 24 | 3,54 | 10 | 0,058 | 1,16 | 4.10       | 15,5  | 2,75 | 6,85  |
| 213 et 215       | 243 | 12 | 1,67 | 10 | 0,023 | 0,58 | 0,96       | 12,5  | 0,55 | 1,45  |
| 216at 21E        | 486 | 24 | 3,54 | 10 | 0,058 | 1,16 | 4,10       | 13,7  | 3,14 | 7,24  |
| 47-et 213        | 243 | 12 | 1,67 | 10 | 0,023 | 0,58 | 9,56       | 15,5  | 968  | 1,64  |
| Westree          | 486 | 24 | 3,54 | 10 | 0,028 | 1,16 | 4,10       | 17,5  | 8,14 | 7,24  |
| 124 at 295       | 243 | 12 | 1,67 | 10 | 0,029 | 0,53 | 0,96       | 18,5  | 0,55 | 1,51  |
| 124et 225        |     | 37 | 3,36 | 10 | 9,037 | 1,73 | 5,81       | 11,25 | 3,75 | 9,56  |
| 225d ear         | 324 | 16 | 1,61 | 40 | 2,038 | 0,13 | 3,24       | 15,5  | 1,20 | 2,44  |
| 228 <i>d</i> 23d | 405 | 20 | 3,6  | 10 | 9,048 | 0,96 | 3,45       | 16,5  | 1,65 | 5,1   |
| 25et231          | 243 | 12 | 1,67 | 10 | 9,030 | 0,5% | 0,95       | 14    | 0,62 | 1,57  |
| 232 et 894       | 405 | 20 | 3,6  | 10 | 0,043 | 0,96 | 3,45       | 17,5  | 1,96 | 5,41  |
| 233at 235        | 243 | 12 | 1,67 | 10 | 0,030 | 0,57 | 0,95       | 12,5  | 0,55 | 1,5   |
| 236etzse         | 405 | 20 | 3,6  | 10 | 0,049 | 0,96 | 3,45       | 12,5  | 152  | 4,97  |
| 237a/289         | 243 | 12 | 1,67 | 10 | 0,029 | 0,57 | 0,95       | 11,5  | 0,51 | 1,46  |
| 240 et 242       |     | 36 | 3,36 | 10 | 0,089 | 1,73 | 3,45       | 17,5  | 7    | 10,45 |
| 241et243         | 324 | 16 | 1,6  | 10 | 0,033 | 0,77 | 1,23       | 12,5  | 2,83 | 2,06  |
| 244et 245        | 162 | 98 | 3,78 | 10 | 0,019 | 0,38 | 4,43       | 10,5  | 0,23 | 1,66  |
| 245et 247        | 380 | 19 | 1,55 | 10 | 0,045 | 0,90 | 1,39       | 15,7  | 1,57 | 2,96  |
| 248 et 250       | 162 | 08 | 3,78 | 10 | 0,019 | 9.38 | 1,43       | 12,5  | 0,27 | 1,7   |
| 249d 251         | 330 | 19 | 1,55 | 10 | 0,045 | 0,90 | 1,39       | 16,5  | 1,65 | 3,04  |
| 252eF254         | 162 | 08 | 3.78 | 10 | 0,013 | 938  | 1,43       | 11,5  | 0,25 | 1,68  |
| 253 at 256       | 380 | 19 | 1,55 | 10 | 0,045 | 990  | 1,39       | 14,5  | 1,45 | 2,84  |
| 257±1293         | 405 | 20 | 1,49 | 10 | 0,018 | 0,96 | 1,43       | 13,5  | 1,5  | 2,93  |
| 250 t26          | 456 | 23 | 3,6  | 10 | 0,054 | 1,08 | 1,39       | 14,5  | 2,09 | 5,97  |
|                  |     |    |      |    |       |      |            |       |      |       |
|                  |     |    |      |    |       |      |            |       |      |       |

# Tableaux 6-5: Calcul des colonnes montantes

## 1. Colonne montante XIII

on dispose d'une différence de pression de H=(IL.R+Iz) = 127,9 mm CE. On - Colculera d'abord la chute de pression R avec une quote-part cles résistances particulière de 33%, il reste disponible pour les -calculs des diamètres du -circuit (107 à 120): 0,67 x 127,9=85,69 [mm CE]. pour une longueur totale de 28,89 m on aura: R = 85,69/28,89 = 2,97[nm ce]

| Zo Trongon | Debit de Choleur | sk decu | s they some du | s o Diemetre de<br>s o la toyauteria | \$ < Vitesse | 13 a forth de<br>13 a change par en | 3 - Residente<br>3 a fretosest | M Modules<br>de Régistane | IN Resistance. | 3 the Resistance of Totale |
|------------|------------------|---------|----------------|--------------------------------------|--------------|-------------------------------------|--------------------------------|---------------------------|----------------|----------------------------|
| 107et42a   | 3348             | 168     | 1,40           | 15                                   | 9, <b>24</b> | 6,5                                 | 9,1                            | 3,9                       | 11,11          | 20,21                      |
| 103eH19    | 2487             | 124     | 5,6            | 15                                   | 9,18         | 3,72                                | 20,84                          | 1,05                      | 1,6            | 22,44                      |
| 109et 118  | 1945             | 97      | 5,6            | 15                                   | 9,14         | 2,5                                 | 14                             | 0,83                      | 0,83           | 14,83                      |
| 110ct 117  | 1403             | 70      | 5,6            | 10                                   | 9,18         | 4,64                                | 26                             | 0,8                       | 1,12           | 27,12                      |
| HIET 118   | 861              | 43      | 5,6            | 10                                   | 0,10         | 2,05                                | 11,48                          | 1,92                      | 0,96           | 12,44                      |
| MEET 119   | 456              | 28      | 1,49           | 10                                   | 0,054        | 1,08                                | 1,60                           | 6,5                       | 0,8            | 2,4                        |
| 11351 115  | 405              | 20      | 3,6            | 10                                   | 0,018        | 0,96                                | 3,45                           | 6,5                       | 0,65           | 4,1                        |

Total : |

103,54/ 127,9

## 2. Colonne montante KVIII:

H = (ZR.L + Z2) 43 = 143,36 [mm CE]

reste disponible: 0,67 x 143,36 = 95,38 [mm CE] pour une longueur totale de 34,99 m. on aura:

R = 95,38/34,09 = 2,72 [mm CE]

| Ze Trongon                               | A Debit de Chelour | Sebit<br>desu        | E Thenson                 | s o Dienstre d       | 3 € Vitesse                      | ME TO CHANGE por H           | s - Robistana<br>S I Frotestana<br>A Protessart | M Modelly                 | 3 no Revisence<br>on porticulary | # 7 Registance<br>9 to 70 to 10 |
|------------------------------------------|--------------------|----------------------|---------------------------|----------------------|----------------------------------|------------------------------|-------------------------------------------------|---------------------------|----------------------------------|---------------------------------|
| <b>424</b> et 136                        | 5292               | 265                  | 1,40                      | 20                   | 9,22                             | 3,39                         | 4,74                                            | 5,1                       | 12,24                            | 16,98                           |
| 122 e <i>t</i> 135                       | 4431               | 222                  | 5,6                       | 20                   | 9,17                             | 2,41                         | 13,43                                           | 0,54                      |                                  | 14,24                           |
| 123 et 139                               |                    | 166                  | 5,6                       | 45                   | 9,24                             | 6,5                          | 36,4                                            | 1,05                      | 3,04                             | 39, 44                          |
| 124 et 133                               |                    | 119                  | 5,6                       | 45                   | 9,155                            | 3,53                         | 19,75                                           | 1,17                      | 1,63                             | 21,39                           |
| 125etii<br>126etii<br>127etii<br>120etii | 567<br>456         | 72<br>28<br>23<br>20 | 5,6<br>6,1<br>1,49<br>3,6 | 10<br>10<br>10<br>10 | 0,165<br>0,067<br>0,054<br>0,043 | 4,8<br>1,35<br>1,08<br>-9,96 | 26,80<br>8,28<br>1,60<br>3,45                   | 0,95<br>6,5<br>6,5<br>6,5 | 1,33<br>1,2<br>2,8<br>0,65       | 28,21<br>9,43<br>2,4<br>4,1     |

Total: 136,28<143,36

3. Colonne montante IV:

H = ( 2R.L + 22) = 182,94 [non ce]

reste disposible: 0,67 x 182,94 = 122,57 mm ce jour une

longueur terale de 31,63 m. On aura e

R = 122,57/31,63 = 3,87 [mar ce]

| Zo Trongan                         | R Debit do choleur | s/s desu       | 3 - transpers du  | 3 o Diametro da<br>3 o lotazoutario | s & Vitesse           | 3/3 20 Perte de | s — Rosstano.<br>8 2 Februari |                   | 3 N Reviteur      | M Totale               |
|------------------------------------|--------------------|----------------|-------------------|-------------------------------------|-----------------------|-----------------|-------------------------------|-------------------|-------------------|------------------------|
| 182 <sub>e</sub> t 166<br>183±1184 |                    | 158<br>114     | 4,14<br>5,6       | 15<br>15                            | 0,23<br>0,168         | 5,93<br>3,23    | 24,55<br>13                   | 4,6               | 14,52<br>2        | 36,07<br>20            |
| 134d133<br>165e1192<br>184d191     | 4896               | 89<br>65<br>41 | 5.6<br>5.6<br>5.6 | 10<br>10<br>10                      | 0,22<br>0,15<br>0,096 | 7<br>4<br>1,92  | 39,2<br>28,4<br>10,75         | 0,4<br>1,6<br>2,8 | 0,96<br>2<br>1,12 | 40,16<br>24,4<br>11,87 |
| 1212/09<br>188 d 192               |                    | 24<br>16       | 3,4B<br>1,61      | 10<br>10                            | 0,057<br>9038         | 615<br>0,77     | 4,06<br>1,24                  | 6,5<br>6,5        | 0,8               | 4, 8<br>1, 79          |

Total:

139,09 < 182,9

# Chapitre - 7 POSTE CENTRAL DE PRODUCTION D'EAU CHAUDE SANITAIRE

#### 7-1 Généralités:

Dans les bâtiments oû les postes d'eau chaude sont nombreux et disperés comme par exemple, dans les hôpitaux, les hôtels et souvent même dans les bâtiments d'habitations; en construit un poste central de production d'eau chaude. Les dispositifs nécessaires sont alors à prévoir dans la chaufferie centrale de chauffage elle-même et à conjuguer avec celle-ci. Comme en general ces dispositifs sont installés par l'entreprise de chauffage, il convient d'examiner ici quelques aspects du problème: branchement, calcul et conduite de l'installation.

La distribution d'eau chaude dans le bâtiment peut être faite aussi bien par dessous que par dessus. C'est en general, la distribution par dessous que l'on choisit, à moins que le réchauffement de la cave doit être impérativement évité.

#### 7-2 Introduction

Cette partie d'etude concerne la production d'eau chaude aux bâtiments comportants 50 logements, chaque logements comportant 1 baignoires, 1 lavabo et 1 eviers.

Le but à atteindre et la determination des diamétres des tuyauteries de distribution..

La connaissance de ces diamétres nous permet de déterminer les pertes de chaleur dans les canalisations qui seront utilisées dans le calcul de puissance du réchauffeur.

7-3 Calcul des diamétres des tuyauteries de distribution
Le calcul des diamétres s'opére en deux étapes:
Dans la première on determine les diamétres des tuyauteries
depuis le ballon jusqu'aux robinets.
Cette determination est identique à celle des distributions
d'eau froide réalisées par les plombiers.

Dans la seconde on determine les diamétres des tuyauteries retour pour qu'en aucun cas on puisse tirer de l'eau au robinet dont la température ne soit pas qu moins égale à une valeur minimale fixée d'avance.

#### 7-4 Débits instantanés et débits simultanés:

Pour cela il est nécessaire de connaître le débit instantané ( $\mathbf{q_i}$ ) nécessaire à chaque appareil. Ces débits sont donnés en (1/s) d'après N.F.P.41.201 à 204 et le débit simultané( $\mathbf{q_s}$ ) de chaque trançon en fonction du nombre d'appareils qu'il alimente ce débit est donné par la relation:

$$\mathbf{q}_{\mathbf{s}^{\pm}} \mathbf{Y} \cdot \mathbf{q}_{\mathbf{i}} \tag{7.1}$$

Y: represente un coefficient de simultaneité exprimé en fonction du nombre d'appareils utilisés.

soit: 
$$Y = \frac{1}{\sqrt{X-1}}$$
 (7.2)

X: représente le nombre d'appareils utilisés

#### 7-5 Perte de charge:

a- Les pertes de charge linéaires

On a vu au chapitre 5 que les pertes de charge linéaires se mettant sous la forme:

$$R = \frac{P1 - P2}{L} = \frac{1}{2} \lambda + \frac{W^2}{2} = \frac{1}{2}$$

Mais en distribution d'eau chaude sanitaire, ces pertes de charge sont calculées d'aprés la formule de flamant:

$$R = P1 - P2 = 0,00092 d^{5/4}v^{7/4}$$
 (7.3)

oû R: perte de pression par métre de tuyauterie en (mmCE/m)

d: diamétre de la conduite en mm

v: vitesse moyenne du fluide en m/s
Dans la pratique cette formule est mise en abaque par Dariés
(Fig. 401)

Pour la conduite des calculs, on utilisera cet abaque:

b: les pertes en charges dans les resistances particulières:

Ces pertes peuvent être exprimées par la même relation utilisée au chapitre 5 à savoir:

$$Z = \frac{w^2}{2}$$

Oû W est la vitesse dans une section représentative par exemple celle d'entrée ou de sortie. Le coefficient grésulte en premier lieu de la forme de la resistance particulière.

7-6 Pression motrice ou disponible.

Pour amener l'eau aux différents points de puis age, il importe de vaincre les pertes de charge linéaire et particulières ainsi que la différence de niveau entre le point A et le robinet lo plus éloigné - C'est le rôle que doit jouer la préssion disponible qu'on met sous la forme :

$$\Delta P_{\rm m} = P_{\rm A} - (P_{\rm R} + P_{\rm N}) \qquad (7-4)$$

PA: la pression d'arrivée d'eau au point A prise égale à 2 bars soit environ 20 000 mmCE.

P<sub>R</sub>: la pression adoptée en pratique pour un robinet de puisage égale à 0,2 bars (2)

 $P_N$ : la pression due a la différence de niveau entre le point A et le robinet le plus éloigné.

Il est commodé d'utiliser le m m CE (millimétre colonne d'eau) comme unité de pression dans nos calculs, pour la lecture des abaques appropriés.

#### On rappelle que:

1 Kgf/m2 \_ 1 mm CE

1 bar \_ 1000 mm CE

- (1) Valeurs fixées par le service des eaux
- (2) pression minimale de l'eau aux points d'amenée qu'on appelle pression résiduelle.

•••/•••

#### 7-7- Calculs:

Calculons la pression disponible entre le point A et le robinet le plus éloigné (robinet n° 1 dans notre cas), Voir lanche 2.

Supposons que la pression en A soit de 2 bars soit environ 20 000 mm CE. La pression totale à dépenser entre A et le robinet le plus éloigné (n° 1 de la colonne GH, RS et I II) est de 20 000-2000 \_ 18000 mm CE.

Le circuit du robinet n° 1 comprend les tronçens 0,9,8,7,6,5,4 - 3,2,1 de longueur totale: 57,67 m (longueur réelle).

et entre le point A et le robinet nº 1 nous avons:

- 3 robinets d'arrêt de longueur équivalents 1,5X3 \_ 4,5m
- 1 filtre ayant unelongueur équivalents de 10m
- 1 clapet -- 15m
- -1 compteur - - 5m
- -1 ballon - 3 m
- 4 coudes ayant une longueur équivalents de 4X2 = 8m
- 8 tés --- 8X3 24m
- Distributeur --- 5m

Soit au total, une longueur équivalente de 74,5m les valeurs de longueurs équivalentes sont tirées du tableau (T-7.1 Annexe)

La longueur totale du circuit devient 132,17 m La perte de pression par métre sera:

$$R = 4120 = 31,2 \text{ mmCs/m} = 0,0312\text{mCE/m}$$
 $132,17$ 

Connaissant R et les différents débits simultanés  $(Q_g)$ , on determine les diamétres de tronçons (1) à (0) à l'aide de l'abaque de Dariés (Fig. 401)

Pour calculier les diamétres des autres colonnes, il est commode de dresser un tableau (7.1) résumant tous les calculs.

Il reste à determiner les pertes de chaleur dans les canalisations.

