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ABSTRACT 

This thesis focuses on the application of a parametric approach to the problem of multicomponent polynomial 
phase signal parameters estimation. We show how the state-space modellisation and the application of the 
Kalman filter offer many advantages when combined with the use of multisensor array, exploiting the additional 
spatial information. Most conventional approaches are limited to processing narrowband data using narrowband 
assumption to model the problem. For tackling the wideband situation, the majority of the proposed methods 
require transforming the received signals from the time domain to the frequency domain using the Fourier 
transform as pre-processing step. Very few authors have dealt with the wideband situation in the time domain. In 
this thesis, we recall the definitions of narrowband and wideband signals and their effect on the problem 
modellisation where we consider a real-valued modellisation, as opposite to the most often used complex-valued 
modellisation. The drivers behind this choice are: Dealing with narrowband and wideband signals in the time 
domain using the same algorithm, and the reduction of the computational cost, as opposite to the complex-valued 
modellisation, optimising by this the memory use. The proposed algorithm can be applied in the 
monocomponent and multicomponent cases with good performance in the case where there are more sources 
than array sensors. In addition to the estimation of the signal phase parameters, the resulting algorithm allows the 
estimation of the sources directions of arrivals and the estimation of the order of the polynomial phase (when 
unknown). The proposed algorithm is compared to competitive methods and proven to perform as good or better 
than these latter with reduced computational cost. 
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RÉSUMÉ 

Dans cette thèse nous nous intéressons à l’application d’une approche paramétrique au problème d’estimation  
des paramètres des SPPs multi composantes où nous montrons que la modélisation utilisant l’espace d’état et 
l’application du filtre de Kalman offrent plusieurs avantages lorsque ces derniers sont combinés avec l’utilisation 
d’un réseau de plusieurs capteurs, exploitant par cette association l’information spatiale. La majorité des 
approches conventionnelles sont limitées au traitement des données en supposant le cas bande étroite dans la 
modélisation du problème. Généralement, les méthodes traitants le cas large bande requièrent la transformation 
des signaux reçus du domaine temporel vers le domaine fréquentiel en utilisant la transformée de Fourier comme 
étape de prétraitement. Peu d’auteurs ont traité le problème large bande dans le domaine temporel. Dans notre 
travail, nous rappelons les définitions des signaux à bande étroite et à large bande et leurs effets sur le problème 
de modélisation où nous considérons une modélisation à valeurs réelles. Les motivations derrière ce choix sont: 
Le traitement des cas large bande et à bande étroite dans le domaine temporel en utilisant le même algorithme et 
la réduction du coût de calcul, relativement au cas de modélisation à valeur complexe. L’algorithme proposé 
peut être appliqué aux cas mono composante et multi composantes avec de bonnes performances lorsque le 
nombre de sources surpasse celui des éléments de l’antenne. Aussi, l’algorithme résultant permet, en plus de 
l’estimation des paramètres des signaux, l’estimation des directions d’arrivées des sources (localisation) et 
l’estimation de l’ordre du polynôme de la phase (lorsque ce dernier est inconnu). L’algorithme est comparé à des 
méthodes compétitives et est prouvé avoir des performances aussi bonnes ou meilleures avec un coût de calcul 
réduit.  

MOTS CLÉS  

Estimation des Retards, Directions d’Arrivées, Filtre de Kalman Étendu, Source à bande Étroite, Estimation des 
Paramètres, Signal à Phase Polynomiale, Modélisation en Espace d’État, Source à Large bande. 
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1. RÉSUMÉ ÉTENDU

1.1 Introduction

La communauté scientifique du traitement du signal a consacré une attention

particulière à l’étude des signaux phase polynomiale (SPPs). Ces signaux existent

dans la nature ainsi que dans plusieurs applications. Par exemple, certaines chauves

souris produisent des SPPs à phase hyperbolique et quadratique pour se localiser.

Certains systèmes radar utilisent des SPPs quadratiques. Les tremblements de terre

et les tests nucléaires sous terrains peuvent générer des SPPs non linéaires. L’altitude

et la vélocité d’un avion peuvent être estimées à partir de la fréquence intermédiaire

(FI) non linéaire du bruit produit par le moteur et atteignant le sol. Les SPPs sont

aussi utilisés en communications, astronomie, télémétrie, et autres disciplines. De

plus, selon le théorème de Stone-Weierstrass, toute fonction continue sur un intervalle

fermé peut être uniformément approximée par une fonction polynomiale. La grande

majorité des applications traitant le problème d’estimation des paramètres des SPPs

considèrent le signal bruité modélisé par :







y(t) = aexp[jφ(t)] + v(t)

φ(t) =
∑

L

l=0 blt
l

(1.1)

L’amplitude du signal, a, est supposée constante et le polynôme de la phase φ(t)

est de degré L (pour L = 2, le SPP est appelé chirp). L’amplitude et la phase

instantanée sont à valeur réelle (VR). Le signal v(t) est un bruit additif, blanc et

Gaussien, indépendant du SPP.

Dans notre travail, nous nous intéressons à l’application d’une approche paramétrique

au problème d’estimation des paramètres des SPPs multi composantes où nous mon-

trons que la modélisation utilisant l’espace d’état et l’application du filtre de Kalman
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offrent plusieurs avantages lorsque ces derniers sont combinés avec l’utilisation d’un

réseau de plusieurs capteurs, exploitant par cette association l’information spatiale.

La majorité des approches conventionnelles sont limitées au traitement des données

en supposant, dans la modélisation du problème, le cas bande étroite. Généralement,

les méthodes traitant le cas large bande requièrent la transformation des signaux

reus du domaine temporel vers le domaine fréquentiel en utilisant la transformée de

Fourier comme étape de prétraitement. Peu d’auteurs ont traité le problème large

bande dans le domaine temporel. Dans ces méthodes, il est supposé que les fréquences

instantanées des signaux ne changent pas durant le temps nécessaire à une onde pour

traverser l’aperture de l’antenne. Cette supposition signifie que les signaux restent à

bande étroite à chaque instant, et donc leurs largeurs de bandes instantanées restent

petites comparées à l’inverse du temps de propagation de l’onde à travers l’antenne.

Dans notre effort, nous rappelons les définitions des signaux à bande étroite et à

large bande et leurs effets sur le problème de modélisation où nous considérons une

modélisation VR. Les motivations derrière ce choix sont: Le traitement des cas large

bande et bande étroite dans le domaine temporel en utilisant le m ême algorithme et

la réduction du co ût de calcul, relativement au cas de modélisation à valeur complexe

(VC). L’algorithme proposé peut être appliqué aux cas mono-composante et multi-

composantes avec l’obtention de bonnes performances lorsque le nombre de sources

surpasse celui des éléments de l’antenne. L’algorithme résultant permet, en plus de

l’estimation des paramètres des SPPs, l’estimation des directions d’arrivée des sources

(localisation) et l’estimation de l’ordre du polynôme de la phase (lorsque ce dernier

est inconnu).

1.2 État de l’art

Les SPPs appartiennent à la classe des signaux non stationnaires, rendant les

méthodes de traitement de ces derniers applicables aux premiers. Les objectifs des

méthodes statistiques pour le traitement du signal sont l’extraction des paramètres à
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partir d’observations bruitées. Les techniques d’estimation peuvent être classifiées en

deux catégories principales : Non paramétriques (aussi appelées méthodes spectrales)

et paramétriques. Dans les premières, des fonctions spectres sont formées, où par ex-

emple dans le cas d’estimation des angles d’arrivée, les positions des plus hauts piques

de la fonction en question sont considérées comme les estimées des angles d’arrivée.

Les techniques paramétriques par contre nécessitent une recherche simultanée de tous

les paramètres. Ces dernières généralement produisent un meilleur résultat, relative-

ment aux approches non paramétriques, mais souvent au dépend d’une complexité de

calcul élevée. Dans notre travail, nous résumons les différentes méthodes adaptées,

à partir des problèmes généraux du traitement d’antenne, au problème d’estimation

des paramètres des SPPs. Comme exemple de méthodes non paramétriques large-

ment utilisées, on cite la méthode de Capon qui a été adaptée à l’estimation des

paramètres de la phase des SPPs et présentée dans [10]. Elle permet la représentation

de l’évolution temporelle de la phase dans un plan temps-fréquence. Similairement,

on cite l’estimateur MUSIC présentée dans [11] avec l’hypothèse que le sous-espace

bruit est Gaussien. Elle permet l’estimation des paramètres de la phase sans l’ajout

d’une matrice diagonale de régularisation à la matrice d’auto corrélation, contraire-

ment à la méthode de Capon. Bien que ces méthodes spectrales soient numériquement

attractives, souvent elles n’offrent pas une exactitude suffisante; en particulier, pour

des scénarios impliquant des signaux hautement corrélés (ou cohérents). Une alterna-

tive est d’exploiter le modèle des données de faon complète en utilisant les méthodes

paramétriques. Pour ces dernières, la cohérence des signaux n’impose aucune dif-

ficulté conceptuelle. Le prix à payer pour cette efficacité et robustesse accrues est

la nécessité d’une recherche multidimensionnelle pour l’estimation des paramètres.