Tableau 7-1: Diamètres des différents tronçons ollers

|            | <b>1</b> 0                            | pression | Difference<br>de nivedu                | Pression<br>UTcilisable | Tron    | cons     | Com      | nuns                | No                 | ureou   | x Tron | ços    | Rutilisable    |       | 42       |
|------------|---------------------------------------|----------|----------------------------------------|-------------------------|---------|----------|----------|---------------------|--------------------|---------|--------|--------|----------------|-------|----------|
| 4          | n o                                   | 1553     | Z Z                                    | 25Si                    | 1       | en in    |          |                     | \$ 7               | 1       | on W   | '      | 3              | Débit | 3 6      |
| ğ          | <u>ب</u>                              |          | 2.4                                    | £ 2.                    | 16      | 7        | و        | pression<br>pendue  | pression disposite | le      | 7      | 9      | 12             | 28    | Diamètre |
| Colonnes   | Trongons                              | CE       | CE                                     | mm<br>CE                | rée lle | Vimpo    | tota/e   | m in<br>CE          | mm<br>CE           | réelle  | Annba  | totale | MCE            | 45    | mm       |
| A          | В                                     | C        | D                                      | E                       | F       | G        | Н        | I                   | j                  | K       | L      | M      | N              | 0     | P        |
| GH         | (4) à (0)                             | 18 000   | 13880                                  | 4120                    |         |          |          |                     | /. ()              | F 2 4 2 | 7. 5   | 420.0  |                |       |          |
|            | (1)                                   |          | 13000                                  | 7/20                    |         | <u> </u> |          |                     | 4120               | 37,67   | 74,5   | 132,2  | 1              | l     | 4.0      |
|            | (2)                                   |          |                                        |                         |         |          |          |                     |                    |         |        |        | "              | 0,2   | 20       |
|            | (3)                                   |          |                                        |                         |         |          |          |                     |                    |         |        |        | ,              | 0,4   | 33       |
|            | (4)                                   |          |                                        |                         |         |          |          |                     |                    |         |        |        |                | 0,47  | 33       |
|            | (5)                                   |          |                                        |                         | }       |          |          |                     |                    |         |        |        | 4              | 0,50  | 33       |
|            | (6)                                   |          |                                        |                         |         |          |          |                     | }                  |         |        |        | "              | 0,66  | 33       |
|            | <i>(7)</i>                            |          |                                        |                         |         |          |          |                     |                    |         |        |        | 4              | 0,81  | 40       |
| i i        | (8)                                   |          |                                        |                         |         |          |          |                     |                    |         |        |        | "              | 0,92  | 40       |
|            | (9)                                   |          |                                        |                         |         |          |          |                     |                    |         |        |        | •              | 1,0   | 40       |
|            | (0)                                   | 40       |                                        |                         |         |          |          |                     |                    |         |        |        | 1              | 2,6   | 60       |
|            | (10)                                  | 18 000   | 11080                                  | 6920                    |         |          |          |                     | 3056               | 0,5     | 3      | 3,5    | 0,87           |       | 12       |
|            | 121 à (0)                             | 10       | (1.8.4.4                               | 0-0-                    | 54,37   | 69,5     | 123,9    | 3864                |                    |         |        |        |                |       |          |
|            | (44)                                  | 18000    | 8280                                   | 9720                    |         |          |          | _                   | 6036               | 0,5     | 3      | 3,5    | 1,72           | 0,2   | 12       |
|            | (3) à (0)<br>(12)                     | 18000    | €1.6n                                  | 14510                   | 51,57   | 66,5     | 118      | 3683                | 444-               |         |        | •      |                |       |          |
|            | (4) à (0)                             |          | 3400                                   | 12520                   | 1       | C) E     | // 2 4 - | 3                   | 9017               | 0,5     | 3      | 3,5    | 2,57           | 0,2   | 12       |
| ]          | (13)                                  | 1800D    | 2680                                   | 15320                   | 48,77   | 63.5     | 412,27   | 2203                | # 0 = =            | 0.0     | 4      | 0 -    | <b> </b> , , , |       |          |
|            | (5) à (0)                             |          | 2080                                   | 17920                   |         | 40.5     | incr     | 2244                | 11998              | 0,5     | 3      | 3,5    | 3,42           | 0,2   | 12       |
|            |                                       |          | ······································ |                         | 45,87   | 00,5     | درونات   | 3344                |                    |         |        |        |                |       |          |
| IJ         | (0)                                   |          |                                        |                         | _       | , ,      |          | 41.15               |                    |         |        |        |                |       |          |
| 13         | (9)                                   |          |                                        |                         | 5       | 41       | 46       | 1435                |                    | :       |        |        |                |       |          |
|            | (8)                                   |          |                                        |                         | 8       | 4        | 12       | 374                 |                    |         |        |        |                |       |          |
|            | (7)                                   |          |                                        |                         | 3       | 3        | 15       | 468                 |                    |         |        |        |                |       |          |
|            | (6)                                   |          | -                                      |                         | 12      | 3        | 6        | 187                 |                    |         |        |        |                |       |          |
|            | (44) à (18)                           | 18000    | 13880                                  | 4120                    | 14      | 3        | 70       | 468                 | 4400               | 41.24   | 13     | 2218   |                |       |          |
|            | (14)                                  | 70000    | 13000                                  | 4740                    |         |          |          | 2932                | 1188               | 14,38   | 17     | 31,38  |                |       | 4.0      |
| <b>i</b> j | (15)                                  |          |                                        |                         |         |          |          |                     |                    |         |        |        | //             | 0,2   | 20<br>26 |
|            | (16)                                  |          |                                        |                         |         |          |          |                     |                    |         |        |        | "              | 0,4   | 26       |
|            | (17)                                  |          |                                        |                         |         |          |          |                     |                    |         |        |        | "              | 0,47  | 33       |
|            | (18)                                  |          | •                                      |                         |         |          |          |                     |                    |         |        |        | "              | 0,5   | 33       |
|            | (19)                                  | 18000    | 11080                                  | 6920                    |         |          |          |                     | 3100               | 0,5     | 3      | 3,5    | 0,89           | 0,2   | 12       |
|            | (15) à (18)                           |          |                                        |                         | 11,08   | 12       | 23,08    | 888                 |                    | •       |        | •      |                | •     |          |
|            |                                       |          |                                        |                         |         |          |          | <u>2932</u><br>3820 |                    |         |        | !      |                |       |          |
| .          | (20)                                  | 10       | 0.200                                  | A-4 =                   |         |          | 4        | 3820                |                    | ,       |        |        |                |       |          |
|            | (20)<br>(16) à (1 <b>3</b> )          | 18000    | 8280                                   | 9720                    | 000     |          |          |                     | 6123               | 0,5     | 3      | 3,5    | 1,75           | 0,1   | 12       |
|            | ניטן בניטן                            |          |                                        |                         | 8,28    | 9        | 17,28    |                     |                    |         |        |        |                |       |          |
|            |                                       |          |                                        |                         |         |          |          | 2932                |                    |         |        |        |                | İ     |          |
|            | (21)                                  | 18000    | 5480                                   | 12520                   |         |          |          | 3597                | 91.1               |         | 3      |        | ا ا            |       | ,,       |
|            | (47) à (18)                           | , 0 000  | J 700                                  | IKUKU                   | 5,48    | 6        | 11,48    | 442                 | 9146               | 0,5     | 2      | 3,5    | 2,61           | 0, 2  | 12       |
|            | · · · · · · · · · · · · · · · · · · · |          |                                        |                         | 7,70    | e,       | 17,19    | 2932                |                    |         |        |        |                |       |          |
|            |                                       |          |                                        |                         |         |          |          |                     |                    |         |        |        |                |       |          |

| Α  | В                                                                     | C              | D     | E     | F                 | 6                 | Н                   | I                           | ز     | K     | L        | M     | N           | 0                          | P                    |
|----|-----------------------------------------------------------------------|----------------|-------|-------|-------------------|-------------------|---------------------|-----------------------------|-------|-------|----------|-------|-------------|----------------------------|----------------------|
|    | (42)<br>(48)                                                          | 18 000         | 1680  | 15328 | 2,68              | 3                 | 5,68                | 218<br>2952<br>3150         | 12170 | 0,5   | 3        | 3,5   | 3,48        | 0,2                        | 12                   |
| LM | (0)<br>(9)<br>(8)<br>(7)<br>(23]à(24)<br>(23)<br>(24)<br>(25)<br>(26) | 18 000         | 13880 | 4120  | 5<br>8<br>12<br>3 | 41<br>4<br>3<br>3 | 46<br>12<br>15<br>6 | .2464                       | 1656  | 14,38 | 17       | 31,38 | 0,053<br>"" | 0,2<br>0,4<br>0,43<br>0,47 | 20<br>26<br>26<br>26 |
|    | (27)<br>(28)<br>(24)à/21)                                             | 18000          | H080  | 6920  | 11,08             | 12                | 23,08               | 1223                        | 3232  | 0,5   | 3        | 3,5   | 0,93        | 0,50                       | 33<br>12             |
|    | (29)<br>(25) à (27)                                                   | 18000          | 8280  | 9720  | 8,28              | 9                 | 17,28               | 3687<br>916<br>2464<br>3380 | 63 Y# | 0,5   | <b>3</b> | 3,5   | 1,81        | 0,2                        | 12                   |
|    | (30)<br>(26)2(27)                                                     | 18000          | 5480  | 12520 | 5,48              | 6                 | 4,48                |                             | 9448  | 0,5   | 3        | 3,5   | 2,7         | 0,2                        | n                    |
|    | (31)<br>(27)                                                          | 18000          | 2680  | 15320 | 2,68              | 3                 | 5,68                |                             | 12554 | 0,5   | 3        | 3,5   | 3,59        | 0,2                        | 12                   |
| NO | (0)<br>(9)<br>(8)<br>32 & 36<br>(32)<br>(35)<br>(34)<br>(35)          | <i>18 0</i> 00 | 13880 | 4 120 | 5<br>8<br>12      | 41<br>4<br>3      | 46<br>12<br>15      | 2277                        | 1843  | 14,38 | 17       | 31,38 | 0,059       | 0,2<br>0,4<br>0,43<br>0,43 | 20<br>26<br>26       |
|    | (36)<br>(37)<br>33 à 36                                               | 18 000         | 11080 | 6920  | 11,08             | 12                | 23,08               | 2277                        | 3282  | 0,5   | 3        | 3,5   | ",<br>0,94  | 0,50                       | 26<br>12             |
|    | (38?                                                                  | 18000          | 8280  | 9720  |                   |                   |                     | 3633                        | 6423  | 0,5   | 3        | 3,5   | 1,8         | 0, 2                       | 12                   |

| A    | В                                 | C      | D     | E     | F           | 6  | Н      | I                            | j     | K     | L    | M     | N     | To                                         | P           |
|------|-----------------------------------|--------|-------|-------|-------------|----|--------|------------------------------|-------|-------|------|-------|-------|--------------------------------------------|-------------|
|      | 34 2 36                           |        |       |       | 8,28        | 9  | 17,28  | 1015                         | 1     |       |      |       |       |                                            |             |
|      | (39)<br>35 a` 36                  | 18 000 | 5480  | 12520 | 5,48        | 6  | 11,48  | 3.29<br>677<br>2277          | 9565  | 0,5   | 3    | 3,5   | 2,7   | 3 0, 2                                     | 12          |
|      | (40)<br>(36)                      | 18 000 | 2680  | 15320 | 2,68        | 3  | 5,68   | 2955<br>31+<br>2277<br>2599  | 12725 | 0,5   | 3    | 3,5   | 3,69  | 0,2                                        | 12          |
| PQ   | (9)<br>41 à 45<br>(41)<br>(42)    | 18 000 | 13880 | 4120  | 5 8         | 41 | 46     | 1809                         | 2330  | 14,38 | 17   | 31,18 | 0,074 | 0,2                                        | 20          |
| -    | (44)<br>(45)<br>(46)<br>42 à 45   | 18000  | 11080 | 6320  | 11,08       | 12 | -23,08 | 1708<br>1809                 | 3403  | 0,5   | 3    | 3,5   | 0,98  | 0,43                                       | 26          |
| <br> | (47)<br>43 à 45                   | 18000  | 8280  | 9720  | 8,28        | 9  | 17,28  | 3517<br>1278<br>1809<br>3087 | 6633  | 0,5   | 3    | 3,5   | 1,87  | 0,2                                        | 12          |
|      | (48)<br>44 à 45                   | 18000  | 5480  | 12520 | 5,48        | 6  | 448    |                              | 9861  | 0,5   | 3    | 3,5   | 2,82  | 0,2                                        | 12          |
|      | (49)<br>(45)                      | 18000  | 2680  | 15320 | <i>₹,68</i> | 3  | 5,68   |                              | 13031 | 0,5   | 3    | 3,5   | 3,74  | 0,2                                        | 12          |
| R5   | 4 à 0 (1) (2) (3) (4) (5) (6) (7) | 18000  | 13680 | 4320  |             |    |        | ٠                            | 4320  | 55    | 74,5 | 129,5 | *     | 0,1<br>0,2<br>0,21<br>0,23<br>0,25<br>0,33 | 20 20 26 26 |

`/

## Suite du tableau 7.1 (3)

| A        | В                                                               | C      | D      | E     | F                       | 6            | H                         | I                                        | j     | <u>K</u> | L  | M    | <u>N</u>                              | 0                                         | P                                |
|----------|-----------------------------------------------------------------|--------|--------|-------|-------------------------|--------------|---------------------------|------------------------------------------|-------|----------|----|------|---------------------------------------|-------------------------------------------|----------------------------------|
|          | (9)<br>(9)<br>(0)<br>(10)                                       | 18200  | 10 680 | 7120  |                         |              |                           |                                          | 3084  | 0,5      | 3  | 3,5  | 0,033<br>"<br>",<br>0,88              | 0,46<br>0,5<br>2,6<br>0,1                 | 33<br>33<br>60<br>12             |
|          | 2 6 0<br>(11)<br>3 a 0                                          | 18000  | 8080   | 9920  | 51,7                    | ,            | 121,2                     | 4036                                     | 6077  | 0,5      | 3  | 3,5  | 1,73                                  | 0,1                                       | 12                               |
|          | (12)<br>4 a o                                                   | 18000  |        | 12720 |                         | ,            | 109,6                     |                                          | 9070  |          | 3  | 3,5  | 2,59                                  | 0,1                                       | 12                               |
|          | (13)<br>5 a 0                                                   | 18000  | 2480   | 15520 | 43,3                    | 60,5         | 103,8                     | 3456                                     | 12063 | 0,5      | 3  | 3,5  | 3,44                                  | 0,1                                       | 12                               |
| TU       | (0)<br>(9)<br>(8)<br>(7)<br>(6)<br>(4)                          | 18000  | 13680  | 4320  | 5<br>8<br>12<br>3<br>12 | 41 4 3 3 3 3 | 46<br>12<br>15<br>6<br>15 | 1532<br>399<br>499<br>200<br>500<br>3130 | 1130  | 12,8     | 17 | 29,8 | 0, 84                                 |                                           |                                  |
|          | (14)<br>(15)<br>(16)<br>(17)<br>(17)<br>(18)<br>(19)<br>15 à 18 | 18000  | 10380  | 7120  | 10,88                   | 12           | 22,88                     | 912<br>3130                              | 3078  | 0,5      | 3  | 3,5  | " " " " " " " " " " " " " " " " " " " | 0,1<br>0,2<br>0,21<br>0,23<br>0,25<br>0,1 | 15<br>20<br>20<br>20<br>20<br>12 |
|          | (20)<br>16 à 18                                                 | 18000  | 8080   | 9920  | 8,08                    | 9            | 17,08                     | 4042<br>681<br>3130<br>3814              | 6103  | 0,5      | 3  | 3,5  | 1,79                                  | 0,1                                       | 12                               |
|          | (21)<br>17218                                                   | 18000  | 5280   | 12720 | 5,28                    | 6            | 41,28                     |                                          | 9135  | 0,5      | 3  | 3,5  | 2,61                                  | 0,1                                       | 12                               |
|          | (12)<br>(18)                                                    | 18000  | 2480   | 15520 | 2,48                    | بو           | 5,48                      |                                          | 1291  | 0,5      | 3  | 3,5  | 3,47                                  | 0,1                                       | 12                               |
| <b>/</b> | (0)<br>(9)<br>(8)<br>(7)<br>2327                                | 18     | 13680  | 4320  | 5<br>8<br>12<br>3       | 41 4 3 3     | 46<br>12<br>15<br>6       | 9/10                                     | Ma-   | /1 0     | 47 | 0.0  |                                       |                                           |                                  |
|          | (23)                                                            | 10 770 | 13000  | 7 340 |                         |              |                           | 2630                                     | 1690  | 12,8     | 17 | 29,8 | 0,056                                 | 0,1                                       | 15                               |