Probablement l’approche paramétrique la plus connue et fréquemment utilisée est

l’algorithme maximum de vraisemblance (MV). L’application de l’algorithme MV

standard reste assez limitée pour le traitement des SPPs car aucun avantage n’est

pris concernant la structure spécifique des SPPs. Une variante de l’algorithme MV

a été développée dans [16] prenant en compte cette structure particulière et util-
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isant un réseau de capteurs pour l’estimation de SPPs multi-composantes. Une autre

approche paramétrique pour l’analyse des SPPs, utilisant les fonctions d’ambiguté

d’ordre supérieur, a été proposée dans [4]. Une version plus élaborée, utilisant le pro-

duit des fonctions d’ambigüıté d’ordre supérieur, a été développée dans [19] en con-

sidérant le produit de plusieurs fonctions d’ambiguté d’ordre supérieur de m ême ordre

mais avec différents retards. Cette version vient améliorer le résultat d’estimation,

particulièrement dans le cas où le rapport signal à bruit est faible. L’estimation des

paramètres basée sur l’utilisation du filtre de Kalman (FK) a été largement étudiée

pour le cas des SPPs noyés dans un bruit Gaussien. L’utilisation du FK est motivée

par l’avantage qu’offre cette méthode au niveau pratique permettant la poursuite en

temps réel de la variation des fréquences des signaux [24], [25]. Un premier travail ef-

fectué utilisant cette technique a été consacré à l’identification des signaux chirp. Un

modèle d’état linéaire a été obtenu basé sur l’approximation de Tretter [26] permet-

tant la transformation du bruit additif en un bruit sur la phase. Le modèle obtenu,

étant linéaire et Gaussien, permet l’application du FK. Bien que ce filtre soit optimal

dans le sens du minimum de variance, la méthode de Tretter reste approximative

et seulement applicable au cas de signaux mono-composante. Dans [28] et [29], les

auteurs ont étudié le problème d’identification des signaux chirp en utilisant le filtre

de Kalman étendu (FKE) en proposant et comparant deux modèles des SPPs non

linéaires et exacts: Le premier modèle est non linéaire par rapport à l’état alors que

le second est non linéaire par rapport aux observations.

Récemment, nous avons proposé dans [30] une méthode d’estimation des signaux

chirp en utilisant deux FKE en cascade. Dans [32] les auteurs ont proposé un FKE

pour la démodulation des SPPs en utilisant une représentation d’état où la phase est

exprimée en fonction des polynômes de Legendre.
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1.3 Méthodologie proposée

Dans ce travail, nous présentons un nouvel algorithme basé sur le (FK). Notre

approche, présentée dans [31] et [33], offre la possibilité d’étende l’estimation des

paramètres des SPPs mono-composante au cas des SPPs multi composantes (MC-

SPPs) et où l’algorithme développé dans [30] est généralisé au cas MCSPPs d’ordres

arbitraires reus par une antenne à plusieurs éléments. Cette méthode présente un

nombre de propriétés attractives. Elle est applicable pour les applications nécessitant

le traitement des signaux en temps réel du fait de la nature récursive de l’algorithme

résultant et l’utilisation modeste de mémoire (du fait de la nature du FK). En con-

sidérant la modélisation VR, nous proposons l’exploitation de l’information spatiale

fournie par une antenne à plusieurs capteurs linéaires et uniformes. Dans ce cas, les

observations obéissent au modèle suivant:

y1(t) =
N

∑

n=1

an sin [φn(t)] + v1(t), (1.2)

ym(t) =

N
∑

n=1

an sin
[

φn

(

t −
τnm

∆

)]

+ vm(t), m = 2, . . . , M, (1.3)

où {vm, m = 1, . . . , M} sont des bruit indépendants, a valeurs réelles, blancs et

Gaussiens ayant des moyennes nulles et des variances {σ2
m

, m = 1, . . . , M}. {τnm, n =

1, . . . , N, m = 2, . . . , M} sont des paramètres VR représentants les retards temporels

de propagation de la n-ème source arrivant au niveau du m-ème capteur relativement

au signal reu sur le premier capteur. La modélisation en espace d’état consiste à

établir les équations d’état et de mesure d’après le choix du vecteur d’état. En

pratique, selon (1.2), deux cas se présentent: des situations où les retards sont connus

et des applications où ces derniers sont inconnus. Nous donnons alors la représentation

d’état pour ces deux cas.

La modélisation en espace d’état consiste à définir les équations d’état et de

mesures suivant le choix du vecteur d’état. En pratique, suivant l’équation (1.3),

deux cas peuvent se manifester : Situations où les retards sont connus et applications
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où ces paramètres sont inconnus. Dans le premier cas, le modèle d’état choisit possède

le vecteur d’état suivant

x(t) =
[

a1 φ1(t) φ
(1)
1 (t) . . . φ

(L1)
1 (t) . . . . . . aN φN(t) φ

(1)
N

(t) . . . φ
(LN )
N

(t)
]T

,

(1.4)

où (.)T et (.)(l) représentent, respectivement, les opérateurs transposée d’une ma-

trice et la dérivée l-ème par rapport à t.

Le vecteur des paramètres est définit par

θ = [a1 b01 b11 . . . bL11 . . . . . . aN b0N b1N . . . bLN N ]T , (1.5)

θ̂(t) = βx̂(t), (1.6)

Où θ̂ et x̂ sont les estimées de θ et x, respectivement, et β est un coefficient scalaire

dépendant du choix des vecteurs d’état et du vecteur des paramètres. Dans le cas où

ces retards sont inconnus, ils sont inclus en augmentant le vecteur d’état donné par

(1.4)

x(t) =
[

a1 τ12 φ1(t) φ
(1)
1 (t) . . . φ

(L1)
1 (t) . . . . . . aN τN2 φN(t) φ

(1)
N

(t) . . . φ
(LN )
N

(t)
]T

.

(1.7)

Nous notons que seulement l’ensemble {τn2, n = 1, . . . , N} est pris en con-

sidération. Ceci est justifié par le fait que, pour un réseaux de capteurs linéaire et uni-

forme, les retards restants peuvent sont obtenus en utilisant la relation τnm+1 = mτn2,

m = 2, . . . , M .

Dans ce cas, le vecteur des paramètres est définit par

θ = [a1 τ12 b01 b11 . . . bL11 . . . . . . aN τN2 b0N b1N . . . bLN N ]T . (1.8)
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Les motivations principales derrières le choix de la structure du vecteur d’état sont:

L’obtention d’un nombre minimal d’équations non linéaires et l’estimation directe des

fréquences instantanées des signaux, FI, un paramètre très important comme souligné

dans [23]. En effet, à partir de (1.4) et (1.7), il est possible d’estimer directement la FI

de chaque composante, et donc minimiser l’erreur que pourrait résulter à partir d’une

estimation indirecte. L’algorithme proposé est basé sur l’application du FKE M fois:

Le premier FKE est appliqué sur le signal non retardé en calculant les valeurs prédises

du vecteur d’état et de la matrice de covariance de l’erreur de prédiction. Ceci est

suivi par le calcul du gain du FK, les estimées du vecteur d’état et la matrice d’erreur

de covariance d’estimation, après l’introduction de l’observation du premier capteur.

Le résultat est ensuite utilisé comme prédiction dans le second FKE appliqué sur le

signal retardé par τn2. Le gain de Kalman est alors calculé avec l’estimée du vecteur

d’état et la matrice erreur de covariance d’estimation après l’inclusion de la mesure

du second capteur. Cette procédure est répétée jusqu’à l’application du M-ème FKE.

Les estimées finales de ce dernier filtre constitue la sortie de l’estimateur et sont aussi

utilisées par le premier FKE dans les équations de prédiction pour fermer la boucle

de l’algorithme.

En utilisant notre approche, l’estimation des angles d’arrivée est pratiquement

directe du fait que ces derniers sont liés aux paramètres retard temporels comme

nous allons voir ci-dessous.

Considérons N SPPs arrivants sur un réseau d’antenne uniforme et linéaire con-

stitué de M capteurs. Les sorties des capteurs obéissent le modèle présenté dans (1.2)

et (1.3).

En considérant les N sources localisées par les directions α1, α2,· · ·,αM , les retards

temporels τnm y sont liés par la relation

τnm =
(m − 1)d

c
cos(αn), n = 1, . . . , N, m = 1, . . . , M (1.9)

Où c est la célérité de propagation des ondes, et d est la distance séparant deux

capteurs adjacents. D’où le problème d’estimation des angles d’arrivée est résolu par



8

le remplacement, dans (1.7) et dans les équation du filtre de Kalman étendu, des

paramètres retards temporels τn2, n = 1, . . . , N par les angles d’arrivée correspon-

dants αn, n = 1, . . . , N , résultant en la relation suivante

x(t) =
[

a1 α1 φ1(t) φ
(1)
1 (t) . . . φ

(L1)
1 (t) . . . . . . aN αN φN(t) φ

(1)
N

(t) . . . φ
(LN )
N

(t)
]T

,

1.4 Résultats de simulation

Un nombre de simulation est effectué pour évaluer les performances de l’algorithme.

Ces performances sont mesurées en comparant les erreurs quadratiques moyennes avec

les bornes inférieures de Cramèr-Rao, après dérivation de ces dernières en considérant

la modélisation du problème, leurs correspondant. Les exemples suivants sont con-

sidérés:

1. Cas de Trois sources linéairement modulées en fréquence arrivants par des angles

différents sur un réseau à quatres capteurs. Les ordres des phases des signaux

sont supposés connus, puis inconnu (surestimés).

2. Scénario 1. avec la présence de deux sources ayant le m ême angle d’arrivée.

3. Scénario 1. et où les degrés des phases des signaux sont connus et égalant à 5.

4. Signal Chirp à large bande et comparaison avec la méthode de [34].

5. Scénario 1. et comparaison avec la méthode de [19].

6. SPPs à large bande et comparaison avec la méthode de [16].

7. Cas de trois sources à large bande arrivants par des angles différents sur un

réseau d’antenne à deux capteurs (nombre de sources supérieur à celui des cap-

teurs d’antenne)
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Les résultats des simulations (illustrés dans Chapitre 5) montrent que la méthode

proposée offre des résultats satisfaisants, comparatifs/supérieurs a ceux des méthodes

récentes avec un coup de calcul réduit.

1.5 Conclusion

Dans notre étude, nous avons effectué un travail de synthèse des méthodes ex-

istantes dans la littérature et traitant le problème d’estimation des paramètres des

signaux à phase polynomiale. Nous avons identifié les problèmes et restrictions ren-

contrées par ces dernières: La majorité des approches proposées sont seulement ap-

plicables aux cas des signaux mono- composante. Pour les méthodes extensibles aux

cas de signaux à composantes multiples, un rapport signal à bruit élevé est nécessaire

pour garantir un bon résultat d’estimation des paramètres. Aussi, la majorité des

méthodes existantes n’adressent pas directement le problème de localisation de la

source lors de l’identification des signaux, et requièrent l’utilisation de techniques

dédiées, rendant le problème de la résolution conjointe de l’identification et la lo-

calisation très complexe. De plus, lors du traitement des sources à large bande, la

majorité des techniques utilisent une étape de prétraitement et une transformation

vers le domaine fréquentiel, augmentant pas cela le co ût de calcul.