|    | <del></del>                                          | T      | 1 .    | <del></del> | F      | T            | Ŧ              | T                            | Τ.            | <u> </u> | · ·      | 7    | · · · · ·  | T                                  | ī              |
|----|------------------------------------------------------|--------|--------|-------------|--------|--------------|----------------|------------------------------|---------------|----------|----------|------|------------|------------------------------------|----------------|
| A  | <u>B</u>                                             | C      | D      | E           | F      | 6            | H              | I                            | j             | K        | L        | M    | N          | 0                                  | P              |
|    | (24)<br>(25)<br>(26)<br>(27)<br>(28)                 | 18 000 | 10880  | 7120        |        |              |                |                              | 3208          | 0,5      | ş        | 3,5  | 0,056      | 0,2<br>0,21<br>0,23<br>0,25<br>0,1 | 20             |
|    | 24 à 27<br>(29)<br>25 à 27                           | 18000  | 8080   | 9920        | 8,08   | 12           | 1708           | 1281<br>2630<br>3941<br>956  | 6333          | 0,5      | ĵ        | 3,5  | 1,8        | 0,1                                | 12             |
|    | (30)<br>26 à 27                                      | 18000  | 5280   | 12720       | 5,28   | 6            |                | 9630<br>3586<br>632<br>2630  | 9458          | 0,5      | 3        | 3,5  | 2,7        | 0,1                                | 12             |
|    | (31)<br>(27)                                         | 18 000 | 2480   | 15520       | 2,48   | 3            | 5,48           | 3262                         | 12583         | 0,5      | 3        | 3,5  | 3,59       | 0,1                                | 12             |
| XY | (0)<br>(9)<br>(8)<br>32 à 36<br>(32)<br>(33)<br>(34) | 18000  | ,13680 | 4320        | 5 8 12 | 41<br>4<br>3 | 46<br>12<br>15 | 1532<br>400<br>499<br>2431   | _             | 12,8     | 43       | 29,8 | 4          | 0,1<br>0,2<br>0,21                 | 15<br>20<br>20 |
|    | (35)<br>(36)<br>(37)<br>33 à 36                      | 18 000 | 10880  | 7120        | 10,88  | 12           | 22,88          | 1441<br>2431<br>3872         | 32 Yr         | 0,5      | 3        | 3,5  | ",<br>0,92 | 0,21<br>0,23<br>0,25<br>0,1        | 20<br>20<br>12 |
|    | (38)<br>34 à 36                                      | 18 000 | 8080   | 9920        | 8,08   | 9            | 17,03          | 3872<br>1076<br>2431<br>3507 | 6413          | 0,5      | 3        | 3,5  | 1,83       | 0,1                                | 12             |
|    | (39)<br>35 à 36                                      | 18 000 | 5280   | 12720       | 5,28   | 6            | 11,28          | 3307<br>710<br>2431<br>3141  | 9578          | 0,5      | <b>3</b> | 3,5  | 2,73       | 0,1                                | 12             |
|    | (40)<br>(36)                                         | 18,000 | 2480   | 15520       | 2,48   | 3            | 5,48           |                              | <b>1</b> 2743 | 0,5      | 3        | 3,5  | 3,64       | 0,1                                | 12             |

| A   | В                                                                                                                    | C      | D            | E                               | F                      | 6       | Н        | I                                  | j                         | K    | L     | M                        | N         | 0                                                                                    | P                                                  |
|-----|----------------------------------------------------------------------------------------------------------------------|--------|--------------|---------------------------------|------------------------|---------|----------|------------------------------------|---------------------------|------|-------|--------------------------|-----------|--------------------------------------------------------------------------------------|----------------------------------------------------|
| ZZ' | (0)<br>(9)<br>41 à 45<br>(41)<br>(42)<br>(43)                                                                        | 18000  | 13680        | 4320                            | 5                      | 41<br>4 | 46<br>12 | 1532<br>399<br>1931                | 2389                      | 12,8 | 17    | 29,8                     | 0,08      | 0,1                                                                                  | 15<br>20<br>20                                     |
|     | (44)<br>(45)                                                                                                         | 18 000 | 10880        | 7120                            | 10,88                  | 12      | 22,88    | 1830<br>1931                       | 3358                      | 0,5  | 3     | 3,5                      | "<br>0,96 | 0,23                                                                                 | 20 20 12                                           |
|     | (47)<br>43 à 45                                                                                                      | 18000  | 8080         | 9920                            | 8,08                   | 9       | 17,08    | 3761<br>1366<br>1931               | 6622                      | 0,5  | 3     | 3,5                      | 1,89      | 0,1                                                                                  | 12                                                 |
|     | (48)<br>44 à 45                                                                                                      | 18000  | 5280         | 12720                           | 5,28                   | 6       | 41,28    | 3297                               | 9887                      | 0,5  | 3     | 3,5                      | 2,82      | 0,1                                                                                  | 12                                                 |
|     | (49)<br>(45)                                                                                                         | 18000  | 2480         | 15520                           | 2,46                   | 3       | 548      | 2833<br>438<br>438<br>4334<br>2369 | 13150                     | 0,5  | 3     | 3,5                      | 3,75      | 0,1                                                                                  | 12                                                 |
| II  | 1 à 0<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>2 (11)<br>3 (12)<br>0 (13)<br>5 (13) | 18000  | 7880<br>5080 | 7320<br>10120<br>12920<br>15720 | 53,7<br>50,9<br>1 48,4 | 63,5    | 123,2    | 3675                               | 3464<br>6445<br>9427<br>3 | 0,5  | 3 3 3 | 3,5<br>3,5<br>3,5<br>3,5 | 2,63      | 0,35<br>0,70<br>0,75<br>0,87<br>0,87<br>1,15<br>1,41<br>1,61<br>1,75<br>2,60<br>0,35 | 33<br>40<br>40<br>40<br>50<br>50<br>60<br>12<br>12 |

| Α   | В                                                           | C      | D     | E     | F                       | 6                 | Н                         | <u></u>                                  | <u></u> | <u>k</u> | L  | M    | N                | 0                    | P              |
|-----|-------------------------------------------------------------|--------|-------|-------|-------------------------|-------------------|---------------------------|------------------------------------------|---------|----------|----|------|------------------|----------------------|----------------|
| U I | (9)<br>(8)<br>(7)<br>(6)<br>14 à 18<br>(14)<br>(15)<br>(16) | 18000  | 13480 | 4520  | 5<br>8<br>12<br>3<br>12 | 41<br>4<br>3<br>3 | 46<br>12<br>15<br>6<br>15 | 1440<br>375<br>469<br>188<br>469<br>2942 | 1       | 12,6     | 17 | 29,6 | 0,053<br>""<br>" | 0,35<br>0,70<br>0,75 | 26<br>33<br>33 |
|     | (17)<br>(18)<br>(19)<br>15à 18                              | 18000  | 10680 | 7320  | 10,68                   | 12                | 22,68                     | 2942                                     | 3169    | 0,5      | 3  | 3,5  | "<br>0,91        | 0,82<br>0,87<br>0,35 | 33<br>33<br>12 |
|     | (20)<br>16 à 18                                             | 18000  | 7880. | 10720 | 7,88                    | 9                 | 16,88                     | 2942                                     | 6278    | 0,5      | 3  | 3,5  | 1,79             | 0,35                 | 12             |
|     | (21)<br>17à18                                               | 18000  | 5080  | 12920 | 5,08                    | 6                 | 11,08                     | 3841<br>590<br>2942<br>3532              | 9387    | 0,5      | 3  | 3,5  | 2,68             | 0,35                 | 12             |
|     | (22)<br>(18)                                                | 18000  | 2280  | 15±20 | 2,28                    | 3                 | 5,28                      |                                          | 12496   | 0,5      | 3  | 3,5  | 3,57             | 0,15                 | 12             |
| ÝП  | (0)<br>(9)<br>(8)<br>(7)<br>23 à 27<br>(23)<br>(24)<br>(25) | 18 000 | 13480 | 4520  | 5<br>8<br>12<br>3       | 41 4 3 3          | 46<br>12<br>15<br>6       | 1439<br>376<br>469<br><u>188</u><br>2472 |         | 12,6     | 17 | 29,6 | 0,069            | 0,35<br>0,70<br>0,75 | 20 26 33       |
| -   | (26)<br>(27)<br>(28)<br>24 à 27                             | 18000  | 10680 | 7320  | 10,68                   | 12                | 22,68                     | 2472                                     | 3283    | 0,5      | 3  | 3,5  | 0,94             | 0,82<br>0,87<br>0,35 | 33<br>33<br>12 |
|     | (29)<br>25 à 27                                             | 18000  | 7880  | 10120 | 7,88                    | 9                 | 45,88                     | 4837<br>1164<br>2472<br>3636             | 6483    | 0,5      | 3  | 3,5  | 1,85             | 0,35                 | 12             |
|     | (30)                                                        | 18000  | 5080  | 12920 |                         |                   |                           | 3636                                     | 9683    | 0,5      | 3  | 3,5  | 3,76             | 0,35                 | 12             |

'/b

| A  | 8                                                            | C      | D     | E     | F            | G            | H              | I                                          | J            | k    | L  | M    | N            | 0                            | ρ                    |
|----|--------------------------------------------------------------|--------|-------|-------|--------------|--------------|----------------|--------------------------------------------|--------------|------|----|------|--------------|------------------------------|----------------------|
|    | 26 à 27<br>(31)<br>(27)                                      | 18 000 | 2280  | 15720 | 5,08<br>2,28 | 6<br>3       | 11,08<br>5,28  | 764<br>2472<br>3236<br>364<br>2472<br>2636 | 12883        | 0,5  | 3  | 3,5  | 3,68         | 0,35                         | 12                   |
| 西河 | (0)<br>(9)<br>(8)<br>32 à 36<br>(32)<br>(33)<br>(34)<br>(35) | 18000  | 13480 | 4520  | 5<br>8<br>12 | 41<br>4<br>3 | 46<br>12<br>15 | 1440<br>275<br>469<br>2284                 | 2236         | 12,6 | 17 | 29,6 | 0,075        | 0,35<br>0,70<br>0,75<br>0,82 | 20<br>26<br>26<br>33 |
|    | (36)<br>(37)<br>33 à 36                                      | 18000  | 10680 | 7320  | 10,68        | 12           | 22,68          | 1+12<br>2284<br>3996                       | 3323         | 0,5  | 3  | 3,5  | ",<br>0,95   | 0,87                         | 33<br>12             |
|    | (38)<br>34 À36                                               |        |       | 10120 | 7,88         | 9            | 16,18          |                                            | 6561         | 0,5  | 3  | 3,5  | 1,87         | 9,35                         | 12                   |
|    | (40)<br>(36)                                                 | 18000  | 2280  | 15720 | 2,28         | 3            | 5,28           | 398<br>2284<br>2682                        | 13037        | 0,5  | 3  | 3,5  | <i>3,7</i> ₹ | 0,35                         | 12                   |
| 及文 | (41)<br>(42)<br>(43)<br>(44)                                 | 18 000 | 13480 | 4520  | 5<br>8       | 41           | 46<br>12       | 1440<br>275<br>1715                        | 2804         | 12,6 | 17 | 29,6 | 0,034        | 0,35<br>0,70<br>0,75<br>0,82 | 20<br>26<br>26<br>26 |
| ·  | (45)<br>(46)<br>42 & 45                                      | 18000  | 10680 | 7320  | 10,68        | 12           | 22,68          | £132<br><u>1715</u><br>3847                | <b>3</b> 473 | 0,5  | 3  | 3,5  | 0,99         | 0,87<br>0,35                 | 33<br>12             |
|    | (47)<br>43 à 45                                              | 18000  | 7880  | 10120 | 7,88         | 9            | 16,88          | 3847<br>1586<br>1715<br>3301               | 6819         | 0,5  | 3  | 3,5  | 1,94         | 0,35                         | 12                   |

Suite du tableau 7-1. (fin)

| A | В            | c     | 0            | E      | Ł    | G | Н     | I                                   | J     | k   | L | Μ   | N    | 0    | ρ  |
|---|--------------|-------|--------------|--------|------|---|-------|-------------------------------------|-------|-----|---|-----|------|------|----|
|   | (48)<br>446  | 18000 | 5080         | 12.920 | 5,08 |   | 11,08 | 1041<br>1340                        | 10163 | 0,5 | 3 | 3,5 | 2,9  | 0,35 | 12 |
|   | (49)<br>(45) | 18000 | <i>228</i> 0 | 15220  | 2,28 | 3 | 5,28  | 4715<br>2756<br>496<br>1715<br>9911 | 13509 | 0,5 | 3 | 3,5 | 3,85 | 0,35 | 12 |
|   | *            |       |              | ,      |      |   |       | 2211                                |       |     |   |     |      |      |    |

7-8. Calcul des pertes de chaleur dans les tuyauteries :

Ces pertes dev ant être fournies par le réchauffeur d'eau
elles servent au calcul de la puissance du réchauffeur.

Le tableau (7-2) donne les pertes de chaque tronçon, sachant que les pertes de chaleur d'un tube né sont égales ou double du diamétre extérieur de la conduite; et que pour un tube calorifugé, elles sont égales aux 2/3 du diamétre extérieur exprimé en mm.

Supposons que seule la distribution horizontale (se trouvant dans le vide sanitaire) soit calorifugée.

Tableau 7-2: Pertes de chaleur dans la tuyauterie oller.

| Ø         | 15/21          | 20/27                                            | 26/34                                 | 33/42                               | 40/49                           | Total Keel |
|-----------|----------------|--------------------------------------------------|---------------------------------------|-------------------------------------|---------------------------------|------------|
| col. G    |                | 2,8 × 54 = 151                                   | 2,8 × 68 = 190                        | 3(2,8 x.84) = 705                   |                                 | 1036       |
| Col. İ    |                | 2,8 × 54 = 151                                   | 2(2,8×68) = 380                       | 2,8 × 84 = 235<br>2,68 × 84 = 225   |                                 | 981        |
| Col L     |                | 2,8 × 54 = 151                                   | 3 (2,8 × 68) = 570                    | 2,68 × 84 = 225                     |                                 | 946        |
| cd. N     |                | 2,8 × 54 = 151                                   | 3(2,8 × 68) = 570<br>2,68 × 68 = 182  |                                     |                                 | 903        |
| Col. P    |                | 2,8 × 54 = 151                                   | 3 (2,8 × 68) = 570<br>2,68 × 68 = 182 |                                     | •                               | 903        |
| Col R     |                | 4 (2,8 × 54) = 604                               | 1,1 × 68 = 75                         |                                     | -                               | 679        |
| col. T    | 2,8 x 42 = 117 | 3(2,8×54) = 453                                  | 1,1 x 68 = 75                         |                                     | . •                             | 645        |
| Col·V     | 2,8 × 42 = 117 | 3(2,8x54) = 453<br>4,1 x 54 = 59                 |                                       |                                     |                                 | 629        |
| Col. X    | 2,8 × 42 = 117 | 3(2,8 × 54) = 453<br>1,1 × 54 = 59               |                                       |                                     |                                 | 629        |
| Col. Z    | 2,8 × 42 = 117 | $3(2,8 \times 54) = 453$<br>$1,4 \times 54 = 59$ |                                       |                                     |                                 | 629        |
| Col. I    |                |                                                  | 2,8 × 68 = 190                        | 2 (2,8 x 84) = 470                  | 2,8 × 98 = 274<br>0,9 × 98 = 88 | 1022       |
| Col · III |                |                                                  | 2,8 × 68 = 190                        | 3(2,8 x 84) = 705<br>0,9 x 84 = 75  |                                 | 970        |
| Col. I    |                | 2,8 × 54 = 151                                   | 2,8 × 68 = 190                        | 2 (2,8 × 84) = 470<br>0,9 × 84 = 75 |                                 | 886        |
| Col.YII   |                | 2,8 x 54 = 151                                   | 2 (2,8 × 68) = 380                    | 8.4 2. 81.5                         |                                 | 841        |
| col. IX   |                | 2,8 × 54 = 151                                   | 2 (2,8 × 68)=380                      |                                     |                                 | 841        |
| Gİ        |                |                                                  |                                       | 1/3 × 3 × 84 = 84                   |                                 | 84         |

6/

| Ø      | 50/60                                         | 20/27 | 26/34               | 33/42               | 40/49               | Total<br>Kcol/h |
|--------|-----------------------------------------------|-------|---------------------|---------------------|---------------------|-----------------|
| İL     |                                               |       |                     | 1/3 × 12 × 84 = 336 | ·                   | 336             |
| LN     |                                               |       |                     |                     | 1/3 × 3 × 98 = 98   | 98              |
| NP     | <del></del>                                   |       |                     |                     | 1/3 × 12 × 98 = 392 | 392             |
| PA     | 7                                             |       | -                   |                     | 1/5 × 8 × 98 = 261  | 261             |
| RT     |                                               |       | 1/3 × 3 × 68 = 68   |                     |                     | 68              |
| TV     |                                               | -     | 1/3 × 12 × 68 = 272 |                     | -                   | 272             |
| VX     |                                               | ·     | 1/3 × 3 × 68 = 68   | ·                   |                     | 68              |
| XZ     |                                               |       |                     | 1/3 × 12 × 84 = 336 |                     | 336             |
| ZÁ     | , , <u>, , , , , , , , , , , , , , , , , </u> |       |                     | 1/3 x 8 x 84 = 224  |                     | 224             |
| III    |                                               |       |                     |                     | 1/3 × 3 × 98 = 98   | 98              |
| m z    |                                               |       |                     |                     | 1/3 × 12 × 98 = 392 | 392             |
| A AIC  | 1/3 × 3 × 120 = 120                           |       |                     |                     |                     | 120             |
| VIL IX | 1/3 × 12 × 120 =480                           |       |                     |                     |                     | 480             |
| IX A   | 1/3 x 8 x 120=320                             |       |                     |                     |                     | 320             |
|        |                                               |       |                     |                     |                     | 16088<br>Kcal/h |

7-9 - Détermination des diamétres "retours"

On s'impose la chute de temperature entre Á et le robinet

le plus éloigné, ici robinet n° 1 colonne (G,R,I) prenons 5°C.

Il nous faut donc determiner les débits danx chaque tronçon pour que cette chute soit de  $5^{\circ}\text{C}$ .