Ce travail présente une nouvelle méthodologie combinant la représentation en

espace d’état et l’utilisation de la technique du filtrage de Kalman avec l’exploitation

de l’information spatiale disponible par le biais d’un réseau d’antenne. Nous avons

démontré comment cette association présente de nouvelles perspectives et offre des

avantages pour la résolution de problème dans ce domaine:

• L’approche améliore le résultat d’estimation comparée au cas où aucune infor-

mation spatiale n’est exploitée (utilisation d’un seul capteur)
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• L’algorithme est applicable dans les cas de signaux mono-composante ou multi-

composantes et permet l’estimation conjointe des paramètres de la phase des

signaux et leurs angles d’arrivée.

• Le choix particulier du vecteur d’état permet une estimation directe de la

fréquence instantanée des signaux, un paramètre très important dans plusieurs

applications, et donc permettant la réduction de son erreur d’estimation.

• la performance de l’algorithme reste assez bonne dans le cas où le nombre des

sources est supérieur au nombre des éléments d’antenne, et dans des situations

où le degré du polynôme de la phase est inconnu.

• L’approche proposée est applicable pour des situations nécessitants le traitement

des signaux en temps réel, ceci gr âce à la nature m ême du filtre de Kalman.

• Finalement, et en particulier, notre approche permet le traitement des signaux

à large bande dans le domaine temporel et sans aucun co ût de traitement

additionnel (en comparaison avec le cas des signaux à bande étroite).

L’implémentation de l’algorithme sur des DSP ou FPGAs et sa validation en

utilisant des signaux réels restent des domaines à explorer. Durant notre travail de

recherche, nous avons utilisé uniquement des signaux simulés pour le développement

de l’algorithme et l’ensemble de nos résultats est basé sur ces données simulées. Alors

que la performance de l’algorithme est consistante avec le test théorique résidant

dans la bande inférieure de Cramér-Rao, les données réelles doivent être collectées

et utilisées pour vérifier les performances pratique de notre méthode. De plus, les

éléments du réseau d’antenne ont été considérés comme identiques et parfaitement

calibrés. La robustesse de l’algorithme à ces hypothèses doit être alors étudiée.
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ABSTRACT

This thesis focuses on the application of a parametric approach to the problem

of multicomponent polynomial phase signal parameter estimation. We show how

the state-space modellisation and the application of the Kalman filter offer many

advantages when combined with the use of multisensor array, exploiting the addi-

tional spatial information. Most conventional approaches are limited to processing

narrowband data using narrowband assumption to model the problem. For tackling

the wideband situation, the majority of the proposed methods require transforming

the received signals from the time domain to the frequency domain using the Fourier

transform as pre-processing step. Very few authors have dealt with the wideband

situation in the time domain.

In this thesis, we recall the definitions of narrowband and wideband signals and

their effect on the problem modellisation where we consider a real-valued modellisa-

tion, as opposite to the most often used complex-valued modellisation. The drivers

behind this choice are: Dealing with narrowband and wideband signals in the time

domain using the same algorithm, and the reduction of the computational cost, as

opposite to the complex-valued modellisation, optimising by this the memory use.

The proposed algorithm can be applied in the monocomponent and multicomponent

cases with good performance in the case where there are more sources than array

sensors. In addition to the estimation of the signal phase parameters, the resulting

algorithm allows the estimation of the source directions of arrivals and the estimation

of the order of the polynomial phase (when unknown).

The proposed algorithm is compared to competitive methods and proven to per-

form as good or better than these latter with reduced computational cost.
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1. INTRODUCTION

Statistical methods for signal processing have a wide range of different applications,

such as, for example, radar, sonar, wireless communications, telephony, and geo-

physics. However, the objectives are often the same, namely, the extraction of pa-

rameters of interest from noisy observations.

Array signal processing focuses on signals conveyed by propagating waves. An

array of sensors located at distinct spatial locations is deployed to measure a prop-

agating electromagnetic, acoustic, or seismic wavefield. The goals of array signal

processing are to combine sensor’ outputs cleverly so as: To characterize the field by

detecting the number of sources and locating these sources; to track the instanta-

neous positions of the sources as they move in space; and to enhance the quality of

the target sources by spatial filtering the interfering sources and noises.

Depending on the application, the processing might be batch mode or off-line,

where the data are collected before processing, or sequential or online, when the algo-

rithm proceeds as the observations are collected. There are many classical methods

of either type, addressing each of the objectives.

Particular and commonly used signals used in the different applications are the

constant amplitude, time varying phase signals [1], because they are relatively easy

to generate and have a good power efficiency. Continuous phase is used in some cases

(eg., analog FM), while in other cases the phase is discontinuous (e.g., phase-shift

keying or direct spread spectrum). Constant amplitude, polynomial phase signals

will be considered in this thesis.
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1.1 Array Processing

Sensor arrays have been in use for several decades in many practical signal process-

ing applications. An array is used to filter signals in a space-time field by exploiting

their spatial and temporal characteristics. This filtering may be expressed in terms

of a dependence upon angle or wavenumber.

An array consists of a set of sensors that are located at different points in space

with respect to a common reference point. These sensors listen to the incoming sig-

nals and provide a means of sampling these signals in space. Depending on the sensor

characteristics and the propagation path, the source waveforms undergo deterministic

and/or random modifications. The sensor outputs are composed of these signal com-

ponents and additive contaminations such as measurement noise and thermal noise.

The outputs are combined such that target signals from a set of angles are enhanced

by a constructive combination and unwanted signals from other angles are rejected

by destructive combination. Sensor array systems can be divided into two classes:

active and passive. In active sensing situations, a known waveform of finite duration

is generated, which in turn propagates through a medium and is reflected by some

target back to the point of origin. The transmitted signal is usually modified both

in amplitude and phase by the target characteristics, which by themselves might be

changing with time and its position in space. These disturbances give rise to a ran-

dom return signal. In the passive context the signal received at the array is generated

by the target, such as propeller or engine noise from submarines.

Applications for sensor arrays [2], [3] include the following areas:

Radar - Radar is the area in which antenna arrays were first used. Most radar

systems are active, and the antenna array is used for both transmission and reception

of signals. Radar technologies are used in military applications, including ballistic

missile detection and numerous airborne systems. On the other hand, non-military

applications include air traffic control, depth-sounding, impulse radar, etc.
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Radio Astronomy - Unlike radar systems, radio astronomy systems are passive and

are used to detect celestial objects and estimate their characteristics. These systems

usually employ arrays with very long baselines, extending from hundreds of meters

to nearly the diameter of the earth.

Sonar - Sonar systems can be active or passive. The theory of active sonar sys-

tems has much in common with radar, but sonar systems deal with acoustic energy

into the water while the radar systems deal with electromagnetic energy in the at-

mosphere. The main application in sonar systems is the detection and tracking of

submarines, and in the fishing industry for detecting schools of fish.

Seismology - There are two main areas of seismology in which array processing plays

an important role. The first area is the detection and location of underground nuclear

explosions. The other area is exploration seismology that is to construct an image of

the subsurface in which the structure and physical properties are described.

Tomography - Tomography is the cross-sectional imaging of objects from transmitted

or reflected data. The object is illuminated from a number of different directions and

data are collected at a receiving array. The cross-sectional image can then be recon-

structed from the data. Medical diagnosis and treatment are examples of successful

applications of tomography.

Communications - Antenna arrays are used in many communication systems. Several

satellite systems utilize phased arrays in either the earth terminal or space segment

for applications like tracking and data relay. Wireless cellular systems also utilize

various types of multiple access techniques such as Time Division Multiple Access

(TDMA), Code Division Multiple Access (CDMA), and Global System for Mobile
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Communications (GSM).

Array processing deals with methods for processing the sensors’ output data in

the above applications in order to obtain insight into the structure of the waves

traversing the array. The practical problems of interest in array signal processing

are extracting the desired parameters such as the directions-of-arrival (DOA), power

levels, impinging signal parameters, and cross-correlations of the signals present in

the scene from the available information including the measured data. Often one may

also be specifically interested in the actual waveform corresponding to one of these

sources, and in that case it is necessary to estimate the actual waveform associated

with the desired signal while at the same time suppress the other signals. At times,

the desired signal structure might be only known partially, and the objective in that

case is to detect its presence in the available noisy data. This situation is often

encountered in sonar to detect the presence of the signature of a specific class of

submarine. Though the signal structure is known, it may still contain unknown

parameters such as angle-of-arrival (AOA) or random phase. All these problems fall

into one of two categories: detection or estimation of signals. In cases where the AOA

of the signals are time-varying, instantaneous estimation or tracking will be deployed.

1.2 Polynomial Phase Signals

Since many years and till now the signal processing scientific community paid a

particular attention to the study of polynomial phase signals (PPS). The phase of

these signals can be modelled by a polynomial that we note φ(t). In the case the

degree of φ(t) is greater or equal to 2, the PPS are non stationary. PPS occur both

in nature and in man-made applications [4]. For example, the sonar systems of some

bats use hyperbolic and quadratic PPS for echo location. Some radar systems use

quadratic PPS pulse compression signals. Earthquake and underground nuclear tests

may generate nonlinear PPS seismic signals in some long-propagation modes. The
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altitude and speed of an aircraft may be estimated from the nonlinear instantaneous

frequency (IF) of the engine noise reaching the ground. PPS signals also appear

in communications, astronomy, telemetry, and other disciplines. Moreover, due to

the Stone-Weierstrass theorem [5], any continuous function over a closed interval can

be approximated uniformly by a polynomial function. This approximation theorem

assures that polynomial approximation can get arbitrarily close to any continuous

function as the polynomial order is increased. Let f(x) be continuous on a real

interval I. Then for any ε > 0, there exists an nth-order polynomial Pn(f, x), where

n depends on ε, such that |Pn(f, x) − f(x)| < ε for all x ∈ I. Thus, any continuous

function can be well approximated arbitrarily by means of a polynomial.