La perte totale: 160 88 Kcal/h d'aprés tableau 7-2 qui est égale:

(5940 Kcal/h pour colonnes eviers

\\delta4179 \text{Kcal/h " " lavabos

(5969 Kcal/h " " baignoires

Avec une chute de 5°C le débit total sera donc de:

5940 = 11881/h 4179 = 8361/h 5969 = 1193 1/h
5

On peut determiner la chute de temperature entre \* et (P, Z et IX) soit en se servant de l'abaque de chutes de temperature soit par le calcul qui est le suivant;

Le tronçon ( AP, AZ, et AIX) perd (261,224 et 298) Kcal/h

La chute est donc:

261 <u>-</u> 0,22°C ; <u>224 <u>-</u> 26 °C ; <u>298 <u>-</u> 0,25 °C 1188 836 1181</u></u>

De (P, Z et IX) à (Q, Z et X) la chute de température sera donc:

 $5 - 0,22^{\circ}C = 4,78 C^{\circ}$ 

 $5 - 0,26 = 4,74 \text{ C}^{\circ}$ 

5 - 0,25 <u>-</u> 4, 75 °C°

Ce qui correspond à un débit de :

colonne PQ: 903 - 188 1/h 4.78

Colonne ZZ : 629 = 132 1/h 4.74

Colonne IX X: 841 = 177 1/h
4,75

Pour determiner le débit dans le tronçon (PN,ZX et IX VII) on peut procéder de 2 façons:

D'abord par différence:

1188 - 188 <u>-</u> 1000<u>1</u>/h

836 - 132 <u>-</u> 7041/h

1193 - 177 <u>-</u> 1016 1/h

Ou en procédant comme pour le tronçon ( A P, A Z et A IX)

De ( P,Z et IX) en ( H, S et II ) la chute de temperature doit être de (4,78 ; 4, 74 et 4,75 ).

Or à partir de (P, Z et IX)

Les pertes sont: (4776 ; 3326 et 4809)

Dans ( PN, Z et IX VII) le débit sera donc:

$$\frac{4776}{4,78} = 999 1/h$$
;  $\frac{3326}{4,74} = 701 1/h$ 

et ainsi de suite, nous connaissons en fin tous les débits ainsi que les diamétres " allers". d'aprés tableau (7.1)

Il nous faut determiner les diamétres " retours"
Le tableau (7-3) donne les diamétres " retours"
et le BP\_ R.L + Z pour determiner la hauteur manométrique,
puis la pompe.

Tableau 7.3: Diametres des différents tronçons retours.

| rongon           | Délit<br>[l/h] | φ         | A [man co/m]              | L<br>(m]    | R.L<br>[mm Ce] | ₩<br>[m/5]  | 3             | Z<br>[mm cs] | DP= R.L + Z<br>[mm CE] |
|------------------|----------------|-----------|---------------------------|-------------|----------------|-------------|---------------|--------------|------------------------|
| od.:             |                |           | <u> </u>                  |             |                |             |               |              |                        |
| G H<br>(9)       | 1100           | _         |                           |             |                |             | _             |              |                        |
| 1                | 1188           | 40        | 2,15                      | 8           | 17,2           | 0,26        | 3,6           | 12           |                        |
| (8)              | 999            | 40        | 1,60                      | 12          | 19.2           | 0,24        | 0,08          | 0,23         | •                      |
| (7)              | 793            | 40        | 1,00                      | 3           | 3              | 0,17        | 0,30          | 0,42         |                        |
| (6)              | 571            | . 33      | 1,40                      | 12          | 16,6           | 0,18        | 0,10          | 0,16         |                        |
| (5)              | 304            | 33        | 0,44                      | 5,68        | 2,5            | 0,09        | 1,30          | 0,52         |                        |
| (4)<br>(3)       | 304            | 33<br>33  | 0,44                      | 2,80        | 1,23           | 0,09        | 0, 00         | _            |                        |
| (2)              | 304            | 33<br>26  | 0,44                      | 2,80        | 1,23           | 0,09        | 0,00          | -            |                        |
| (1)              | 304<br>304     | 20        | 1,40                      | 2,80        | 3,92           | 0, 15       | 0,35          | 0,58         |                        |
| 50)              | 304            | 26        | 5,10                      | 2,80        | 14,28          | 0,26        | 0,35          | 1,19         |                        |
| 51)              | 571            | 26        | 1,40<br>4, <del>7</del> 0 | 16,88<br>12 | .23,63         | 0, 15       | 1,33<br>1,00  | 1,46         |                        |
| 52)              | 793            | 26        | 8,50                      | 3           | 56,4<br>26     | 0,27        | 1,00          | 3,70         |                        |
| 53)              | 999            | 26        | 13,00                     | 12          | 156            | 0,40        | 0,50          | 4,2          |                        |
| 54)              | 1188           | 26        | 17,00                     | 8           | 163            | 0,60        | 4,50          | 6, 2<br>75   |                        |
| J 1/             | ,,,,,,         | •••       | '',''                     | •           |                | 0,00        | 9,00          |              | 692                    |
| n.:              |                |           |                           |             | 477            |             |               | 106          | 583                    |
| J                |                |           |                           |             |                | ļ           |               |              |                        |
| (18)             | 266            | 33        | 0,35                      | 2,68        | 0,93           | 0,076       | 7,30          | 1,8          |                        |
| (17)             | 266            | 33        | 0,35                      | 2,8         | 0,98           | 0,076       | 0,00          | -            |                        |
| (16)             | 266            | 26        | 1,00                      | 2,8         | 2,80           | 0,40        | 1,23          | 9,7          |                        |
| (45)             | 266            | 26        | 1,00                      | 2,8         | 2,80           | 0,40        | ó,00          | -            |                        |
| (14)             | 266            | 20        | 3,90                      | 2,8         | 10,92          | 0,23        | 1,00          | 2,7          |                        |
| (55)             | 266            | 26        | 1,10                      | 13,88       | 15             | 0,13        | 2,40          | 2,0          |                        |
| 8,7,6)           |                |           |                           |             | 1              | ,           | '             |              |                        |
| ,53,52,517       |                |           |                           |             | 430            |             |               | 101          |                        |
| od.:             |                |           |                           |             | 462            |             |               | 118          | 580 < 583              |
| LM               | _              |           |                           |             |                |             |               |              |                        |
| (27)             | 222            | <i>33</i> | 0,22                      | 2,68        | 0,59           | 0,062       | 10,3          | 1,83         | •                      |
| (26)             | 222            | 26        | 0,70                      | 2,8         | 1,96           | 0,12        | 0,44          | 0,30         |                        |
| (25)             | 222            | 26        | 0,70                      | 2,8         | 1,96           | 0, 12       | 0,0           | -            | •                      |
| (24)             | 222            | 26        | 0,70                      | 2, 8        | 1,96           | 0,12        | 0,0           |              |                        |
| 23)              | 222            | 20        | 2,70                      | 2,8         | 7,56           | 0,17        | 0,33          | 0,46         |                        |
| 56)              | 222            | 20        | 2,70                      | 13,88       | 37,50          | 0,17        | 1,6           | 2,24         |                        |
| 8,7)<br>1,53,52) |                |           |                           | •           | 357            |             |               | 98           |                        |
| ol:              | :              |           |                           |             | 408            |             |               | 702          | 510< 583               |
| NO               | Į<br>Į         |           |                           |             |                |             |               |              | 910 703                |
|                  | 205            | 4.        |                           | 9 / ^       | 4 2.           |             | 7.0           |              |                        |
| (36)             | 205            | 26        | 0,65                      | 2,68        | 1,74           | 0,1         | 7,3           | 3,65         |                        |
| (36)<br>(34)     | 205            | 26<br>26  | 0,65                      | 2,8         | 1,82           | 0,1         | 0             | -            |                        |
| (33)             | 205            | 26        | 0,65                      | 2,8<br>2,8  | 1,81           | 0,1         | 0             | -            |                        |
| (32)             | 205            | 20        | 2,50                      | 2,8         | 1,82<br>7,0    | 0,1<br>0,17 | 0 14          |              | •                      |
| (57)             | 205            | 15        | 8,80                      | 13,88       | 122            | 0,29        | 0,39          | 0,55         |                        |
| 9 8)             |                | •         | 1                         | , - •       |                | V, & J      | 0,98          | 3,78         |                        |
| 4,53)            | İ              |           |                           |             | 328            |             |               | 98           |                        |
|                  |                |           |                           |             | 464            |             | <b>!</b><br>: | 105          | 569 < 583              |
|                  |                |           |                           |             | ' '            |             | i             |              | 343.403                |

| Trongons                                                                                        | Debit<br>[l]k]                                                                                | Ф                                                                                      | R<br>[mmcs/m]                        | [m]                                                                          | R. L<br>[mm C6]                                                                             | W<br>[m/s]                                                                                           | .3                                                                                       | Z<br>[mm ce]                                                                                  | OP = R.L + Z<br>[mm CE] |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------|
| Col.:<br>PQ<br>(45)<br>(44)<br>(43)<br>(42)<br>(41)                                             | 188<br>188<br>188<br>188<br>188                                                               | 26<br>26<br>26<br>26<br>20                                                             | 0,6<br>0,6<br>0,6<br>0,6<br>2,3      | 2,68<br>2,8<br>2,8<br>2,8                                                    | 1,68<br>1,68<br>1,68<br>1,68<br>6,44                                                        | 0,096<br>0,096<br>0,096<br>0,096<br>0,096                                                            | 14,3<br>0<br>0<br>0<br>0<br>0,35                                                         | -4,52<br>-<br>-<br>-<br>0,45                                                                  | -                       |
| (58)<br>(9,54)                                                                                  | 188                                                                                           | 15                                                                                     | 2,3                                  | 13,88                                                                        | 113,8<br>153<br>280                                                                         | 0,28                                                                                                 | 1, 18                                                                                    | 4,6<br>92<br>101                                                                              | 381 < 583               |
| Col.:<br>R5<br>(9)<br>(8)<br>(6)<br>(5)<br>(4)<br>(50)<br>(51)<br>(52)<br>(53)<br>(54)<br>Col.: | 836<br>701<br>554<br>402<br>216<br>216<br>216<br>216<br>216<br>216<br>216<br>216<br>216<br>21 | 33<br>33<br>26<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 2,7 3,47,55,55,5 4,5 35              | 8<br>12<br>3<br>12<br>4,1<br>2,8<br>2,8<br>2,8<br>15,3<br>12<br>3<br>12<br>8 | 21,6<br>24,9<br>28,8<br>2,87<br>7<br>7<br>7<br>7<br>38,25<br>108<br>48<br>300<br>200<br>824 | 0,27<br>0,23<br>0,29<br>0,21<br>0,10<br>0,18<br>0,18<br>0,18<br>0,18<br>0,35<br>0,48<br>0,60<br>0,75 | 3,6<br>0,15<br>0,28<br>0,28<br>1,07<br>0,35<br>-<br>-<br>7,7<br>0,5<br>0,5<br>0,5<br>4,5 | 13, 2<br>0, 4<br>1,17<br>0,56<br>0,54<br>0,56<br>-<br>-<br>2,72<br>1,7<br>5,9<br>125,5<br>161 | 973                     |
| TU<br>(18)<br>(17)<br>(16)<br>(15)<br>(19)<br>(55)<br>(9,8,7,6)<br>(54,53,7<br>52,51)           |                                                                                               | 20<br>20<br>20<br>20<br>15<br>20                                                       | 2,2<br>2,2<br>2,2<br>7<br>2,2        | 1,1<br>2,8<br>2,8<br>2,8<br>2,8<br>12,3                                      | 2,42<br>6,16<br>6,16<br>9,6<br>27<br>743<br>810                                             | 0, 16<br>0, 16<br>0, 16<br>0, 16<br>0, 27<br>0, 16                                                   | 3,3<br>-<br>-<br>0,35<br>3                                                               | 4,18<br>-<br>-<br>1,26<br>3,8<br>153<br>162                                                   | 972 < 973               |
| Cd.:<br>VN<br>(27)<br>(26)<br>(25)<br>(24)<br>(23)                                              | 152<br>152<br>152<br>152<br>152                                                               | 20<br>20<br>20<br>20<br>20                                                             | 1, 6<br>1, 5<br>1, 5<br>1, 5<br>1, 5 | 1,1<br>2,8<br>2,8<br>2,8<br>2,8                                              | 1,65<br>4,2<br>4,2<br>4,2<br>14                                                             | 0,13                                                                                                 | 5,55<br>-<br>-<br>0,35                                                                   | •                                                                                             |                         |

|                                                                       |                                                                                      | <b>(6</b> 27-                                                  |                                                                                                      | <b>*</b>                                       |                                                                                       |                                                                                  |                                                                                       |                                                                                                  |                         |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------|
| Tronçons                                                              | Délit<br>[{/L]                                                                       | φ                                                              | R<br>mm ce/m                                                                                         | [m]                                            | R·L<br>[mm ce]                                                                        | W<br>[m/b]                                                                       | 3                                                                                     | Z<br>[mm ce]                                                                                     | BP: R.L + Z.<br>[mm CE] |
| (56)<br>9,8,7)<br>54,53,52)<br>Col.:                                  | 152                                                                                  | 45                                                             | 5                                                                                                    | 12,3                                           | 61,5<br>606<br>691                                                                    | 0,23                                                                             | 0,9                                                                                   | 2,16<br>155<br>162,5                                                                             | 853,5<973               |
| XY<br>(36)<br>(35)<br>(34)<br>(33)<br>(32)<br>(57)<br>(57)<br>(54,53) | 147<br>147<br>147<br>147<br>147                                                      | 20<br>20<br>20<br>20<br>15<br>12                               | 1,4<br>1,4<br>1,4<br>1,4<br>1,7                                                                      | 1,1<br>2,8<br>2,8<br>2,8<br>2,8<br>12,3        | 1,54<br>3,92<br>3,92<br>3,92<br>13,16<br>209<br>545<br>780                            | 0,135<br>0,135<br>0,135<br>0,135<br>0,21<br>0,35                                 | 3,8<br>-<br>-<br>0,35<br>1,5                                                          | 3,23<br>-<br>-<br>-<br>0,77<br>g<br>148<br>161                                                   | 941 < 973               |
| Col.:<br>22'<br>(45)<br>(44)<br>(43)<br>(42)<br>(41)<br>(58)<br>9,54) | 132<br>132<br>132<br>132<br>132<br>132                                               | 20<br>20<br>20<br>20<br>20<br>15<br>12                         | 1,15<br>1,15<br>1,15<br>1,15<br>4<br>14                                                              | 1,1<br>2,8<br>2,8<br>2,8<br>2,8<br>2,8<br>12,3 | 1,26<br>3,22<br>3,22<br>3,22<br>41,2<br>172<br>221,6<br>415                           | 0,125<br>0,125<br>0,125<br>0,125<br>0,19<br>0,32                                 | 6,3<br>-<br>-<br>0,35<br>1,45                                                         | 4,5<br>-<br>-<br>0,63<br>7,4<br>138<br>731                                                       | 566 < 973               |
| Col.: (19) (8) (7) (6) (4) (50) (50) (50) (50) (50) (50) (50) (50     | 1193<br>1012<br>819<br>595<br>319<br>319<br>319<br>319<br>595<br>819<br>1012<br>1195 | 50<br>50<br>50<br>40<br>40<br>33<br>33<br>33<br>33<br>33<br>33 | 0,65<br>0,50<br>0,33<br>0,60<br>0,17<br>0,17<br>0,45<br>1,40<br>0,45<br>1,60<br>2,50<br>4,00<br>5,00 | 8 12 3 12 3 2, 8 8 2, 8 12, 1 12 3 12 8        | 5,2<br>6,0<br>0,99<br>7,2<br>0,47<br>1,26<br>1,26<br>3,92<br>5,92<br>7,5<br>40<br>147 | 0,16<br>0,14<br>0,13<br>0,065<br>0,065<br>0,095<br>0,095<br>0,19<br>0,26<br>0,35 | 3,6<br>0,13<br>0,21<br>0,1<br>1,1<br>-0,35<br>0,35<br>2,4<br>0,5<br>0,5<br>0,5<br>0,5 | 4,56<br>0,13<br>0,12<br>0,08<br>0,22<br>0,16<br>0,38<br>1,08<br>0,9<br>1,6<br>2,55<br>25,8<br>38 | 185                     |

| Trongons                                                                  | Petet<br>[l/k]                                | Ø                                | R<br>mm (E/m                                | L<br>[m]                                | A.L.                                                         | W<br>[n/s]                                        | 3                                | 2<br>[mm C6]                                  | ΔP= R-L + Z<br>[mm ce] |
|---------------------------------------------------------------------------|-----------------------------------------------|----------------------------------|---------------------------------------------|-----------------------------------------|--------------------------------------------------------------|---------------------------------------------------|----------------------------------|-----------------------------------------------|------------------------|
| Cd.:  1/8) (17) (14) (14) (15) (14) (55) (9.8,7,6)                        | 276<br>276<br>276<br>276<br>276<br>276<br>276 | 33<br>33<br>33<br>33<br>26<br>33 | 0,35<br>0,35<br>0,35<br>0,35<br>1,0<br>0,35 | 0,9<br>2,8<br>2,8<br>2,8<br>2,8<br>12,1 | 0,31<br>0,98<br>0,98<br>0,98<br>0,98<br>2,8<br>3,87          | 0,083<br>0,083<br>0,083<br>0,083<br>0,12<br>0,083 | 3,8<br>-<br>0,35<br>2,9          | 0,3                                           |                        |
| 54,53,52,51  Col.:  Y VI (26) (26) (25) (24) (23) (56) (9,8,7) (54,53,52) | 212<br>212<br>212<br>212<br>212<br>212<br>212 | 33<br>33<br>33<br>26<br>20<br>20 | 0,21<br>0,21<br>0,21<br>0,65<br>2,5<br>2,5  | 0,9<br>2,8<br>2,8<br>2,8<br>2,8<br>12,1 | 134<br>144<br>0,15<br>0,59<br>0,59<br>1,82<br>7<br>30,25     | 0,062<br>0,062<br>0,062<br>0,1<br>0,18<br>0,18    | 5,55<br>-<br>0,35<br>0,42<br>0,6 | 36<br>37<br>0,99<br>-<br>0,17<br>0,67<br>0,96 | 181 < 185              |
| CL.; 11 11 (36, (35) (33) (32) (51) (6,8) (54,53)                         | 195<br>195<br>195<br>195<br>195<br>195        | 33<br>33<br>26<br>26<br>20<br>20 | 0,2<br>0,2<br>0,65<br>0,65<br>2,3<br>2,4    | 0,9<br>2,8<br>2,8<br>2,8<br>12,1        | 0,18<br>0,56<br>1,82<br>1,82<br>6,44<br>29                   | 0,06<br>0,06<br>0,1<br>0,1<br>0,17<br>0,17        | 6,3<br>0,35<br>0,35<br>0,9       | 34<br>37<br>1,15<br>0,17<br>0,49<br>1,26      | 184 < 185<br>174 < 185 |
| CH.:<br>(45)<br>(44)<br>(43)<br>(42)<br>(41)<br>(58)<br>(9,54)            | 177<br>177<br>171<br>171<br>177<br>177        | 33<br>33<br>26<br>26<br>20<br>20 | 0,15<br>0,15<br>0,45<br>0,45<br>1,8<br>1,8  | 0,9<br>2,8<br>2,8<br>2,8<br>2,8<br>12,1 | 0,135<br>0,42<br>1,26<br>1,26<br>5,08<br>21,78<br>45,2<br>75 | 0,055<br>0,055<br>0,08<br>0,08<br>0,15<br>0,15    | 9,8<br>0,35<br>0,40<br>0,60      | 1,2<br>0,1<br>0,44<br>0,66<br>30<br>32        | 107 < 185              |
|                                                                           |                                               |                                  |                                             |                                         |                                                              |                                                   |                                  |                                               |                        |