The majority of applications treat the PPS parameter estimation considering the

noisy signal y(t) given by





y(t) = aexp[jφ(t)] + v(t)

φ(t) =
∑L

l=0 blt
l

(1.1)

The signal amplitude a is assumed constant and the polynomial phase φ(t) is of

degree L (for L = 2, the PPS is called chirp). The amplitude and instantaneous

phase are real valued. The signal v(t) is an additive white Gaussian noise (AWGN)

independent from the PPS.

1.3 Scope of the Thesis

This thesis focuses on the application of a parametric approach to the problem

of multicomponent polynomial phase signal parameter estimation. We show how

the state-space modellisation and the application of the Kalman filter offer many

advantages when combined with the use of multisensor array, exploiting the additional

spatial information.

Most conventional approaches are limited to processing narrowband data using

narrowband assumption to model the problem. The majority of the proposed methods

for tackling the wideband situation require transforming the received signals from the
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time domain to the frequency domain using Fourier transform as pre-processing step.

Very few authors have dealt with the wideband situation in the time domain. In these

methods, it is assumed that the instantaneous signal frequencies do not change during

the time necessary for a wave to travel across the array aperture. This assumption

means that the signals remain narrowband in each snapshot, i.e., their instantaneous

bandwidths are small compared with the inverse of the wavefront propagation time

across the array. Still the authors consider the signals to be wideband at the full

observation interval because the propagation time across the aperture is usually much

smaller than the sampling interval.

In this thesis, we highlight the definition of wideband signals and its effect on the

problem modellisation where we consider a real-valued (RV) modellisation, opposite

to the most often used complex-valued (CV) modellisation. The drivers behind this

choice are: Dealing with narrowband and wideband signals in time domain using

the same algorithm, and the reduction of the computational cost, as opposite to the

complex-valued modellisation, optimising by this the memory use.

The proposed algorithm can be applied in the monocomponent and multicom-

ponent cases with good performance in the case where there are more sources than

array sensors. In addition to the estimation of the PPS signal phase parameters, the

resulting algorithm allows the estimation of the direction of arrival of the sources and

the estimation of the order of the polynomial phase (when unknown).

1.4 Thesis Organization

The thesis is divided into five main chapters and a concluding chapter:

• Chapter 2 presents the different array processing methods adapted to the PPSs

parameter estimation problem and highlights the definition of narrowband and

wideband source cases.
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• Chapter 3 presents the details of the proposed algorithm where a state-space

modellisation is proposed and the Kalman filter technique is used to estimate

the source parameters.

• Chapter 4 presents the DOAs estimation problem and the application of our

method to the estimation of these parameters.

• Chapter 5 presents the performance evaluation of the algorithm applied for the

case of a chirp signal, and multicomponent PPSs as well as the derivation of

the Cramér-Rao Lower Bound (CRLB).

• Finally, the conclusion of the thesis is presented as Chapter 6.
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2. ARRAY PROCESSING TECHNIQUES AS PPS

ANALYSIS TOOLS

PPSs belong to the class of non-stationary signals, rending the methods for processing

these latter applicable to the formers. Example of previous work analysing PPSs can

be found in [6] - [9]. As mentioned at the beginning of Chapter 1, the objectives of

statistical methods for signal processing are the extraction of parameters of interest

from noisy observations. We classify the parameter estimation techniques into two

main categories, namely spectral-based (non-parametric) and parametric approaches.

In the former, one forms some spectrum-like function of the parameter(s) of interest,

e.g., the AOA. The locations of the highest (separated) peaks of the function in ques-

tion are recorded as the AOA estimates. Parametric techniques, on the other hand,

require a simultaneous search for all parameters of interest. The latter approach often

results in more accurate estimates, but at the expense of an increased computational

complexity. In the following section, we list these different techniques in the context

of PPS processing approaches.

2.1 Non-parametric Approaches

2.1.1 Capon’s method for PPSs estimation

In [10], the author proposes a modified version of Capon’s estimator for the anal-

ysis of PPSs. By considering a multicomponent PPS:

s(t) =
N∑

n=1

ane
jφn(t), t = 0, . . . , P − 1, (2.1)

where the amplitudes an are constant and every phase φn is a polynomial of degree

Ln. By passing the signal s(t) through a variable filter of order p such that only one
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component with polynomial phase is selected at a time. The filter output for the

phase exp[jφn(t)] is given by:

H(t,b) =
t∑

u=t−p

h(t, u)e−j[φ(t)−φ(u)] = hTbp(t,b). (2.2)

Where h(t) is the impulsive response of the filter given by

h(t) = [h(t, t), h(t, t− 1), . . . , h(t, t− p)]T , (2.3)

and the vector bp(t,b) is given by

bp(t,b) =
[
1, e−j[φ(t)−φ(t−1)], . . . , e−j[φ(t)−φ(t−p)]

]T
. (2.4)

The vector b = [b1, b2, . . . , bL] includes the coefficients of the phase functions

φ(t) =
L∑

i=1

bit
i. (2.5)

In order to select a component with polynomial phase of the signal of (2.1), we

need to resolve the minimisation problem

minh(t)h
T (t)Rs,p(t)h

∗(t), (2.6)

under the constraint

hT (t)bp(t,b) = 1. (2.7)

The solution of (2.6) is obtained through quadratic minimisation and is given by

h∗opt(t) =
R−1

s,pbp(t,b)

bp(t,b)R−1
s,p(t)bp(t,b)

. (2.8)

We obtain a time-coefficient representation

PM−Capon(t,b) =
1

bH
p (t,b)R−1

s,p(t)bp(t,b)
, (2.9)

where Rs,p(t) is the autocorrelation matrix of vector s(t) defined by
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s(t) = [s(t), s(t− 1), . . . , s(t− p)]T . (2.10)

The idea of modified Capon’s estimator (M-Capon) for the PPS coefficients es-

timation consists of performing a sweep using a family of polynomial phase rather

than a sweep on the frequency axis as is the case for the classical capon’s estimator

of pure frequencies.

We notice that Rs,p is a singular matrix since it is estimated through a single

realisation vector. To calculate the inverse of Rs,p in (2.9), we need to add a diagonal

load

Rs,p(t) = E
{
s(t)sH(t)

}
+ ρI, ρ > 0. (2.11)

The expression of R−1
s,p is obtained using the lemma of matrix inversion

R−1
s,p(t) =

1

ρ

(
I− s(t)sH(t)

ρ + s(t)sH(t)

)
. (2.12)

Capon’s modified estimator can be re-written under the following form parame-

terized by ρ

PM−Capon(t,b, ρ) =
ρ

(ρ + 1) [|bp(t,b)s(t)|2/(ρ + ‖s(t)‖2)]
. (2.13)

We conclude that Capon’s method relies on the addition of a diagonal matrix ρI

that will allow the inversion of the signal autocorrelation matrix. The choice of ρ in

equation (2.13) influence the performance of the estimator.

2.1.2 MUSIC algorithm for PPS parameters estimation

We suppose that PPSs are affected by a Gaussian noise. The modified Multiple

Signal Classification (MUSIC) estimator (M-MUSIC) is defined by [11]

PM−MUSIC(t,b) =
1

bH
p (t,b)Es,pEH

s,pbp(t,b)
. (2.14)
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Where the matrix Es,p = [eQ+1, eQ+2, . . . , ep] is obtained through eigenvalues de-

composition of Rs,p and by retaining the eigenvectors associated with the p − Q

smallest eigenvalues of Rs,p. The inverse of Rs,p can be written as follows [12]

R−1
s,p(t) =

1

σ2
ω

[
I−

p∑
i=1

vi(1 +
σ2

ω

λi

)−1vH
i

]
, (2.15)

where vi and λi are the eigenvectors and eigenvalues of Rs,p, respectively. For

the multicomponents signal given by (2.1), the eigenvectors are proportional to the

signal components. This results into a linear combination of the spectrograms of each

component normalised by its amplitude [12]

PM−MUSIC(t,b) =
1

(p + 1)−∑Q
n=1 SPECsn(t,b)/b2

n

, (2.16)

where SPECsn are the spectrograms of the eigenvectors. The theoretical study

shows that Capon’s and MUSIC estimators adapted to PPSs parameter estimation

are written in function of the spectrogram and possess the same resolution capa-

bility for two coefficients belonging to two different components. However, MUSIC

estimator presents two major advantages compared to Capon’s estimator. The first

advantage permits to avoid the diagonal loading of the signal autocorrelation matrix

and hence the choice of the parameter ρ. The second advantage is that the signal

and noise sub-spaces can be obtained without passing through the decomposition of

the autocorrelation matrix by using techniques such as the propagator [13] - [15] that

allows reducing the computation complexity.

2.2 Parametric Methods

While the spectral-based methods presented in the previous section are compu-

tationally attractive, they do not always yield sufficient accuracy. In particular, for

scenarios involving highly correlated (or even coherent) signals, the performance of

spectral-based methods may be insufficient. An alternative is to more fully exploit the

underlying data model, leading to the so-called parametric array processing methods.



12

For such methods, coherent signals impose no conceptual difficulties. The price to

pay for this increased efficiency and robustness is that the algorithms typically require

a multidimensional search to find the estimates.

2.2.1 Maximum Likelihood Approach

Perhaps the most well known and frequently used model-based approach in signal

processing is the maximum likelihood (ML) technique. This methodology requires a

statistical framework for the data generation process. Let us consider a monocom-

ponent PPS defined by (1.1) where the noise is assumed complex-valued, white, and

Gaussian of variance σ2. The analytic version of the noise-corrupted observed sig-

nal has x(t) as real part and z(t) as imaginary part. The noise-free signal real and

imaginary parts are s(t, θ) and r(t, θ), respectively. The parameter vector is given by

θ = [a, b0, b1, . . . , bL]T . The probability density function of y(t) is

p(y, θ) =
1

σ22π
exp

[
−1

2σ2

P−1∑
t=0

(x(t)− s(t, θ))2 + (z(t)− r(t, θ))2

]
. (2.17)

The ML estimate of θ needs that p, (or log(p)) be maximized over θ. The maximum

value of p happens at the maximum of

Λ0 = − 1

P

P−1∑
t=0

[
(x(t)− s(t, θ))2 + (z(t)− r(t, θ))2] . (2.18)

Given
∑

x2(t) and
∑

z2(t) (corresponding to the observed signal energy) are

independent of θ, the maximization of Λ0 over the parameter vector is equivalent to

the maximization of

Λ =
2

P

P−1∑
t=0

[x(t)s(t, θ) + z(t)r(t, θ)]− 1

P

P−1∑
t=0

[
s2(t, θ) + r2(t, θ)

]
. (2.19)

By replacing s(t, θ) and r(t, θ) by their respective expressions given by s(t, θ) =

a cos
[
j
∑L

l=0 blt
l
]

and r(t, θ) = a sin
[
j
∑L

l=0 blt
l
]
; we then get
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Λ = 2a< [exp(−jb0)f(b1, b2, . . . , bL)]− a2. (2.20)

Where the function f , of L variables, is given by

f(b1, b2, . . . , bL) =
1

P

P−1∑
t=0

[
y(t)exp

(
−j

L∑
i=1

(bit
i)

)]
. (2.21)

The maximization of Λ over the initial phase b0 is analytically determined by the

following expression b̂0 = arg[f(b1, b2, . . . , bL)]. By replacing that expression in (2.20),

we obtain Λ = 2a0|f(b1, b2, . . . , bL)| − a2. Similarly, we can determine the analytical

expression of the amplitude a that maximizes the function Λ: â = |f(b1, b2, . . . , bL)|.
Hence, the function to maximize is written as

Λ = |f(b1, b2, . . . , bL)|2. (2.22)

The ML solution requires the maximization of Λ (2.22) over the L unknowns

b1, b2, . . . , bL.

Hence, the search space dimension has been reduced from (L+2) to L. Neverthe-

less, the function to maximize is non-linear rending its maximization non resolvable

analytically where there is need to use numerical optimization methods (The con-

vergence of these numerical methods is not guaranteed except at the neighbourhood

of the optimal value). A bad initialisation of the algorithm might conduct the op-

timization procedure to finding a local optimum. The presented ML technique has

limited application to the PPS case because they do not take any advantage of the

specific PPS structure. A novel ML algorithm has been developed in [16]overcoming

this problem. Assuming N constant amplitude PPSs impinging on a linear array of

M omnidirectional sensors. Then, the vector array outputs obey the following model:

y(t) = W(t)s(t) + v(t), t = 0, 1, . . . , P − 1. (2.23)

Where

W(t): MxN time-varying direction matrix
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s(t): Nx1 vector of non-stationary source waveforms

v(t): Mx1 vector of complex circularly Gaussian zero-mean temporally and spatially

white sensor noise

P : Number of snapshots

The n-th polynomial phase source waveform can be modelled as

sn(t) = anej(bn,0t+bn,1t2/2+...+bn,L−1tL/L)

= ang(bn, t). (2.24)

Where

g(bn, t) , exp

(
j

L−1∑

l=0

bn,l
tl+1

1 + l

)
, (2.25)

and an is the initial amplitude, bn,l (n = 1, 2, . . . , N ; l = 0, 1, . . . , L − 1) are the

unknown discrete-time frequency parameters, and

b̃n(t) =
L−1∑

l=0

bn,lt
l, (2.26)

is the discrete-time instantaneous frequency of the n-th waveform.

The L× 1 vector bn , [bn,0, bn,1, . . . , bn,L−1]
T contains the unknown discrete-time

frequency parameters of the n-th signal, and L is the order of the polynomial phase

model, assumed known. The direction matrix

W(α, b̃) ,
[
w(α1, b̃1(t)), . . . ,w(αL, b̃L(t))

]

= [w(α1,b1, t), . . . ,w(αL,bL, t)]

= W(α,B, t), (2.27)

consists of the time-varying steering vector
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W(αn,bn, t) =

[
1, exp

(
j
b̃n(t)

c∆t
d1 sin αl

)
, . . . , exp

(
j
b̃n(t)

c∆t
dM−1 sin αl

)]T

, (2.28)

where

α , [α1, α2, . . . , αN ]T

B ,
[
bT

1 ,bT
2 , . . . ,bT

N

]T

b̃(t) ,
[
b̃1(t), b̃2(t), . . . , b̃N(t)

]T

, (2.29)

where αl is the DOA of the n-th source, and di is the spacing between the first and

the (i+1)-th array sensor. As follows from (2.27), the direction matrix can be written

as a function either of the frequency parameters or of instantaneous frequencies (2.29).

Note that in (2.28), it is assumed that the instantaneous signal frequencies b̃n(t)(t =

0, . . . , P − 1) do not change during the time necessary for a wave to travel across the

array aperture.

Using (2.24)-(2.29), model (2.23) can be rewritten as

y(t) = W(α,B, t)G(B, t)a + v(t)

= W̃(α,B, t)a + v(t). (2.30)

Where

a , [a1, a2, . . . , aN ]T

G(B, t) , diag {g(b1, t), . . . , g(bn, t)}
W̃ (α,B, t) , W(α,B, t)G(B, t). (2.31)

Note that all nuisance parameters (the initial source amplitudes) are now included

in the vector a.
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The ML estimator of the source DOAs and frequency parameters is derived [16]

based on the assumption that the initial signal amplitudes are constant (deterministic)

values. The negative log-likelihood (LL) function is given by

Lp(θ) =
P−1∑
t=0

‖y(t)−W(α,B, t)G(B, t)a‖2

=
P−1∑
t=0

‖y(t)− W̃(α,B, t)a‖2, (2.32)

where the vector of unknown model parameters is defined as

θ ,
[
αT ,BT , aT

]T
. (2.33)

Rewrite (2.32) as

Lp(θ) = aH

{
P−1∑
t=0

W̃H(α,B, t)W̃(α,B, t)

}
a−

{
P−1∑
t=0

yH(t)W̃(α,B, t)

}
a

−aH

{
P−1∑
t=0

W̃H(α,B, t)y(t)

}
+

P−1∑
t=0

yH(t)y(t). (2.34)

The minimization of Lp over a leads to

â =

{
P−1∑
t=0

W̃H(α,B, t)W̃(α,B, t)

}−1 {
P−1∑
t=0

W̃H(α,B, t)y(t)

}
. (2.35)

Substituting (2.35) into (2.34), we obtain the concentrated negative LL function

Lp(α,B) =
P−1∑
t=0

yH(t)y(t)−
{

P−1∑
t=0

yHW̃(α,B, t)

}
×

{
P−1∑
t=0

W̃H(α,B, t)W̃(α,B, t)

}−1

×
{

P−1∑
t=0

W̃H(α,B, t)y(t)

}
.(2.36)

Ignoring the constant terms, the positive concentrated LL function is given by
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Lp(α,B) =

{
P−1∑
t=0

yHW̃(α,B, t)

}
×

{
P−1∑
t=0

W̃H(α,B, t)W̃(α,B, t)

}−1

×
{

P−1∑
t=0

W̃H(α,B, t)y(t)

}
. (2.37)

The ML estimator is then

[
α̂, B̂

]
= argmaxα,BLp(α,B). (2.38)

The above estimator jointly estimates the source directions and their frequency

parameters α and B, respectively, and generally requires a highly nonlinear optimiza-

tion of (2.37) over these variables. However, if properly initialized, the optimization

of the LL function may be implemented by means of simple local optimization algo-

rithms.

2.2.2 High Ambiguity Function

PPS detection algorithms such as the HAF have been used and evaluated in

previous works [17]. They can be studied from the perspective of complex ambiguity

function (CAF) [18]. This method realizes the PPS detection by exploiting the origin

passing property of an auto-term in a CAF plane. Let’s first define the CAF. By

considering the noise-free signal model (chirp signal case):

s(t) =
N∑

n=1

sn(t) =
N∑

n=1

ane
j(φn+2πfnt+0.5γnt2). (2.39)

With s(t) having limited time and frequency supports |s(t)| = 0 for |t| > T
2

and

for |S(f)| = 0 for |f | > F
2

(S being the Fourier transform of s). The CAF of s(t) is

defined as:

A(υ, τ) =

∫
R(t, τ)e−j2πυtdt =

N∑
n,i

Asni
(υ, τ). (2.40)



18

Where υ and τ represent the frequency shift and time delay variables, respectively.

R(t, τ) is the temporal correlation function of s.

The terms with n = i are called auto-terms and are given by:

Asnn(ε, τ) =





∫ 1
2
(T−|τ |)

− 1
2
(T−|τ |) sn

(
t + τ

2

)
s∗n

(
t− τ

2

)
e−2jπυtdt = a2

n (T − |τ |) ej2πfnτ×
sinc

[(
υ − τγn

2π

)
(T − |τ |)] , |τ | ≤ T

0, Otherwise

(2.41)

A peak point along the υ axis can be found at
(

τγn

2π

)
.

Polynomial phase transform (PPT) and its spectral form, high-order ambiguity

function (HAF) are developed below to process monocomponent PPS’s. An L-th

order PPS signal is given as

s(t) = aejφ(t). (2.42)

with φ(t) =
∑L

l=0 blt
l.

For τ 6= 0, a second order PPT operation can be defined as PPT2[s, τ ] = s(t +

τ)s(t− τ).