# Chapitre 8 Echangours et Pompe

#### 8.1 échangeurs de chaleur

#### 8.11 - Introduction:

Dans les contrôles des installations de chauffage importantes il faut, souvent, pour véhiculer dans un réseau a distance la chaleur produite par les chaudières transformer le fluide chauffant, par exemple; eau chaude.

On utilise danx ee but, des échangeurs de chaleur les types des échangeurs les plus utilisés en chauffage central sont:

- échangeur à contre-courant à tube en U, Vapeur - gau.
- échangeur de chaleur à contre-courant à tube rectilignes

#### 8.12 Dimension des échangeurs:

La puissance  $Q_{k}^{\bullet}$  qui doit être fournie par la chaufferie s'obtient par la formule:

$$\dot{Q}_{k} = Q^{*} (1 + Z_{R}) (8.1.)$$

dans lequelle, Q représente les besoins calorifique du bâtiment selon DIN 4701, en Kcal/h.

 $\mathbf{Z}_{\mathbf{R}}$  un supplément pour les pertes calorifiques du reseau de tuyauteries.

Pour  $\mathbf{Z}_{\mathbf{R}}$ , utiliser les valeurs suivantes:

- pour les installations dans lesquelles les tuyauteries sont protégées colonnes montantes le long des murs intérieurs conduites de distribution avec caloriruge dans les piéces chauffées ---ZR 0,05
- Pour les installations dans lesquelles les tuyauteries sont moins protégées, colonnes montantes le long des murs extérieurs conduites de distribution avec calorifuge dans les piéces froides ---  $Z_R = 0,1$ .
- Pour les installations dont le reseau de typauterie trés étendu est placé d'une façon particuliérement défavorable colonnes montantes incorporées dans des greniers froids --  $\mathbb{Z}_{\mathbb{R}^{\pm}}$  0,15

soit Q: = 78275 Kcal/h d'aprés tableau T-6.1 et  $Z_R = 0,1$  d'aprés le mode de l'installations  $Q_R = 78275$  ( 1 + 0,1) = 86102 Kcal/h

Pour determiner la puissance d'une échangeur (Qec) on additionne  $Q_{\rm S}$ , la surpuissance est la puissanceà prévoir pour remonter rapidement en température aprés l'arrêt ou le ralenti de la chaudière Quant à  $Q_{\rm S}$ , il est conseillé (\*\*) de prednre 15 % de la valeur des déperditions Q.

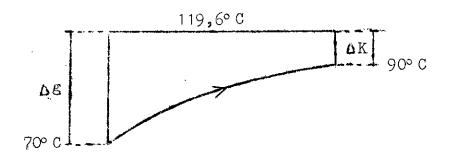
La puissance de la chaudière s'exprimera par:

$$\dot{\mathbf{Q}}_{\text{ec}} = \dot{\mathbf{Q}}_{\mathbf{k}} + \dot{\mathbf{Q}}_{\mathbf{S}} \tag{8.2}$$

0 - 78275 X 15 - 11741 Kcal/h

 $Q_{ec} = 86102 + 11741 = 97843 \text{ Kcal/h}$ 

8-13 Calcul des échangeurs de chaleur:


Pour le dimensionnement des échangeurs de chaleur, on part de l'équation fondamentale de la transmission calorifique.

$$Q^{\circ} = KS D m \qquad (8.3)$$

La determination du transmission calorifique K est traitée depend essentiellement de la transmission superficielle de la chaleur ou de la vitesse de l'écoulement et la différence moyenne éfficace des températures Dm est traitée dépend de la direction de l'écoulement.

soit les valeurs qui est donnée par le calcul:

- Qec ( puissance d'échangeur) = 97843 Kcal/h
- l'eau chaude pour le chauffage 90/70°C accélér par pompe W = 0,2m/s.
- Pression absolue P= 2 atm --) température de saturation ts=119, 0 ( tableau numérique A 6)
- (1) H.Rietschel, W.Raiss (éq. (8.33) traité de chauffage et de climatisation tome 2.
- (2) R. Bouige & D. Couillare . "traité pratique de chauffage"



Variation de la temperature dans l'échangeur

$$\frac{D_{k}}{D_{g}} = 0,596$$

$$D_{\rm m} = 49,6 \frac{1-0,596}{0.51} = 39 \, \text{C}^{\circ}$$

Surface de chauffe: S\_ // .dm. n.l

Oû d<sub>m</sub> est le diamétre moyen des tubes de chauffage n le nombre de tubes 🕩 L leur longueur

Si l'on choisit:

diamétre des tubes de chauffage di/da \_ 16/18mm

Diamétre de tubes en U: D\_ 200 mm

Nombre de tubes

Longueur moyenne de tubes /\_ 2 m

surface de chauffe  $S = \frac{77 \cdot 17}{d_m \cdot n \cdot L} = \frac{77 \cdot 17}{100 - x \cdot 30 \times 2 = 3,20 \text{m}^2}$ 

- Transmission de la chaleur sur la face de l'eau: <2.
- Il faut calculée le diamétre équivalent dg,

la surface de la section 🗜, et le perimétre U

H. Rietshel . traité de chauffage et de climatisation tome 2 (éq (8.36))

ر ز

$$f = \frac{77}{4} \qquad (D^2/_2 - n \, da^2) = \frac{77}{4} (0.02 - 30 \, x1.8^2.15^4)$$
$$= 0.008 m^2$$

$$U = 77 (D/2 + n da) + D = 77(0,1+30x0,018) + 0,2$$
  
= 2,21 m

Si l'on admet pour l'eau une vitesse W = 0.2 m/s on obtient selon la figure 9:25 (ANNEXE) pour une température moyenne du fluide de  $80^{\circ}$ c et dg= 14.5 mm.

- Transmission de la chaleur sur la face de la vapeur.

Le coeficient de transmission calorifique à l'intérieur des tubes dans lesquels circule la vapeur doit-être estimé:

- Coeficient de transmission calorifique

$$K = \frac{1}{1/41 + 1/2} = \frac{1}{\frac{1}{6000} + \frac{1}{950}} = 820 \text{ Kcal/m2 .h.00}$$

- Vérification:

$$Q^{\circ} = K.S.D_{m} = 820 \times 3,20 \times 39 = 102336 \text{ Kcal/h}$$
  
= 97843 Kcal/h

Alors la surface choisie est acceptable.

#### 8-2. Calcul de la pompe:

La puissance de la pompe se determine d'aprés l'équation:  $Np = V H_p / 102n^{(1)}$  (KW) (8.5.)

Dans cette equation:

V représente le débit en l/s

Hp la hauteur manometrique de la pompe en métres d'eaun le rendement de la pompe.

Le débit par seconde se calcul à partir de

Qotot\_ 78275 kcal/h

(2) 
$$V = Q^{\circ} \cot (C_{p,st}, \rho \times 3.6) = \frac{78275}{4} (1 \times 20 \times 969 \times 3.6)$$

(1) et (2) H. Rietshel "traité de chauffage et de climatistion tome 2 page 321 Pour un rendement de  $\eta=0.7$ , Np est donné d'aprés la relation: Np = 1,12 Hp/ 102X0,7 = 0,0157 Hp

Il faut determiner Hp (hauteur manometrique)

$$H_{P} = H_{P1} + H_{P2}$$

90 RL + Z Z 1 1 = 2,2 m CE ( Tableau -6-3)

Pour determiner HP2, il faut determiner.

one only see of a

DP \_ LR + Z entre le distributeur et l'échangeur.

| !<br>!<br>! | Tronçon<br>No | Débit de<br>chaleur<br>Kcal/h | Débit<br>d'eau<br>Kg/h | longuøur<br>de troncor<br>m                                                                                    | diamétre de<br>la tuyauterie<br>mm                   | Vitesse<br>ms | perte<br>charge<br>mrCE | le<br>'m |
|-------------|---------------|-------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------|-------------------------|----------|
| ļ           | KetG          | 78275                         | 3914                   |                                                                                                                | 50                                                   | 0,56          | 6,26                    |          |
|             | 32 32 32 3    |                               |                        | andre de la companya de la companya de la companya de la companya de la companya de la companya de la companya | Main - *** A Main Main Main Main Main Main Main Main |               |                         |          |

| Résistance du<br>frottement<br>mmCe | Nodules de<br>resistance | resistance<br>particuliére<br>! mm CE | Résistance<br>totale<br>mm CE |  |
|-------------------------------------|--------------------------|---------------------------------------|-------------------------------|--|
| . 37,56                             | 9                        | 1 <i>3</i> 5                          | 173                           |  |

Alors Hug = 0,2 m CE

 $H_{P} = 2,2 +0,2 = 2,4 m CE$ 

 $N_{p=}$  0,0157 X 2,4 = 0,038 KW

On choisit donc une pompe centrifuge mono-cellulaire "In - Line" du type: UMT

40-30

D'aprés GRUNDFOS " Coldine"

#### 8-3 puissance du réchauffeur:

La puissance du réchauffeur en Kcal/h se determine d'aprés l'équation:

$$S = Q_P^c + Q_{ec}$$

Qp: pertes de chaleur totale (allers + retours) dans la tuyauterie.

Q°P= QP allers & Q°P retours

 $Q^{\circ}_{P \text{ allers}} = 16088 \text{ X 2} = 32176 \text{ Kcal/h} (donnée par le tableau(7-2)$ 

Calculons celles de retours:

```
Colonne GX 0 26 : 68 X 13, 88 = 943 Kcal/h

" I 26 : 68 X 13, 88 = 943 "

" L 20 : 54 X 13, 88 = 749 "

" N 15 : 42 X 13, 88 = 583 "

" P Ø 15 : 42 X 13, 88 = 583 "

" R 20 : 54 X 12, 3 = 664 "

" T Ø 20 : 54 X 12, 3 = 664 "

" V Ø 15 : 42 X 12, 3 = 516 "
```

" X 2 12:34 X 12,3 = 418 "

Colonne Z 12: 34 X 12,3 = 418 Kcal/h

" I 33 : 84 X 12,1 = 1016 "

" III \$\mathred{s} 33 : 84 \times 12,1 = 1016 "
" V \$\mathred{s} 20 : 54 \times 12,1 = 653 "

" VII Ø 20: 54 X 12,1 = 653

" IX \$ 20 : 54 X 12,1 = 653 "

Total - 10472 Kcal/h

Distribution horizont de: 9 26 : 1/3 X 38X68 = 861

calorifigé : ø 20 : 1/3 X 38X54 <u>=</u> 684

Total: 2609 kcal/h

soit une perte totale de: (32176) + (2X10472) +

+ (2X2609) = 58342 kcal/h

et Qec: la quantité de chaleur cédée à l'eau pour l'amener de 15°C (température de l'eau froide) à 60°C (temperature de l'eau chaude sanitaire.

Le bilan thermique s'écrira alors:

qui s'écrit encere:

$$S = Q_P + Q_C \cdot C_b \cdot DT$$
 (8.6)

soit:  $q_c = q_c \times XX$ 

avec:

q = débit d'eau chaude par 1 appareil

N = nombre d'appareils ( mon projet contient, 50 eviers, 50 lavabos et 50 Baignoires)

Si on admet qu'en une heure d'occupation les appareils fonctionne : la moitié du temps.

Alors en une heure le débit d'eau chaude par appareil s'obtient par:

$$q_c = q_i t/2 \tag{8.7}$$

oû: q, est le débit instantané

t le temps d'occupation en secondes

soit: 
$$q_i = 0,20 \times \frac{3600}{2}$$

$$c_2 = 0,10 \times 3600$$

$$q_{c3} = 0,35 \times \frac{3600}{2}$$
 $q_{c} = q_{c1} + q_{c2} + q_{c3} = (0,20 \pm 0,1 \pm 0,35)$ 
 $q_{c} = 1170 \text{ 1/h}$ 

Notre installation étant composée de 50 baignoires,50 la vabos et 50 eviers.

Le débit d'eau chaude consommée devient:

$$q'_{c1} = q_{c1} \times 50$$
 $q'_{c2} = q_{c2} \times 50$ 
 $q'_{c3} = q_{c3} \times 50$ 
 $q'_{c3} = q'_{c3} \times 50$ 
 $q'_{c4} = q'_{c1} + q'_{c2} + q'_{c3} = q'_{c4} \times 50 = 1170 \times 50 = q'_{c4} = 58500 \text{ 1/h}$ 

Soit en débit massique: q = 58500 Kg/h

et :  $S = Q_p + Q_c \cdot C_p$ . Dt

 $q_{c} = 58500 \text{ Kg/h}$ 

Cp z 1 Kcal/Kg C° (chaleur massique de l'eau)

DT = 60 = 15 = 45°C

Ce qui donne:

S\_ 58342 + 58500 X 1 X 45 \_ 2690842 Kcal/h
Une puissance importante, si maintenant on chauffait l'eau
pendant 4 heures avant son utilisation, on aurait:

4S - 2690842 Kcal/h

et par consequent, une puissance du réchauffeur de: 672710 Kcol/h

8- 4 Détermination de la pompe de l'eau sanitaire: pour le circuit le plus défavorisé, on trouve DP\_ (583 ± 973 ± 185). 2 \_ 3482 mm CE

(D'aprés le tableau 7.3) soit une hauteur manométrique de 3,5m. On cherche la courbe caractéristique de la pompe qui se rapproche à la hauteur manométrique de 3,5m et le débit— (1188 + 836 + 1193). 2 - 6434 l/h - 1,76/1/s

On choisit donc une pompe centrifuge mono-cellulaire
" In - Line " du type : UPT
40-60

D'aprés GRUNDFOS " goldine ".

\*\*\* / \*\*

#### 8-5 Organes de securité:

La prescription la plus importante precise que toutes les chaudières de chauffage à eau chaude basse pression chauffées avec des combustibles, des gaz de combustion ou du courant électrique doivent être mises en communication avec le vase d'expansion paux deux tubes de sécurité ne comportant aucun organe de fermeture.

Une fois branchés sur la chaudière (ou échangeurs), ces tubes de sécurité prenant les nors de tube de securité aller et tube de securité retour. Le premier peut indifféremment être branché en partie haute ou en partie basse du vase. Il doit pouvoir laisser passer, le cas écheant, une émulsion eau-vapeur de telle façon que la pression dans la chaudière ne puisse dépasser la valeur de la pression statique correspondant au niveau du vase au-dessus de la chaudière. Le tube de securité retour part de la partie inférieure du vase; son rôle est de ramener à la chaudière l'excédent de volume d'eau dû a la dilatation et d'éviter la marche à sec et les coups de feu dans la chaudière.

Les deux tubes de securité ne doivent comporter aucune réduction de section (par exemple des organes d'étranglement) et être posés en pente constamment ascendante vers le vase. Leur diamétre intérieur ne peut être inférieur à 25 mm; il doit en outre satisfaire aux conditions suivantes:

tube de securité aller:

$$d_A = 15 \pm 1.5 \text{ V G/100}^{\circ} \text{ (m m)}$$
 (8.8)

Tube de securité retour:

$$d_R = 15 + \sqrt{Q/1000}$$
 (mm) (8.9)

Dans lesquels  $a_{\hat{A}}$  et  $d_{\hat{R}}$  désignant les diamétres intérieurs, Q designe la puissance de la chaudière (échangeurs) puissance effective à laquelle la chaudière estreglée.