A higher order operators is then defined iteratively

PPTL[s, τ ] = PPT2 [PPTL−1[s, τ ]] . (2.43)

Since a second order operator applies a difference operation on the L-th order

phase function φ(t), its result is a phase function with (L− 1)-th order. The iterative

use of PPT2 operator, which equivalent to a higher order operator, reduces s(t) to a

single tone sinusoid with a constant amplitude. For s(t) defined by (2.39)

PPTL[s, τ ] = b2L−1

ejω̂t+φ̂. (2.44)

With
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ω̂ = L!τL−1bL

φ̂ = (L− 1)!τL−1bL−1 − 0.5L!(L− 1)τLbL. (2.45)

By using spectral analysis methods, we can determine ω̂ from PPTL[s, τ ] and

thus obtain the L-th order coefficient bL. The lower order coefficients can then be

calculated by an L−1 order operation PPTL−1 on a demodulated signal. By repeating

this procedure, all the coefficients bl can then be determined.

By taking a Fourier transform on an L-th order PPT, we obtain an L-th order

HAF which can be expressed as an operator by

HAFL[s, τ, υ] =

∫ ∞

−∞
PPTL[s, τ ]e−j2πτυ. (2.46)

Since HAFL is simply L consecutive HAF2 operations, we only consider HAF2

in the remaining explanation.

From its definition, we see that HAF2 is related to the (CAF). For each τ , an

application of HAF2 forms a CAF line that is parallel to the υ-axis of the CAF

plane, and this line intercepts the τ -axis of the CAF plane at 2τ . From this, we can

see that the detection of ω̂ is simply a pulse searching along the points of this υ-axis.

HAF can fail when an auto-term line demonstrates modulus variation, this happens

when an auto-term is generated from a chirp group. It can fail when a cross-term

appears as a ridge, which can create a pulse appearance on any line parallel to the

υ-axis.

An enhanced version of HAF, called Product High-order Ambiguity Function

(PHAF) was developed by taking the product of several HAF’s of the same order

but with different lags as the chirp detector function (reference [19] provides detailed

explanation of the algorithm implementation). Seeking simplicity, we consider the

use of PHAF2.

A simple illustration of PHAF2 is given in Figure 2.1 that shows a CAF plane of

a signal containing two chirps of a same rate.
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Fig. 2.1. PHAF2 Auto-term Identification

In the figure, two cross terms, shown as dashed lines also appear as ridge lines on

the CAF plane. By using only one lag τ = τ1, HAF has no way to tell which one of

the three non-zero value points, indicated by the interchanging points along the line

τ = τ1, originates from the auto-term.

Compared to this, PHAF2 introduces an extra CAF line with a different lag τ2,

and by doing so three more non-zero points can be identified on the line τ = τ2.

Taking one non-zero point from each of the two υ-axis parallel lines to form a

pair, we have nine point pairs altogether. Among these pairs, only one can form an

origin-passing line on the CAF plane. This line indicates not only the existence but

also the chirp rate of the auto-term.

The chirp detector function of the PHAF algorithm can be written as

η(γc) =
I∏

i=1

∣∣∣A
(γcτi

2π
, τi

)∣∣∣ . (2.47)

Where {τi, i = 1, 2, . . . , I} are the lags used for the HAF operators, and γc is a

candidate chirp rate under testing.

The HAF alone can do nothing against spurious harmonics, not even in the asymp-

totic case. To eliminate these undesired components, it is necessary to use the PHAF
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operator, consisting of the multiplication of scaled HAF’s, computed using different

sets of lags. The scaling operation (See [19]) moves the position of the spurious peaks,

whereas the position of the useful components remains unchanged. Therefore, suc-

cessive multiplications enhance the useful peaks with respect to the spurious ones.

Furthermore, the PHAF provides also a consistent advantage with respect to the cross

terms. In fact, two effects follow from the computation of the PHAF. First of all,

the scaling operation moves the position of the cross terms, in the frequency domain,

so that, even if some cross terms peak somewhere, it is unlikely that they will peak

in the same position as some other cross terms, after scaling. Second, even in the

worst possible situations in which two peaks of amplitude proportional to T (L−1)/L

lie in the same position after scaling, their product will go like T 2(L−1)/L whereas the

peak corresponding to the useful component will be proportional to T 2. Iterating

this kind of reasoning, it is clear that, at each iteration, the ratio between the useful

peaks and undesired peaks increases, testifying the enhancement of the useful terms

with respect to spurious harmonics and cross terms of any order obtained using the

PHAF.

2.2.3 Kalman Filter Approach

The Kalman filter (KF) addresses the general problem of estimating the state of

a discrete-time controlled process that is governed by a linear stochastic difference

equation [20]. It estimates the process by using a form of feedback control: the filter

estimates the process state at some time and then obtains feedback in the form of

noisy measurements. As such, the equations for the KF fall into two groups: time

update equations and measurement update equations. The time update equations

are responsible for projecting forward (in time) the current state and error covariance

estimates to obtain the a priori estimates for the next time step. The measurement

update equations are responsible for the feedback, i.e., for incorporating a new mea-

surement into the a priori estimate to obtain an improved a posteriori estimate. The



22

time update equation can also be thought of as predictor equations, while the mea-

surement update equations can be thought of as corrector equations. Indeed the final

estimation algorithm resembles that of a predictor-corrector algorithm for solving nu-

merical problems. Some of the most successful applications of Kalman filtering have

been in situations with nonlinear dynamics and/or nonlinear measurement relation-

ships which are the case of PPS’s parameter estimations problem. Two basic ways

of linearizing the problem exist: one is to linearize about some nominal trajectory

in state-space that does not depend on the measurement data. The resulting filter

is usually referred to as a linearized KF. The other method is to linearize about a

trajectory that is continually updated with the state estimates resulting from the

measurements. When this is done, the filter is called an extended KF (EKF). The

former assumes that an approximate trajectory may be determined by some means.

This assumption is less likely to be true in the majority of radar, sonar and commu-

nications applications. This last point explains the use of the EKF version of the KF

for the KF approach used in this work. Details of this technique are given in Chapter

3.

2.3 Narrowband and Wideband Situations

When an advancing plane wave passes through a non-dispersive medium [21], the

signal output at any sensor element immersed in that medium can be represented as

a time-advanced/delayed version of the signal relative to a reference element. Fig-

ure 2.2 depicts an example of a uniform linear array of sensors, this latter is the array

geometry considered in our work, where the time delay between two successive sen-

sors when a signal is traversing along the array is τ = d
C

sin(α) with d denoting the

interspacing distance between two successive sensors, and C representing the velocity

of propagation. With the absence of noise, let y0(t) = s(t) denote the signal at the

reference element (sensor0), where s(t) is a plane wave impinging onto the array, and
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Fig. 2.2. Definition of Symbols for Linear Antenna Array Scenario

y1(t) be the output at the second sensor from the reference point in absolute units.

Therefore, y1(t) can be related to y0(t) as follows

y1(t) = y0(t− τ) = s(t− τ). (2.48)

For all M sensors, the output vector, y(t), also known as the observation, can be

written as

y(t) = [y0(t), y1(t), . . . , yM−1(t)]
T

= [s(t), s(t− τ), . . . , s(t− (M − 1)τ)]T . (2.49)

In the case where there are K sources, the m-th sensor output in response to K

signals from distinct angles of arrival, αk, k = 1, . . . , K, can be expressed as

ym(t) =
K−1∑

k=0

sk(t−mτk), (2.50)

where sk(t) is the k-th source, and τk is the corresponding time delay between

adjacent sensors, defined as τk = d
C

sin(αk)



24

2.3.1 Narrowband Situation

If the signals under consideration are narrowband, that is, the carrier frequency is

fairly large compared to the bandwidth of the signal, then the signal can be treated as

quasi-static during time intervals of order τ , and ym(t) can be rewritten as [21], [22],

and [23].

ym(t) =
K−1∑

k=0

sk(t)exp

(
−j

mω0d sin(αk)

C

)

=
K−1∑

k=0

sk(t)exp

(
−j

m2πd sin(αk)

λ

)
, (2.51)

where ω0 is the operating frequency and λ is the associated carrier wavelength.

As a result, the sensor output vector, y(t), can be then expressed as y = W(α)s(t)

where α ∈ <K and W(α) ∈ CMxK is known as the steering matrix, the k-th column

of which is defined as

w(αk) =

[
1, exp

(
−j

2πd sin(αk)

λ

)
, . . . , exp

(
−j

2π(M − 1)d sin(αk)

λ

)]T

. (2.52)

For narrowband signals, the time delay can be approximated by a pure phase delay

of the reference signal, and this phase delay depends only on the spacing between the

sensors in question, the angle of arrival of the plane wave, and the frequency of the

propagating wave.

The structure of the steering matrix varies with the geometry of the array. In

particular, when the array elements are arranged in a straight line and are uniformly

spaced, we assume d ≤ λ
2
, where λ is the wavelength. However, this structure is

subject to an ambiguity problem, for it can resolve only one angular component (For

example, in the case of a vertically erected linear array, azimuth angle cannot be

resolved, and an ambiguity exists as to whether the wave is incident from the front

or back of the array), leading to a cone of uncertainty and right/left ambiguities.

To resolve this problem, a circular array can be used. Nevertheless, because of its
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simplicity, the uniform linear array is commonly used in the literature, and for this

reason this thesis adopts this simple structure. With the consideration of observation

noise, the snapshot vector at the sampling time t can then be expressed as

y(t) = W(α)s(t) + v(t). (2.53)

Where v is the observation noise. We assume that the noise is a Gaussian random

variable. Various methods have been developed according to this narrowband model

to resolve the detection and estimation problems.

2.3.2 Wideband Situation

While the time delays of narrowband signals can be approximated by their respec-

tive phase delays, wideband sources require more signal processing prior to applying

existing approaches to solve for detection and estimation problems. Using the time

shifting property of the Fourier transform (FT), the m-th sensor output can be rewrit-

ten as

Ym(ω) = FT

[
K−1∑

k=0

sk(t−mτk)

]

=
K−1∑

k=0

Sk(ω)exp(−jmωτk), (2.54)

where Sk(ω) represents the FT of sk(t). Thus the snapshot vector in frequency

domain can be written as

Y(ω) = W(τ, ω)S(ω). (2.55)

Where W(τ, ω) ∈ CMxK is known as the location matrix, the k-th column of

which is defined as w(τk, ω) = [1, exp(−jωτk), . . . , exp(−j(M − 1)ωτk)]
T .

Structurally, (2.53) and (2.55) are identical, but w(τk, ω) for k = 0, . . . , K − 1 is

dependent on every ω. The steering matrix and the location matrix are structurally
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similar, and hence those approaches that were developed for narrowband signals can

be applied to the wideband signals in the frequency domain. That is, the received

data in the presence of noise is defined as follows

Y(ω) = W(τ, ω)S(ω) + v(ω). (2.56)

Where v(ω) is the Fourier Transform of the observation noise. As in the narrow-

band scenario, we assume the observation noise is a Gaussian random variable and

uncorrelated with the signal sources.

Let us define a bandpass signal whose maximum complex envelope bandwidth

equals Bs. In the majority of the literature treating the problem of PPS’s localization

and parameter estimation, the sources are considered narrowband if the following

inequality is verified: Bs∆Tmax ¿ 1, where ∆Tmax is the maximum travel time

between any two elements in the array. For a linear array, it would be the travel

time between the two elements at the ends of the array for a signal arriving along

the array axis (endfire). This means that propagation over the length of the array is

a function of only the phase of the incident wave. In this case, the amplitude of the

incident wave is stationary over the length of time required for a point on the wave

to completely traverse the array. Under the wideband assumption, signals occupy a

significant frequency band, and hence the propagation delays cannot be represented

by phase shifts as with narrowband signals. Here, the waveform changes during the

time it interacts with the array. We see the previous definitions as consequences

of the signal being narrowband or wideband, or as a definition relative to the used

sensor array. Most algorithms developed to solve problems for wideband signals

usually transform the received signals from the time domain to the frequency domain

using FT as a pre-processing step. The motivation of this transformation is that

the transformed model in the frequency domain is structurally similar to that for

narrowband signals in the time domain. In addition, if the sources are uncorrelated

in frequency as well as uncorrelated with each other, their frequency spectra in a large

set of discretized frequency bins can be considered independent and narrowband. As
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a result, the algorithms for the narrowband case can be reused in the transformed

model for the wideband case. Given that the time delay parameters are seldom

scalar multiples of the sampling rate, resolving signals from different delays is very

difficult, unless the sampling rate is increased significantly, so that the error between

the inter-sensor delay and the closest sampling instant is reduced sufficiently. In other

words, if one develops an algorithm in an attempt to resolve wideband signals in the

time domain, oversampling may be required and more sophisticated hardware is also

required. These burdens are further reasons why most algorithms for wideband signal

processing operate in the frequency domain.

The instantaneous frequency (IF) of PPSs is an important parameter to estimate

[23]. Let us consider a real polynomial phase signal of the form a(t) cos [φ(t)] arriving

at the antenna port of a receiver. Most receivers generate an in-phase and quadrature-

phase versions of the received signal to form the quadrature equivalent signal of the

form a(t)ejφ(t).

For the sake of getting the best result for the IF estimation, it is desirable that

the Hilbert Transformed signal approximates the quadrature signal [23]. This latter

occurs if following equation is verified:

a(t) cos [φ(t)] + jHT (a(t) cos [φ(t)]) = a(t)ejφ(t). (2.57)

The solution is found using Bedrosian’s product theorem [24]. It leads to the

following result: Equation (2.57) is valid if the spectrum A(f) = F {a(t)} lies entirely

in the region |f | < f0 and the spectrum F {cos [φ(t)]} exists outside this region.

In other words, the more closely a signal approaches a narrow-band condition, the

more likely equation 2.57 becomes verified.

Major works in the literature treating the PPS parameter estimation problem

use the quadratic signal modellisation, in both narrowband and wideband situations,

compromising the good estimation of the IF in the latter case. For our work we have

chosen the RV modellisation:

y(t) = a sin(φ[t]) + v(t). (2.58)
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In addition to the above mentioned reasons behind this choice, taking a real valued

modellisation allows considering half of the number of the data needed in the complex

valued case, which optimizes the needed memory for handling the data in practical

applications.

2.4 Conclusion

In this chapter, we presented different methods adapted, from the general prob-

lems of array processing, to the problem of PPS parameters estimation. As examples

of widely used non-parametric methods, we presented Capon’s method adapted to

the estimation of the PPSs phase parameters. It allows representing the temporal

evolution of the phase in a time-frequency plan. Similarly, we presented the MUSIC

estimator with the Gaussian assumption on the noise sub-space. It allows the phase

parameters estimation without the addition of a diagonal load to the autocorrelation

matrix as was the case for Capon’s estimator. As parametric methods previously

applied for the problem at hand, we reviewed the ML estimator and its adaptation

to the PPS parameters estimation along with the polynomial phase transform that

has been the subject of multiple publications. We also presented a summary of the

Kalman filter technique that is the method chosen in our work to deal with the prob-

lem at hand and that will be developed in the next chapter. Most of these techniques

have been used to solve for detection and estimation problems for narrowband signals.

However, for wideband signals it becomes cumbersome as a huge amount of data is

required and more computational efforts are demanded to solve the same problems,

even though in both cases the models are similar, where the only difference is in

the domain where each model is defined. We summarized the cases of narrowband

and wideband PPSs as presented in the literature and highlighted the issue with the

adopted definition that is a consequence instead of a definition. We presented our

point of view on this subject justifying the real-valued modellisation choice.
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3. STATE SPACE REPRESENTATION-BASED

APPROACH

The Kalman filter-based parameter estimation has been largely studied for the case

of PPS corrupted by Gaussian noise. The use of the Kalman filter is motivated by

the advantages that it offers on the practical level allowing the tracking of the signal

frequency [25] - [27]. The primary work in this field has been dedicated to chirp

signals identification. A linear state model has been obtained based on Tretter’s

approximation [28] that transforms the additive noise into a phase noise. This model

is linear and Gaussian, and allows the application of the Kalman filter. Although

The Kalman estimator is optimal in the minimum variance sense, Tretter’s method

remain approximate and only applicable for the monocomponent case. In [29] and

[30], the authors have studied the identification problem of chirp signals using the

extended Kalman filter by proposing and comparing two exact nonlinear models of

the signal: The first model is nonlinear with respect to the state and the second

with respect to the observables. More recently, in [31] the authors have proposed a

method to estimate chirp signals using two cascaded extended Kalman filters. In [32]

the authors have proposed an extended Kalman filter for PPS demodulation using a

PPS state representation where the phase is expressed in function of the polynomials

of Legendre. This chapter presents a new technique based on the Kalman filter (KF)

algorithm. It offers the possibility of extending the monocomponent PPS parameter

estimation to the Multi-Components (MC) case [33] where the approach proposed

in [34] is generalized to the MCPPSs case of any order impinging on a multisensor

array. The method presents a number of other attractive features. It is very adequate

for real-time applications because of the recursive nature of the resulting algorithm

and the modest use of memory (due to the nature of the KF itself). Moreover, in

contrast to the majority of the literature, it allows the consideration of a real-valued



30

(RV) modellisation hence the applicability of the algorithm to situations where the

source signals are wideband without need to transform the received signals from the

time domain to the frequency domain.

3.1 Modellisation

We recall that the general modellisation of MCPPSs considered in the majority of

literature is s(t) =
∑N

n=1 an exp [φn(t)] with φn(t) =
∑Ln

l=0 bln(t∆)l for t = 0, . . . , P−1,

where P , N , and Ln represent the sample size, the number of components, and

the component phase degree, respectively. The amplitude an is a real-valued (RV)

constant, the instantaneous phase φn(t) of each component is a polynomial, and ∆

represents the sampling interval.

In many practical applications, the original sources are RV, while most of the

previously mentioned methods assume the data consisting of a double number of

complex-valued (CV) PPSs. To do so, knowing that generally the transmitted sig-

nal parameters are unknown, we apply the Hilbert transform (HT) on the RV data.

Modelling the signals by an exponential assumes that the HT exactly generates the

quadrature component of the RV PPS. This assumption is always verified for nar-

rowband signals, where the PPS’s amplitude and phase spectrums are separated (See

Chapter 2). This is the absolute definition of a narrowband PPS. In the majority

of the literature, the narrowband situation is defined relatively to the sensor array

where a signal is considered narrowband if its complex envelope satisfies the condi-

tion Bsτmax ¿ 1 with Bs representing the maximum bandwidth of the signal complex

envelope and τmax equalling the maximum travel time between any two elements in

the array. This latter is considered as a consequence of the narrowband assumption

on the source signals rather than a definition. The conclusion for this analysis is as

follows: the more closely a signal approaches a narrowband condition, the better the

Hilbert-transformed signal approximates the quadrature signal, and the more likely

the Hilbert-based analytic signal is to provide an accurate model of a real system
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with a particular Instantaneous Frequency (IF); also the better in general will be the

estimate of the instantaneous frequency. This justifies the following modellisation

choice: s(t) =
∑N

n=1 an sin [φn(t)].

We propose to exploit the spatial information provided by a Uniform linear array

(ULA) of sensors. Hence, the vector array outputs {ym, m = 1, . . . , M} obey the

following model:

y1(t) =
N∑

n=1

an sin [φn(t)] + v1(t), (3.1)

ym(t) =
N∑

n=1

an sin
[
φn

(
t− τnm

∆

)]
+ vm(t), m = 2, . . . , M, (3.2)

where {vm, m = 1, . . . , M} are independent, real valued, additive white Gaussian

noises (AWGNs) with zero means and variances {σ2
m,m = 1, . . . ,M}. {τnm, n =

1, . . . , N, m = 2, . . . , M} are RV parameters representing the propagation time delays

of the n-th source waveform impinging at the m-th array sensor with respect to the

signal received at the first sensor (These delays are not necessarily multiples of the

sampling period). The state-space modellisation consists of putting the state and

measurement equations according to the state-vector choice. In practice, from (3.2),

two cases can arise: situations where the delays are known and applications where

these parameters are unknown. We then provide the state-space representation for

both cases.