Calcul de  $d_A$  et  $d_R$  avec: Q= 102336 Kcol/h  $d_A$ = 15 + 1, 5 V 102336 / 1000 = 30 m m et :  $d_R$  = 15 + V 102336/ 1000 = 25 m m

On choisit pour tube de securité aller, un tube filetés mi-lourds DIN 2440 de diamétre 32 mm.

et pour tube de securité retour, un tube filetés mi-lourds DIN 2440 de diamétre 25 mm.

#### Vase d'expansion:

On utilise comme vase d'expansion des récipients fermés, cylindriques ou parallélépipédiques, en tôle d'acier.

Leur capacité doit être égale à environ 2 fois l'augmentation de volume due a la dilatation de toute l'eau contenue dans l'installation. Les dimensions principales des vases d'expansion cylindriques de 30 à 1000 litres de capacité sont normalisation, de même que le diamétre de leurs tubulures, voir, norme DIN 4806 (ANNILL). On peut les poser verticalement ou horizontalement. l'épaisseur de la tôle doit être d'au moins 3 mm.

#### 8-6 Tubes des tuyauteries:

D'aprés traité de chauffage et de climatisation tome 2 (planche de travail n° 4) on choisit les tubes filetés mi-lourds DIN 2440 et les tubes en acier sans soudure DIN 2448 pour l'installation de chauffage central.

Et pour l'installation de l'eau chaude sanitaire, on choisit les tubes en fer, mais d'aprés traité pratique de chauffage J - B. Bailière.

#### 8-7 Régulation en chauffage central:

#### 8 - 71 - Introduction:

Un appareil de regulation est un appareil qui assure le contrôle du fonctionnement et la sécurité d'un autre appareil ou groupement d'appareils.

.../...

8.72 But de la régulation.

La régulation appliquée au chauffage central doit remplir plusieurs fonctions dont:

- 1 Le maintien de la température intérieure à une valeur constante quelque soit la température extérieure.
- 2 Le contrôle des fonctions de l'installation de chauffage et sa sécurité.

La régulation à pour principale consequence de jouer un rôle économique en diminuant les interventions humaines et en permettant une marche adoptée à tout instant aux conditions à remplir.

Il existe 2 tubes de régulations:

- régulation individuelle
- régulation centrale.

### BIBLIOGRAPHIE

- H. Rietschel W. RAISS Traité de chauf age et de climatisation, tome \* et 2 Editions DUNOD.
- R. BOUIGE D. Couillard Traité pratique de chauffage. Editions J-B. Baillière
- J M. RLOCH LAINE Guide pratique de l'isolation thermique des bâtiments. Editions EYROLLES
- D. Couillard et R. Bouige Chauffage, ventilation climatisation.

Editions EYROLLES.

# ANNEXE

#### TABLEAU NUMÉRIQUE A 6

4

#### Eau et vapeur d'eau (1)

| Pression<br>absolue | Température<br>de saturation | Volume<br>de vapeur saturée | Chaleur<br>de vaporisation |
|---------------------|------------------------------|-----------------------------|----------------------------|
| p<br>atm            | t <sub>s</sub>               | v"<br>m³/kg                 | r<br>kcal/kg               |
| 0,3                 | 68,7                         | 5,33                        | 558,2                      |
| 0,4                 | 75,4                         | 4,07                        | 554,2                      |
| 0,5                 | 80,9                         | 3,30                        | 550,9                      |
| 0,6                 | 85,5                         | 2,78                        | 548,1                      |
| 0,7                 | 89,4                         | 2,41                        | 545,7                      |
| 0,8                 | 93,0                         | 2,13                        | 543,5                      |
| 0,9                 | 96,2                         | 1,90                        | 541,5                      |
| 1,0                 | 99,1                         | 1,73                        | 539,6                      |
| 1,2                 | 104,2                        | 1,45                        | 536,3                      |
| 1,4                 | 108.7                        | 1,26                        | 533,4                      |
| 1,6                 | 112,7                        | 1,11                        | 530,8                      |
| 1,8                 | 116,3                        | 0,995                       | 528,5                      |
| 2,0                 | 119,6                        | 0.902                       | 526,3                      |
| 2,5                 | 126,8                        | 0,732                       | 521,4                      |
| 3.0                 | 132,9                        | 0,617                       | 517,1                      |
| 3,5                 | 138,2                        | 0,534                       | 513,4                      |
|                     | 142,9                        | 0.471                       | 510,0                      |
| 4<br>5              | 151,1                        | 0,382                       | 503,9                      |
| 6                   | 158.1                        | 0,321                       | 498,6                      |
| 7                   | 164,2                        | 0,278                       | 493,8                      |
| 8                   | 169,6                        | 0,245                       | 489,5                      |
| 9                   | 174,5                        | 0,219                       | 485,4                      |
| 10                  | 179,0                        | 0,198                       | 481,6                      |
| 12                  | 187,1                        | 0,166                       | 474,7                      |
| 14                  | 194,1                        | 0,143                       | 468.4                      |
| 16                  | 200,4                        | 0,126                       | 462,6                      |
| 18                  | 206,1                        | 0,112                       | 457,2                      |
| 20                  | 211,4                        | 0,102                       | 452,1                      |
| 25                  | 222,9                        | 0,081 5                     | 440,3                      |
| - 30                | 232,8                        | 0,067 9                     | 429,7                      |

<sup>(1)</sup> Sclon Schmidt, E., VDI-Wasserdampftafeln, 7º édit. (1968). Berlin-Heidelberg-New York: Springer; Munich: Oldenbourg.

# TABLEAU NUMÉRIQUE A 12 X

## Températures des locaux (d'après DIN 4701; valeurs recommandées)

| 1 Immeuble d'habitation Locaux d'habitation, chambres à coucher, cuisines Antichambres, vestibules, WC Cages d'escalier Salles de bain                                                                                                                                                                    | + 20 °C<br>+ 15 °C<br>+ 10 °C<br>+ 22 °C |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 2 Immeubles de commerce et d'administration Locaux de commerce et de bureaux, restaurants, chambres d'hôtel, magasins Vestibules, cages d'escalier, WC                                                                                                                                                    | + 20 °C<br>+ 15 °C                       |
| Locaux d'instruction et d'administration Cuisines d'apprentissage et ateliers Locaux de matériel scolaire, vestiaires, salles de gymnastiques Salle des fêtes Salle de bains et locaux de déshabillage Vestibules, cages d'escaliers, salle de récréation closes, WC (dans les jardins d'enfants + 15 °C) | + 18 °C<br>+ 22 °C                       |

## TABLEAU NUMÉRIQUE A 15b

## Rapport longueur de joints l à surface de fenêtre ou de porte S

pour la détermination approximative de la longueur des joints ( $\omega = l/S$ )

|                                           | Hauteur de la<br>fenêtre ou<br>de la porte<br>m | ω   |
|-------------------------------------------|-------------------------------------------------|-----|
| Fenêtres à nombre de vantaux quelconque   | fenêtre ou<br>de la porte                       | 7,2 |
| Lenettes a nomore de vantaras duestros du | 0,63                                            | 6,2 |
|                                           | 0,75                                            | 5,3 |
|                                           | 0,88                                            | 4,9 |
|                                           | 1,00                                            | 4,5 |
|                                           | 1,25                                            | 4,1 |
| •                                         | 1,50                                            | 3,7 |
| •                                         | 2,00                                            | 3,3 |
|                                           | 2,50                                            | 3,0 |
| Portes et portes-fenêtres :               | 2.50                                            | 3,3 |
| à deux vantaux                            |                                                 | 2,6 |
| à un vantail                              | 2,10                                            |     |

#### TABLEAU NUMÉRIQUE A 14.

0

#### Majorations $z_D$ et $z_H$ en %

#### a) Majorations groupées $z_D = z_U + z_A$

| Mode<br>d'exploitation | Coefficient D                         | 0,1 à<br>0,29 | 0,30 à<br>0,69 | 0,70 à<br>1,49 | 1;5 |
|------------------------|---------------------------------------|---------------|----------------|----------------|-----|
| ı                      | Exploitation réduite                  | 7             | 7 .            | 7              | 7 · |
| n                      | Interruption de 9 à 12 h de durée     | 20            | 15             | 15             | 15  |
| 111                    | Interruption de 12<br>à 16 h de durée | 30            | 25             | 20             | 15  |

#### b) Majorations z<sub>H</sub> pour orientation

Orientation Majoration  $z_H$ 

| S SO O NO N NE - 5 - 5 0 + 5 + 5 + 5 | 0 | - 5 |
|--------------------------------------|---|-----|
|--------------------------------------|---|-----|

# TABLEAU NUMÉRIQUE A 15a

# Perméabilité des joints a par mètre de longueur de joints (en m³/h)

pour portes et fenêtres d'exécution irréprochable et avec des vantaux de dimensions normales

|                                              | Fenêtres simples                                                                 | 3,0      |
|----------------------------------------------|----------------------------------------------------------------------------------|----------|
| Fenêtres en bois et en                       | Fenêtres composées                                                               | 2,5      |
| matière synthétique                          | Fenêtres doubles et fenêtres simples avec étanchéité garantie                    | 2,0      |
|                                              | Fenêtres simples                                                                 | 1,5      |
| Fenêtres en acier et<br>fenêtres métalliques | Fenêtres composées Fenêtres doubles et fenêtres simples avec étanchéité garantie | 1,5      |
| Portes intérieures                           | non étanches (sans seuil)<br>étanches (avec seuil)                               | 40<br>15 |
| Portes extérieures                           | comme les fenêtres                                                               |          |

# TABLEAU NUMÉRIQUE A 16 ·

### Caractéristique de local R

pour des locaux avec des fenêtres et des portes de dimensions. de longueur de joints et d'un nombre courants

| Rapport    |          | en bois ou en<br>synthétique |          | en acier et<br>métalliques | Caractéristique |  |  |
|------------|----------|------------------------------|----------|----------------------------|-----------------|--|--|
| de surface | Portes   | intérieures                  | Portes   | intérieures                | de maison       |  |  |
|            | étanches | non étanches                 | étanches | non étanches               |                 |  |  |
| $S_E/S_P$  | < 1,5    | < 3                          | < 2,5    | < 6                        | R=0.9           |  |  |
| $S_E/S_P$  | 1,53     | 39                           | 2,56     | 620                        | R=0.7           |  |  |

 $S_E$  = Surface des fenêtres et portes extérieures au vent.

X

 $S_P =$ Surface des portes sous le vent. Pour les portes coulissantes on peut toujours poser R = 1.

# TABLEAU NUMÉRIQUE A 17

#### Caractéristique de maison H

|             |                                    | Maison<br>d'alignement | Maison individuelle (1) |
|-------------|------------------------------------|------------------------|-------------------------|
|             | Site protégé                       | 0,24                   | 0,34                    |
| Région      | Site découvert                     | 0,41                   | 0,58                    |
| normale     | Site particulièrement<br>découvert | 0,60                   | 0,84                    |
|             | Site protégé                       | 0,41                   | 0,58                    |
| Region      | Site découvert                     | 0,60                   | 0,84                    |
| vents forts | 1                                  | 0,82                   | 1,13                    |

# Coefficients k des fenêtres et portes

|                                                                                                                                                                                                                                                                                                                                                   | kcal/m | h.ºC                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------|
| Portes Porte extérieure, bois Porte extérieure, acier Porte de balcon, bois, avec remplissage laine de verre, porte simple Porte de balcon, bois, avec remplissage laine de verre, porte double Porte intérieure                                                                                                                                  | 5 4 2  | 0,<br>0<br>,0<br>,0<br>,0                                   |
|                                                                                                                                                                                                                                                                                                                                                   | Bois   | Métal                                                       |
| Fenêtres extérieures (¹) Vitrage simple Vitrage double, 6 mm d'écartement entre les 2 verres Vitrage double, 12 mm d'écartement entre les 2 verres Fenêtre composée Fenêtre double Imposte — simple dans cadre métallique Imposte — double dans cadre métallique Grandes vitrines, fenêtre à encadrement en béton Fenêtre en pavés de verre creux |        | 5,0<br>3,4<br>3,1<br>3,0<br>2,8<br>5,0<br>3,0<br>5,0<br>2,5 |
| Fenêtres intérieures Fenêtres simples Fenêtres doubles                                                                                                                                                                                                                                                                                            | 1      | 3,0<br>2,0                                                  |
| Fenêtres de serres $S_{\text{surfaces vitrées}}/S_{\text{surface au sol}} = 1$ $= 1,5$ $= 2,0$ $= 2,5$ $= 3,0$                                                                                                                                                                                                                                    |        | 5,0<br>4,1<br>3,6<br>3,3<br>3,0                             |

<sup>(1)</sup> L'exécution « Bois » s'applique également aux matières synthétiques ; l'exécution « Acier » aux métaux non ferreux.

#### TABLEAU NUMÉRIQUE A 19

X

# Coefficients k des murs [kcal/m².h.°C] (selon DIN 4701)

1. Maçonnerie de blocs pleins, perforés ou creux (enduits sur une ou deux faces)

Remarque. En tête du tableau on a à côté des anciennes mesures (entre parenthèses) indiqué également les nouvelles épaisseurs de murs pour des mêmes valeurs des coefficients k. A cause de la faible différence des coefficients k, on n'a pas fait de différence dans le tableau lui-même.

|    |                                                                                                                                                                                                                                                                                                                               | Masse                                       |                              |                              | térieu<br>ur (m:                               |                              |                              |                              | intérie<br>seur (1                   |                              |                              |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------|------------------------------|------------------------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|------------------------------|
|    | Matériau                                                                                                                                                                                                                                                                                                                      | volum. (1)<br>kg/m³                         |                              | 300                          | 365<br>(380)                                   | 490                          | 115                          | 175                          | 240                                  | 300                          |                              |
| Ā. | Briques (DIN 105) Brique pleine, brique creuse de construction, brique creuse Brique pleine, brique de construction, brique dure surcuite perforation verticale                                                                                                                                                               | 1 000<br>1 200<br>1 400<br>1 800<br>≥ 1 900 | 1,29                         | $^{1,10}_{1,27}$             | 0.95                                           | 0,75                         | 1,/2                         | 1,40<br>1,51<br>1,71         | 1,08<br>1,17<br>1,27<br>1,47<br>1,69 | 1.01                         | 0.97                         |
| В. | Brique surcuite pour hâtiment Brique surcuite en parement extérieur de 155 mm d'épaisseur brique pleine à l'intérieur Briques silico-calcaires (DIN 106, Feuille 1) Bloc creux silico-calcaire Brique perforée silico-calcaire, bloc creux silico-calcaire Brique perforée silico-calcaire                                    | 1 000<br>1 200<br>1 400<br>1 800            | 1,81<br>1,25<br>1,35<br>1,56 | 1,56<br>1,06<br>1,16<br>1,35 | 1,18                                           | 0,79<br>0.95                 | <br>1,77<br>1,93<br>2,17     | 1,36<br>1,45<br>1,62<br>1,88 | 1,13<br>1,21<br>1,38<br>1,65         | 1.05<br>1.21<br>1.47         | 0,92<br>1.07<br>1,32         |
|    | Brique pleine silico-calcaire Brique pleine silico-calcaire. brique silico-calcaire extra-dure Briques de laitier (DIN 398): Brique de laitier HS 100 et HS 150 Brique de laitier extra-dure HHS Brique de laitier extra-dure HHS Blocs de béton cellulaire (au gaz et à la mousse) (DIN 4165, Feuille 1), durcis à la vapeur | > 1 800<br>600<br>800<br>1 000              | 1.56<br>1.79<br>0.96         | 1,35<br>1,56<br>0,81         | 1,18<br>1,38<br>0,69<br>0.78                   | 0.95<br>1,12<br>0,53<br>0.61 | 1,93<br>2,09<br>1,41<br>1,52 | 1,62<br>1,79<br>1,10<br>1,21 | 1,69<br>1,55<br>0,89<br>0,99<br>1,08 | 1.21<br>1.38<br>0.76<br>0.85 | 1,07<br>1,23<br>0,65<br>0,73 |
|    | Blocs plems en béton léger p. ex. de ponce naturelle, d'argile surcuite, de brique broyée, de scories, etc. (DIN 18151)                                                                                                                                                                                                       | 800<br>1 000<br>1 200<br>1 400<br>1 600     | 1,08<br>1,19<br>1,29         | 0,91<br>1.01<br>1,12         | 0,78<br>0,87<br>0,95                           | 0.61<br>0.68<br>0.75         | 1,52<br>1,63<br>1.72<br>1.87 | 1.21<br>1.31<br>1.40         | 0,99<br>1,08<br>1,17<br>1,31<br>1,47 | 0,85<br>0,93<br>1,01<br>1,15 | 0,73<br>0,81<br>0,88<br>1,01 |
| F. | Blocs creux en béton léger p. ex., de ponce naturelle, d'argile surcuite, de brique broyée, de scories, etc. (DIN 18151) Blocs creux à deux évidements Blocs creux à trois évidements                                                                                                                                         | 1 000<br>1 200<br>1 000<br>1 400<br>1 600   | 1.23<br>1.35<br>1.23         | 1.03<br>1.16<br>1.03         | 7 0,83<br>5 0,90<br>5 1,00<br>5 0,90<br>5 1,00 |                              |                              | 1.35<br>1.45<br>1,35<br>1,45 | 1,05<br>1,11<br>1,21<br>1,11<br>1,21 | 0.96<br>1.05<br>0.96<br>1.05 | 0,86<br>0,92<br>0.86<br>0.92 |

<sup>(1)</sup> La masse volumique se rapporte en général aux blocs, y compris éventuellement les cavités, mais non pas a in maçonnerie. Pour le paragraphe F seulement il faut mettre la masse volumique du béton sans cavités.

# TABLEAU NUMÉRIQUE A 19 (suite)

2. Panneaux de grandes dimensions et éléments de construction sans joints en bétons légers et en bétons divers (enduits sur une ou deux faces)

|                                                                                                                                                                                                                                                                                                                                                                                                    | Masse                              | Ep                                       | aisse                      | ır de                                      | s mui             | s extér                              | ieurs                                | (mn                          | 1)                                           | Epaisseur des murs intérieurs (mm)                             |                          |                                                   |                                                           |                                      |                                              |                                      |                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|----------------------------|--------------------------------------------|-------------------|--------------------------------------|--------------------------------------|------------------------------|----------------------------------------------|----------------------------------------------------------------|--------------------------|---------------------------------------------------|-----------------------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------|
| Matériau                                                                                                                                                                                                                                                                                                                                                                                           | volum.<br>kg/m³                    | 187,5                                    | 200                        | 250                                        | 300               | 312,5                                | 350                                  | 375                          | 400                                          | 50                                                             | 75                       | 100                                               | 125                                                       | 150                                  | 200                                          | 250                                  | 300                        |
| Panneaux de murs en béton léger (DIN 18162) de ponce naturelle (planches de ponce) ponce de haut fourneau, argile surcuite béton de laitier ponce de vitrification, brique broyée, tuf lavé, béton léger, agrégats légers  Béton léger à la chaux, béton cellulaire (au gaz ou à la mousse) (DIN 4164, étuvé à la vapeur)  Béton d'agrégats non poreux (p. ex. gravier) mais poreux par les joints | 800<br>1 000<br>1 200<br>1 400<br> | <br><br>0,71<br>0,85<br>1,01<br>1,16<br> | 0,81<br>0,96<br>1,11<br>—  | 0,67<br>0,86<br>0,93<br>1,44<br>1,68       |                   | 0,56<br>0,67<br>0,78<br>1,24<br>1,46 | 0,50<br>0,61<br>0,71<br>1,14<br>1,35 | 0,47<br>0.58<br>0,67<br>1,09 | 0.36<br>0.45<br>0,54<br>0,64<br>1,03<br>1,23 | 2,01<br>2,22<br>2,35<br>—<br>1,57<br>1,74<br>1,90<br>2,01<br>— | 1,74<br>1,95<br>2,10<br> | 1,52<br>1,74<br>1,90<br>—<br>1.05<br>1,21<br>1,38 | 1,35<br>1,57<br>1,74<br>—<br>0,91<br>1,05<br>1,21<br>1,35 | 0,93<br>1,08<br>1,21<br>1,67<br>1,85 | 0,64<br>0,76<br>0,89<br>1,01<br>1,45<br>1,63 | 0.63<br>0,76<br>0,86<br>1,28<br>1,46 | 0.55                       |
| Bétons d'agrégats non poreux à joints fermés<br>Classe du béton B ≤ 120<br>Classe du béton B ≥ 160<br>Bétons légers d'après DIN 4232 et parois<br>exécutées par jet d'après DIN 4103                                                                                                                                                                                                               | _                                  | 1,16                                     | 0.96<br>1.1<br>1,3<br>1.50 | 2.58<br>0.86<br>1 0.93<br>5 1.16<br>5 1.33 | 3 0,81<br>5 1 0 1 | 2,36<br>0.67<br>0.78<br>0.98<br>1.16 | 2,24<br>0,61<br>0.71<br>0.90         | 2,17<br>0.58<br>0,67<br>0.85 | 2,10<br>0.54<br>0.64<br>0.81                 | 1,90<br>2,01<br>2,22<br>2,35                                   | 1,74<br>1.95<br>2.10     | 11.52<br>5 1.74<br>5 1.90                         | 1.21<br>21.35<br>1.57                                     | 2,43<br>1.08<br>1.21<br>1.43<br>1.60 | 2.27<br>0,89<br>1,01<br>1,21<br>1,38         | 2.14<br>0.76<br>0.86<br>1.05         | 5 0,73<br>5 0,93<br>1 1,08 |

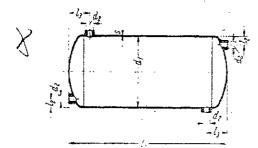
#### TABLEAU NUMERIQUE A 19 (suite)

3. Maçonnerie et béton avec couches calorifuges, enduits aux deux faces, avec produits calorifuges fibreux y compris support d'enduit (Les chiffres du tableau sont également valables pour des constructions à pans de bois avec remplissage par les matériaux indiqués)

|                                                                                                                                                   |                             |                     | М                                                                             | urs extérieurs                                                                   | Murs intérieurs                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Matériau <sub>.</sub>                                                                                                                             | Masse Epais-<br>volum. seur |                     | Plaques<br>légéres<br>de<br>construction<br>en fibre<br>de bois<br>(DIN 1101) | Plaques de liège<br>Isolants fibreux<br>(DIN 18165)                              | Plaques<br>legères<br>de<br>constr.<br>en fibres<br>de bois<br>(DIN 18165)<br>(DIN 1101)                                                                             |
|                                                                                                                                                   | kg/m³                       | mm                  | 15 25 35<br>mm nim nim                                                        | 10 15 20 25 30<br>mm mm mm mm rain                                               | 15 25 10 15 20 30<br>mm mm mm mm mm mm                                                                                                                               |
| Brique perforée, brique creuse de construction (DIN 105)                                                                                          | 1 400                       | 115<br>175          | 1.42 1.13 0.99                                                                | 1,211,05 0,93 0.83 0,75                                                          | 1.48 1,17 1,25 1,08 0,96 0,77 1,26 1,03 1,10 0,96 0.86 0.71                                                                                                          |
| Brique pleine, brique de construction, brique dure surcuite à perforation verticale (DIN 105) Brique perforce silico-calcaire (DIN 105 Feuille 1) | 1 400                       | 115<br>240 -<br>115 | 1,85 1,39 1,18<br>1,38 1,11 0,97<br>1,80 1,34 1,15                            | 1,52 1,27 1,10 0,96 0,86<br>1,19 1,03 0,92 0,82 0,74<br>1,47 1,24 1,07 0,95 0,85 | 1,09 0,91 0,97 0,85 0,78 0,65<br>1,60 1,24 1,34 1,14 1,00 0,60<br>1,24 1,01 1,08 0.95 0,85 0,70<br>1,56 1,20 1,30 1,12 0,98 0,79                                     |
| Brique de laitier HS 100 et HS 150 (DIN 398)<br>Brique pleine silico-calcaire (DIN 106 Feuille 1)                                                 | 1 400<br>≥ 1 800            | 240<br>115          | 1,31 1,05 0,93<br>1,98 1,46 1,23                                              | 1,12 0,99 0,88 0,79 0,72<br>1,60 1,33 1,15 1,00 0,89                             | 1,35 1,08 1,15 1,01 0,90 0,73<br>1,17 0,96 1,02 0,91 0,82 0,68<br>1,69 1,30 1,40 1,19 1,04 0,83<br>1,55 1,20 1,30 1,12 0,98 0,79                                     |
| Blocs pleius en béton léger (DIN 18152)                                                                                                           | 1 000                       | 240<br>115<br>175   | 1.53 1,20 1,04<br>1.53 1,19 1,04<br>1.25 1,01 0,91                            | 1,29 1,11 0,98 0,87 0,79<br>1,29 1,11 0,97 0,87 0,78<br>1,08 0,95 0,85 0,77 0,70 | 1,35 1,09 1,17 1,01 0,90 0,74<br> 1,35 1,08 1,16 1,01 0,90 0,73<br> 1,13 0,93 0,99 0,88 0,79 0,66                                                                    |
|                                                                                                                                                   | 1 400                       | 115<br>175          | 1,74 1.31 1,13<br>1,46 1,15 1,00                                              | 1.43 1.21 1,05 0,93 0,84<br>1,24 1,07 0,95 0,85 0,76                             | 0.95 0.81 0.85 0.77 0.70 0.60<br>1,52 1.18 1,28 1,10 0.97 0.78<br>1.30 1.04 1,12 0.98 0.87 0.72<br>1.13 0.93 0.99 0.88 0.79 0.66                                     |
| Béton léger (DIN 4232)                                                                                                                            | 1 600                       | 125<br>187.5<br>250 | 1,78 1.35 1.13<br>1.52 1.19 1.03                                              | 1,47 1,23 1,07 0,94 0,85<br>1,28 1,11 0,97 0,86 0,78                             | 1,541.211,301,110,980,79<br>1,351,081,161,010,900,73<br>1,190,981,040,920,830,68                                                                                     |
| Béton de gravier et de gravillon à joint fermé (DIN 1047) $B \ge 120$                                                                             |                             | 125<br>187,5        | 2.14 1,55 1.29<br>1.94 1,44 1,21                                              | 1.70 1,40 1.20 1,03 0.92<br>1.58 1,31 1,13 0.99 0.88                             | 1.81 1.37 1.49 1.25 1.08 0.85<br>1.67 1.28 1.39 1.18 1.03 0.82                                                                                                       |
| $B \geqslant 160$                                                                                                                                 |                             | 125                 | 2.26   .61   1.33   2.10   1.52   1.27                                        | 1,78 1,45 1,23 1,06 0.94<br>1,67 1,37 1,18 1,02 0.91                             | 1.54 (1.21   1.30   1.11   0.98   0.79   1.89   1.41   1.54   1.29   1.11   0.87   1.78   1.35   1.46   1.23   1.07   0.84   1.67   1.28   1.39   1.18   1.03   0.82 |

TABLEAU NUMÉRIQUE A 21

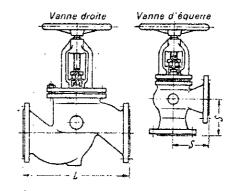
Coefficients de résistance calorifique totale 1/k de plafonds, planchers et toitures plates (y compris terrasses)  $[m^2, h, {^{\circ}C/kcal}]$  (D1N 4701)


| <i>t</i>                                                     |                         | III . II. C/kcaij (Dir.                                                                                                                                                                           |                     |                         |                                   |                       |                       |                      |                            |                               | _                 |
|--------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|-----------------------------------|-----------------------|-----------------------|----------------------|----------------------------|-------------------------------|-------------------|
| ·                                                            |                         |                                                                                                                                                                                                   | $\overline{c}$      | ouch                    | e isol                            | ante                  | addi                  | tionn                | elle (n                    | <u>ım)</u>                    | _                 |
| Туре                                                         |                         | Disposition et revêtement                                                                                                                                                                         | 0                   | con<br>fil<br>()        | ues lé<br>istruc<br>ores d<br>DIN | tion<br>e boi<br>1101 | en<br>is<br>)<br>50   | isola<br>(D          |                            | breux<br>165)<br>5   25       | 5                 |
|                                                              |                         | Lames de bois sur lambourdes                                                                                                                                                                      | 0.91                | 1,04                    | 1,22                              | 1,35                  | 1,61                  | 1,04                 | 1,16 i,                    | 30 1,5                        | ) <b>4</b>        |
| (a) Dalles en beton armé                                     | Plafonds                | Parquet de liège ou parquet de bois (au bitume                                                                                                                                                    | 0,00                | 0,73                    | 0,91                              | 1,04                  | 1,32                  | 0,73                 | 0.85 0.                    | ,98 1,2                       | 23                |
| Revêtement de finition                                       | et sols (1)             | Chape de pierre au bois ou terrazzo et carreaux<br>ou linolèum ou matière synthétique, chape<br>flottante B 225                                                                                   | 0,52                | ł                       | 1 !                               | . 1                   |                       | 1                    | 0,77                       |                               |                   |
| (b) Plafonds métalliques avec corps creux (hourdis perforés) |                         | Chape en ciment (couche de finition) chape flottante B 225                                                                                                                                        | 10                  | 0,61                    | 0,79                              | 0.92                  | 1.19                  | 16,0                 | 0,73 0                     | ,86 1,1                       | 11                |
| 18 150 150 ± 20 ± 20                                         | Plafonds<br>extérieurs  | Toitures massives, carton bitumé sur forme de<br>nivellement en ciment<br>Terrasses (2)                                                                                                           | 0.42                | in 56                   | SO 74                             | 10.87                 | 11.14                 | 1 1                  | 0.63 0<br>0.68 0<br>1,32 1 |                               | υv                |
| (c) Plafonds en béton armé avec solives  Réton de gravillon  | Plafonds<br>et-sols (1) | Lames de bois sur lambourdes Parquet de liège ou parquet de bois. Voi exécution plus haut Chape de pierre au bois ou terrazzo. Voir exécution plus haut Chape en ciment, voir exécution plus haut | 0.7:<br>0.6:<br>0,6 | 0.81<br>7 0.81<br>1 0.7 | 0 0,98<br>6 0,95                  | 1,19<br>1,01<br>51,07 | 1,45<br>1,38<br>71,34 | 0,88<br>0,80<br>0,76 | 0,92<br>0,88               | 1.12 1,<br>1.05 1,<br>1,01 1, | ,37<br>,30<br>,27 |
|                                                              | Plafonds<br>extérieurs  | Toitures massives, carton bitumé sur forme d<br>nivellement en ciment<br>Terrasses (2)                                                                                                            | 0.5                 | ย่อ 7                   | 110.89                            | 911.02                | 211.21                | 3]                   | 0,78<br>0,83<br>0.1.49     | דומאיט                        | ے, د              |
| (d) Plafonds massifs doubles                                 | Plafonds                | Lames de bois sur lambourdes Parquet de liège ou parquet de bois. Voir exécution plus haut                                                                                                        | u-<br>0,9           | 4 1.0                   | 17 1,2                            | 5 1.3                 | 7 1,6                 | 4 1,07               | 71.19                      | 1,32                          | 1.5               |
|                                                              | et sols (1)             | Chane en ciment, voir exécution plus haut                                                                                                                                                         | 0,8                 | 2 0.9                   | 95 1,1                            | 2 1.2                 | 711,5                 | 310.9                | 9 1,11<br>5 1.07           | 1,21                          | 1                 |
| - 0 500                                                      | Plafonds<br>extérieurs  | Toitures massives, carton bitumé sur forme nivellement en ciment Terrasses (2)                                                                                                                    | ő.                  | 77 0.9                  | 90 1.0                            | 7   1 , 2             | 0 1.4                 | 7[_                  | 0.97                       | 11,13                         | 1,4               |
| 250 250 1 250 A                                              | (1) Pour                | Terrasses (*)   des plafonds sur caves, majorer 1/k de 0.11 π     iverts déduire:0.04 m².h. °C kcal.                                                                                              | y².h.<br>wes.d      | ∘C/k<br>e Sol           | cal. p                            | our i                 | les p                 | laton<br>, isola     | ation [                    | oessus<br>gessus              | rto               |

passages ouverts déduire: 0.04 m<sup>2</sup>.h. °C kcal.

(2) Terrasses : chape de ciment, terrazzo, carreaux, plaques de Solnhof sur béton, isolation par carton bitumé et forme de pente en ciment.

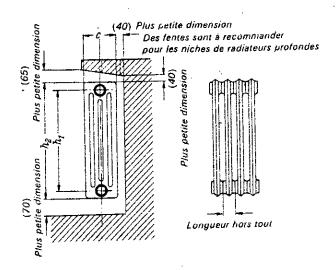
#### TABLEAU NUMÉRIQUE A 50


Vases d'expansion (selon DIN 4806)



| Capacité<br>(litre) | d;<br>Turn | d <sub>1</sub> t <sub>1</sub> t <sub>2</sub> t <sub>3</sub> pouces mm mm |      |      | s<br>mm | Poid<br>kg |     |
|---------------------|------------|--------------------------------------------------------------------------|------|------|---------|------------|-----|
| 30                  | 300        | RI                                                                       | 500  | 50   | 100     | 3          | 14  |
| 50                  | 350        | Rl                                                                       | 580  | 50   | 105     | 3          | 19  |
| 75                  | 400        | R 1/4                                                                    | 670  | 50   | 115     | 3          | 25  |
| 100                 | 400        | R 1/4                                                                    | 870  | 60   | 135     | 1 3        | 31  |
| 125                 | 500        | R 1/4                                                                    | 710  | 60   | 130     | 3          | 34  |
| 150                 | 500        | R 1/4                                                                    | 850  | 60   | 130     | 3          | 40  |
| 200                 | 500        | R 1/2 .                                                                  | 1110 | 60   | 140     | 3          | 49  |
| 250                 | 500        | R 1/2                                                                    | 1350 | 60   | 140     | 3          | 57  |
| 300                 | 600        | R, 1/2                                                                   | 1180 | 60   | 150     | 3          | 63  |
| 400                 | 650        | R 2                                                                      | 1310 | · 70 | 170     | 3          | 77  |
| 500                 | 700        | R 2                                                                      | 1420 | 70   | 180     | 3          | 89  |
| 600                 | 700        | R 21/2                                                                   | 1660 | 80   | 190     | 3          | 103 |
| 800                 | 800        | R 21/                                                                    | 1700 | 80   | 200     | 4          | 158 |
| 1000                | 800        | R 21/.                                                                   | 2125 | 80   | 200     | 4          | 190 |

#### TABLEAU NUMÉRIQUE A 49


Longueurs hors tout des vannes (selon DIN 3300)



|     | P       | N 6     | PN 10 a    | 1PN 16  |
|-----|---------|---------|------------|---------|
| DΝ  | L<br>mm | S<br>mm | L<br>Intri | S<br>mm |
| 10  | 120     | 60      | 120        | 85      |
| 15  | 130     | 65      | 130        | 90      |
| 20  | 150     | 70      | 150        | 95      |
| 25  | 160     | 75      | 160        | 100     |
| 32  | 180     | 80      | 180        | 105     |
| 40  | 200     | 90      | 200        | 115     |
| 50  | 230     | 100     | 230        | 125     |
| 65  | 290     | 120     | 290        | 145     |
| 80  | 310     | 130     | 310        | 155     |
| 100 | 350     | 150     | 350        | 175     |
| 125 | 400     | 175     | 400        | 200     |
| 150 | 480     | 200     | 480        | 225     |
| 175 | 550     | 230     | 550        | 250     |
| 200 | 600     | 250     | 600        | 275     |
| 250 | 730     | 300     | 730        | 325     |
| 300 | 850     | 350     | 850        | 375     |
| 350 | 980     | 400     | 980        | 425     |
| 400 | 1100    | 450     | 1100       | 475     |

# TABLEAU NUMÉRIQUE À 51

# Dimensions et domaine d'emploi des radiateurs normalisés (selon DIN 4720 et 4722)



| Longueur hors tout<br>par élément (mm)                      | Radiateurs               | en fonte 60                | Radiateurs en acier 50                               |                      |                   |                        |     |  |  |
|-------------------------------------------------------------|--------------------------|----------------------------|------------------------------------------------------|----------------------|-------------------|------------------------|-----|--|--|
| Distance des raccords $h_1$ Ecart admissible $\pm 0.3$ (mm) | Hauteur ho               |                            | Profondeur hors tout $c$<br>Ecart admissible $\pm 2$ |                      |                   |                        |     |  |  |
|                                                             | Rad. fonte               | Rad. acier                 |                                                      |                      | <u> </u>          |                        |     |  |  |
| 900<br>500<br>350<br>200                                    | 980<br>580<br>430<br>280 | 1 000<br>600<br>450<br>300 | (70) (¹)<br>— ~<br>—                                 | (110) (²)<br>110<br> | 160<br>160<br>160 | 220<br>220<br>220<br>— | 250 |  |  |



#### III. CALCUL DES SURFACES DE CHAUFFE ET DES ISOLATIONS

#### TABLEAU NUMÉRIQUE A 26

# Puissance calorifique normalisée par élément de radiateur en kcal/h pour $t_1 = 20$ °C (DIN 4703, Pl. 1)

| F1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Entraxe des<br>connexions | 900 |     |     | 500 |      |     | 850 |     | 200 |     |
|------------------------------------------|---------------------------|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|
| Fluide chauffant                         | Largeur                   | 70  | 110 | 160 | 220 | 310  | 160 | 220 | 160 | 220 | 250 |
|                                          | Fonte                     | 99  | -   | 178 | 226 | (81) | 110 | 144 | 83  | 106 | 82  |
| Eau $t_H = 80  ^{\circ}\text{C}$         | Acier                     | -   | 106 | 140 | 178 | 63   | 85  | 112 | 65  | 85  | 67  |
| apeur I <sub>H</sub> = 100 °C            | Fonte                     | 146 |     | 262 | 332 | 118  | 162 | 212 | 122 | 156 | 120 |



#### TABLEAU NUMÉRIQUE A 51 Suite

| Réalisation    | Type de chauffage                         | Pressi<br>fonction<br>maxi<br>atm | nement | Température de<br>fonctionnement<br>maximale<br>°C |  |
|----------------|-------------------------------------------|-----------------------------------|--------|----------------------------------------------------|--|
| Type ordinaire | Chauffage à eau chaude                    | 4                                 | 40     | 110                                                |  |
| -              | Chauffage à vapeur (radiateur en fonte)   | 2                                 | -      | 133                                                |  |
| Type spécial   | Chauffage à eau chaude ou eau surchauffée | 6                                 | 60     | 140                                                |  |
|                | Chauffage à vapeur (radiateur en fonte)   | 4                                 |        | 151                                                |  |

<sup>(1)</sup> Seulement comme radiateur-fonte.

<sup>(2)</sup> Seulement comme radiateur-acier.

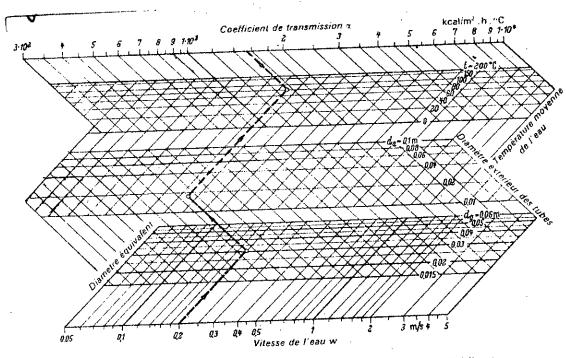



Fig. 9.25. Détermination graphique du coefficient de transmission calorifique superficielle externe d'après l'équation (9.60).

exemple: pour l'éau une vitesse w=0,2 m/s, on obtient selon la figure 9.25 pour une température moyenne du fluide de 80 °c et dg=30,6 mm

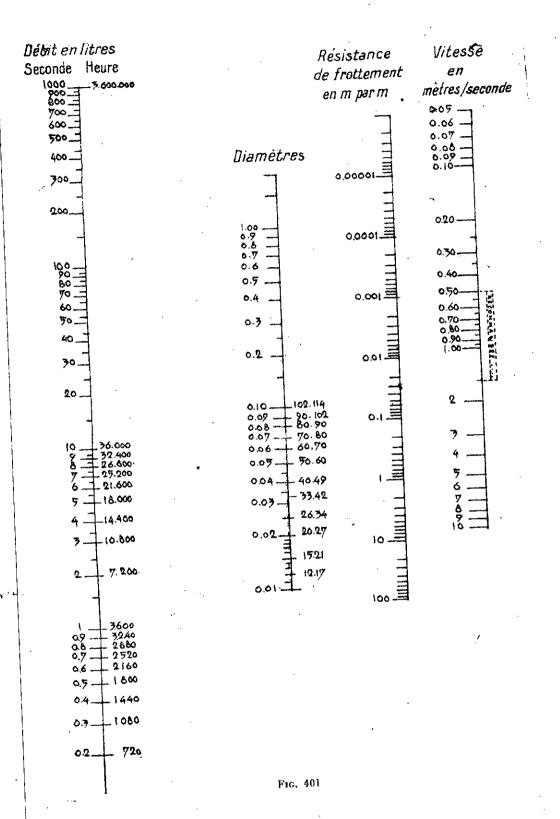
(voir trace hachure) de = 1540 Kcal fur. h. c

# DEBITS DE BASE DES APPAREILS (d'aprés N.F.P. 201 à 204 — en /s)

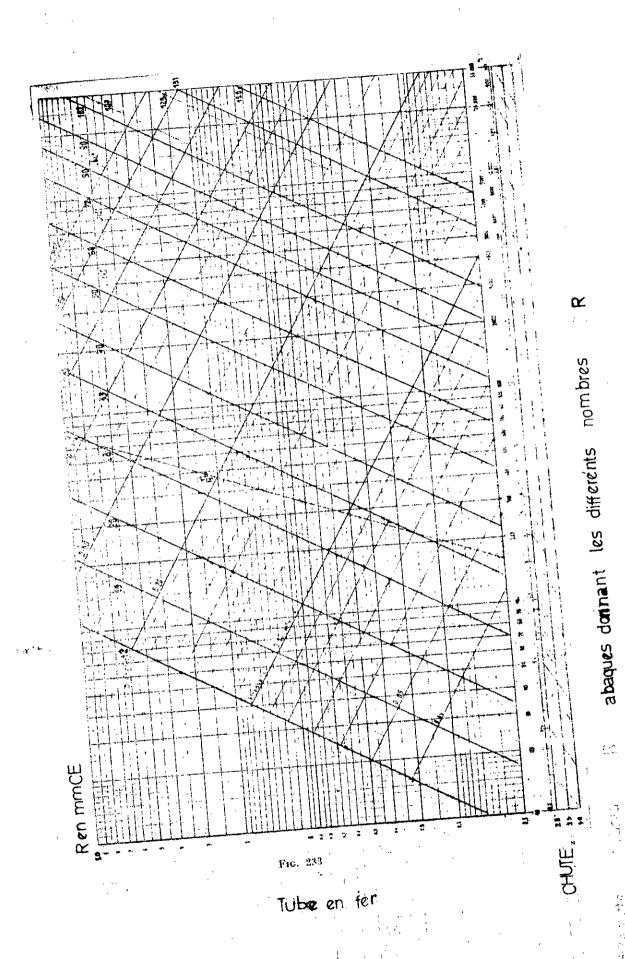
| Évier      |              |          |          |                    |        | _ 0,20 |
|------------|--------------|----------|----------|--------------------|--------|--------|
| C VIEI     |              | •        |          |                    |        | _ 0,10 |
| Lavabo — - |              |          |          |                    |        | 0,05   |
| Lavabo     | collectii ha | ir jei – |          |                    |        | _0,10  |
| Bidet      |              |          |          | -<br><i>d¹e</i> au | chaude | 0,35   |
| 3aignoire  | alimentee    | par um   | -ouffa 1 | bains              |        | 0,25   |
| "          | 11           | 11 11    |          |                    |        |        |
| Douche-    |              |          |          | <u></u>            |        | 0,25   |

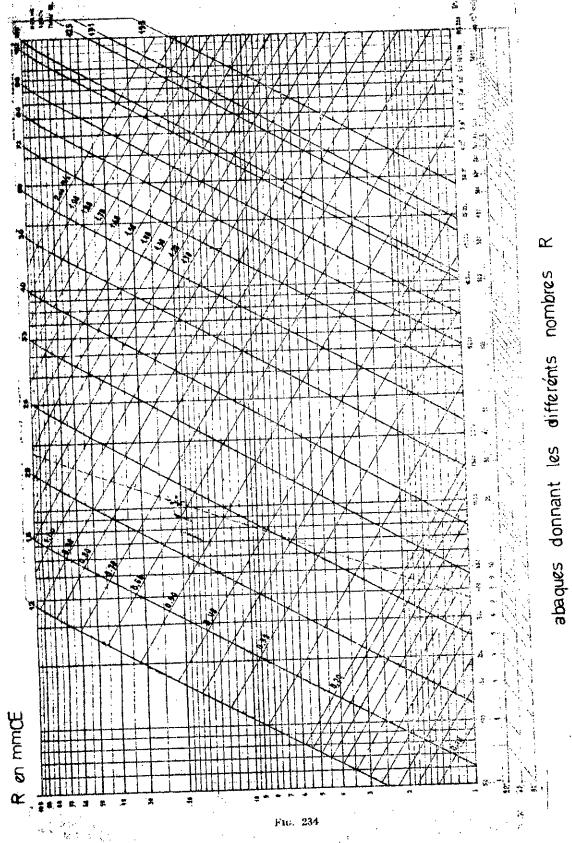
# COEFFICIENTS DE SIMULTANÉITÉ (d'après N.F.P. 201 à 204)

$$y = \sqrt{\frac{1}{x-1}}$$

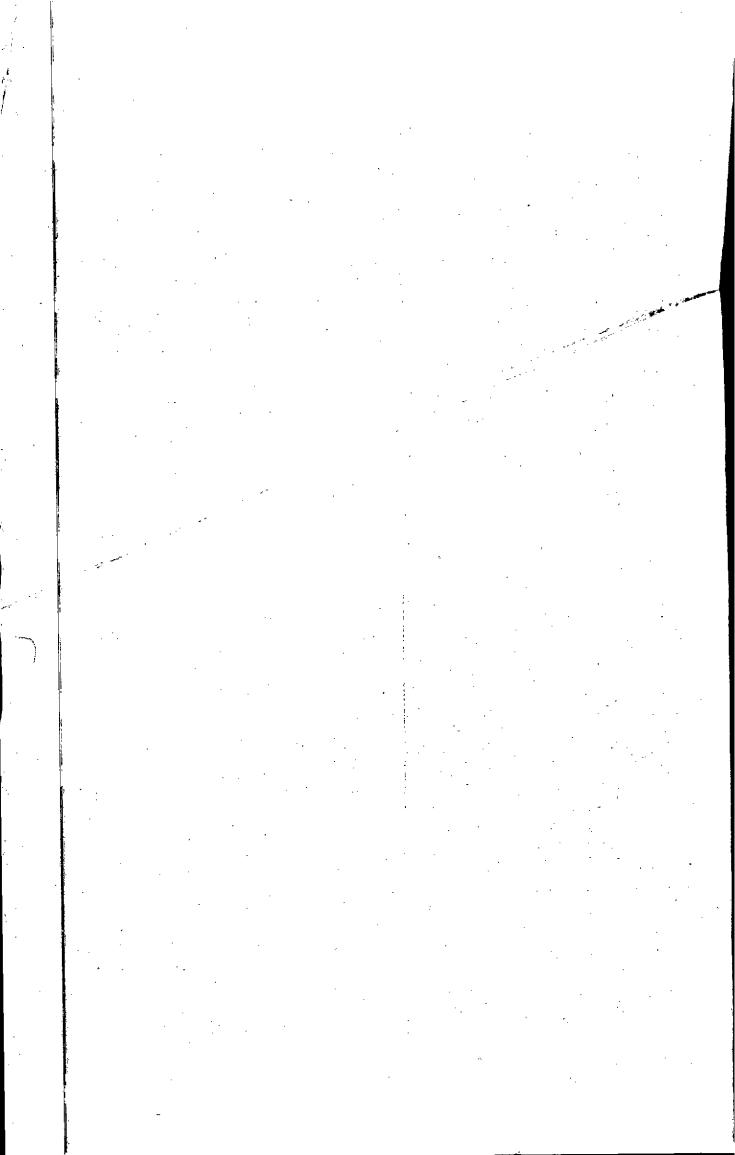

x = nombre d'appareils

y = coefficient de simultanéité.


| x  | ¥    | x  | . y  | A. | y    | , se | y    | æ  | у    | х    | y    | x   | ,y         |
|----|------|----|------|----|------|------|------|----|------|------|------|-----|------------|
|    |      |    |      |    |      |      |      |    |      |      |      |     | )<br>{<br> |
| 1  | 1    | 11 | 0,32 | 21 | 0,22 | 31   | 0,18 | 41 | 0,16 | 55   | 0,14 | 105 | 0,10       |
| 2  | 1    | 12 | 0,30 | 22 | 0,22 | 32   | 0,18 | 42 | 0,16 | 60   | 0,13 | 110 | 0,10       |
| 3  | 0.71 | 13 | 0.29 | 23 | 0,21 | 33   | 0,18 | 43 | 0,15 | 65   | 0,13 | 115 | 0,09       |
| 4  | 0.58 | 14 | 0,28 | 24 | 0,21 | 34   | 0,17 | 14 | 0,15 | 70   | 0.12 | 120 | 0,09       |
| 5  | 0.50 | 15 | 0,27 | 25 | 0,20 | 35   | 0,17 | 45 | 0,15 | 75   | 0,12 | 125 | 0,09       |
| 6  | 0.45 | 16 | 0.26 | 26 | 0,20 | 36   | 0,17 | 46 | 0,15 | 80   | 0,11 | 130 | 6,0        |
| 7  | 0.41 | 17 | 0,25 | 27 | 0,20 | 37   | 0,17 | 47 | 0,15 | . 85 | 0,11 | 140 | 0,0        |
| 8  | 0.38 | 18 | 0.24 | 28 | 0,19 | 38   | 0,16 | 48 | 0,15 | 90   | 0,11 | 150 | 0,0        |
| 9  | 0.35 | 19 | 0,24 | 29 | 0,19 | 39   | 0,16 | 49 | 0,14 | 95   | 0,10 |     |            |
| 10 | 0.33 | 20 | 0,23 | 30 | 0.19 | 40   | 0,16 | 50 | 0,14 | 100  | 0,10 |     | į          |


# Tableau T. 7.1 . longueurs équivalentes des appareils

| compteur                                   | 2 <u>°</u> 5 m           |
|--------------------------------------------|--------------------------|
| filtre                                     | 3 🔓 10 m                 |
| robinet d'arrêt                            | 1,5 m                    |
| ballon                                     | 3 m                      |
| clapet                                     | 2 <del> °</del> 15 m     |
| coude court<br>« allongé<br>Té<br>mitigeur | 2 m<br>1 m<br>3 m<br>3 m |




abaques donnant les diametres des differents tronçons (installation sanitaire)





TUBE en fer