Known Delays:

The chosen state-model has the following state-vector:

x(t) =
[
a1 φ1(t) φ

(1)
1 (t) . . . φ

(L1)
1 (t) . . . . . . aN φN(t) φ

(1)
N (t) . . . φ

(LN )
N (t)

]T

,

(3.3)
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where (.)T and (.)(l) stand for the matrix transpose operator and the l-th derivative

operator with respect to t, respectively (the component phase degrees Ln are assumed

known, but we will see later in this chapter that this assumption can be relaxed ). The

dimension of x(t) is given by dN =
∑N

n=1 (Ln + 2) (Since the n-th signal component

is represented in the state-vector by (Ln + 2) elements).

The following state-model is in order:





x(t + 1) = Fx(t)

ym(t) = gm [x(t)] + vm(t), m = 1, . . . ,M
. (3.4)

Where F and g are given by

F =




F1 0 · · · 0

0 F2
. . .

...
...

. . . . . . 0

0 · · · 0 FN




, (3.5)

with

Fn =




1 0 0 · · · 0

0 1 ∆
1!

· · · ∆Ln

Ln!
...

. . . . . . . . .
...

...
. . . . . . 1 ∆

1!

0 · · · · · · 0 1




, n = 1, . . . , N, (3.6)

and

g1 [x(t)] = x1(t) sin [x2(t)] + x1+d1(t) sin [x2+d1(t)] + · · ·
+ x1+dN−1

(t) sin
[
x2+dN−1

(t)
]
,

gm [x(t)] = x1(t) sin

[
L1∑

l=0

(−τ1m)l

l!
xl+2(t)

]
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+ x1+d1(t) sin

[
L2∑

l=0

(−τ2m)l

l!
xl+2+d1(t)

]
+ · · ·

+ x1+dN−1
(t) sin

[
LN∑

l=0

(−τNm)l

l!
xl+2+dN−1

(t)

]
,

m = 2, . . . ,M, (3.7)

where {xk(t), k = 1, . . . , dN} are the entries of x(t).

By defining the parameter vector as

θ = [a1 b01 b11 . . . bL11 . . . . . . aN b0N b1N . . . bLNN ]T , (3.8)

one obtains

θ̂(t) = AF−tx̂(t), (3.9)

where θ̂, x̂ are the estimates of θ and x, respectively, F is as defined in (3.6) and

A is given by

A =




A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0

0 · · · 0 AN




, (3.10)

where

An =




1 0 · · ·· · · 0

0 1
. . . . . .

...
...
. . . 1

1!

. . .
...

...
. . . . . . . . . 0

0· · ·· · · 0 1
Ln!




, n = 1, . . . , N. (3.11)
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Unknown Delays:

In this situation, the delays need to be included by augmenting the state-vector

given by (3.3) where the n-th signal component will be represented in the state-vector

by (Ln+3) elements and the dimension of x(t) becomes equal to dN =
∑N

n=1 (Ln + 3).

The state-vector expression is given by

x(t)=
[
a1 τ12 φ1(t) φ

(1)
1 (t) . . . φ

(L1)
1 (t) . . . . . . aN τN2 φN(t) φ

(1)
N (t) . . . φ

(LN )
N (t)

]T

.

(3.12)

We note that only the set {τn2, n = 1, . . . , N} has been included. The reason is

because for an ULA, the remaining delays are found using the relation τnm+1 = mτn2,

m = 2, . . . , M .

The same state-model and state transition matrix given by (3.4) and (3.5), re-

spectively, are considered with new expressions for Fn and g

Fn =




1 0 0 · · ·· · · 0

0 1 0 · · ·· · · 0

0 0 1 ∆
1!
· · ·∆Ln

Ln!
...

...
. . . . . . . . .

...
...

...
. . . . . . 1 ∆

1!

0· · ·· · ·· · · 0 1




, n = 1, . . . , N, (3.13)

g1 [x(t)] = x1(t) sin [x3(t)] + x1+d1(t) sin [x3+d1(t)] + · · ·
+ x1+dN−1

(t) sin
[
x3+dN−1

(t)
]
,

gm [x(t)] = x1(t) sin
[∑L1

l=0
(−(m−1)x2)l

l!
xl+3(t)

]

+x1+d1(t) sin

[∑L2

l=0

(−(m−1)x2+d1)
l

l!
xl+3+d1(t)

]
+ · · ·

+x1+dN−1
(t) sin

[∑LN

l=0

(−(m−1)x2+dN−1)
l

l!
xl+3+dN−1

(t)

]
,
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m = 2, . . . , M. (3.14)

The parameter vector given by (3.8) is augmented by the inclusion of the nuisance

parameters as follows:

θ=[a1 τ12 b01 b11 . . . bL11 . . . . . . aN τN2 b0N b1N . . . bLNN ]T . (3.15)

The same relation as (3.9) relates the parameter vector to the estimated state-

vector with F and A defined in (3.5) and (3.10), respectively (Fn is given by (3.13)).

An expression is as follows:

An =




1 0 · · ·· · ·· · · 0

0 1
. . . . . . . . .

...

0 0 1
. . . . . .

...
...
. . . . . . 1

1!

. . .
...

...
. . . . . . . . . . . . 0

0· · ·· · ·· · · 0 1
Ln!




, n = 1, . . . , N. (3.16)

The main motivations behind the chosen structure of the state vector are: ob-

taining a minimum number of nonlinear equations and direct estimation of the in-

stantaneous frequency (IF), a very important parameter as stressed in [23] and [35].

Indeed, from (3.4), we obtain a state-space modellisation with a linear state equation

and nonlinear observation equations. Furthermore, from (3.3) and (3.12), it is possi-

ble to directly estimate the IF {φ(1)
n (t), n = 1, . . . , N} of each component, and hence

minimizing the estimation error that would have resulted from indirect estimation.

In the next subsection, we present the EKF-based algorithm.
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3.2 Kalman Filter-Based Technique

The EKF technique consists of linearizing, to the first order, models (3.1) and

(3.2) and applying an optimal state estimation filter. The filter equations are given

for both cases of known and unknown delay parameters.

Known Delays:

The update equations are given as follows:





x̂−(t) = Fx̂M(t)

P−(t) = FPM(t)FT
, (3.17)

where x̂−(t) and P−(t) are the predicted state-vector and covariance error matrix

at the time instant t, respectively.

The estimation equations are given below





k1(t) = P−(t)gT
1 (t)

[
g1(t)P

−(t)gT
1 (t) + σ2

1

]−1

ŷ1(t) = x̂−1 (t) sin
[
x̂−2 (t)

]
+ x̂−1+d1

(t) sin
[
x̂−2+d1

(t)
]

+ · · ·+ x̂−1+dN−1
(t) sin

[
x̂−2+dN−1

(t)
]

x̂1(t) = x̂−(t) + k1(t) [y1(t)− ŷ1(t)]

P1(t) = [I− k1(t)g1(t)]P
−(t)

, (3.18)
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



k2(t) = P1(t)g
T
2 (t)

[
g2(t)P1(t)g

T
2 (t) + σ2

2

]−1

ŷ2(t) = x̂1
1(t) sin [x̂1

2(t)] + x̂1
1+d1

(t) sin
[
x̂1

2+d1
(t)

]

+ · · ·+ x̂1
1+dN−1

(t) sin
[
x̂1

2+dN−1
(t)

]

x̂2(t) = x̂1(t) + k2(t) [y2(t)− ŷ2(t)]

P2(t) = [I− k2(t)g2(t)]P1(t)
...

kM(t) = PM−1(t)g
T
M(t)

[
gM(t)PM−1(t)g

T
M(t) + σ2

M

]−1

ŷM(t) = x̂M−1
1 (t) sin

[
x̂M−1

2 (t)
]
+ x̂M−1

1+d1
(t) sin

[
x̂M−1

2+d1
(t)

]

+ · · ·+ x̂M−1
1+dN−1

(t) sin
[
x̂M−1

2+dN−1
(t)

]

x̂M(t) = x̂M−1(t) + kM(t) [yM(t)− ŷM(t)]

PM(t) = [I− kM(t)gM(t)]PM−1(t)

, (3.19)

where {x̂m(t),m = 1, . . . , M, t = 0, . . . , P − 1} are the estimated state-vectors,

{x̂−k , k = 1, . . . , 2 + dN−1} and {x̂m
k , k = 1, . . . , 2 + dN−1,m = 1, . . . , M − 1} are the

entries of x̂− and {x̂m,m = 1, . . . , M − 1}, respectively. {Pm(t),m = 1, . . . , M} are

the covariance error matrices, {km, m = 1, . . . , M} are the Kalman filter gain vectors

and I is the (dN × dN) identity matrix.

The filter is initialized by x̂−0 and P−
0 . The final estimate x̂ of x equals x̂M(P −1).

The vectors {gm,m = 1, . . . , M} are found by linearizing, at the first order, the first

and second expressions of (3.7) around the predicted state-vector and the estimated

state-vector, respectively. Hence, the following relations

g1(t) =

(
∂g1[x(t)]

∂x(t)

)

x(t)=x̂−(t)

,

gm(t) =

(
∂gm[x(t)]

∂x(t)

)

x(t)=x̂m−1(t)

, m = 2, . . . , M, (3.20)
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where ∂ stands for the partial derivation operator. We then find

g1(t) = [g1,1(t) . . . g1,N(t)] ,

gm(t) = [gm,1,τ1m(t) . . . gm,N,τNm
(t)] , m = 2, . . . , M, (3.21)

where

g1,1(t) =
[
sin

[
x̂−2 (t)

]
x̂−1 (t) cos

[
x̂−2 (t)

]
0 . . . 0

]
,

g1,n(t) = [sin
[
x̂−2+dn−1

(t)
]

x̂−1+dn−1
(t) cos

[
x̂−2+dn−1

(t)
]

0 . . . 0], n = 2, . . . , N,

gT
m,1,τ1m

(t) =




sin [α1τ1m (x̂m−1(t))]

x̂m−1
1 (t) cos [α1τ1m (x̂m−1(t))]

−τ1m

1!
x̂m−1

1 (t) cos [α1τ1m (x̂m−1(t))]

...

(−τ1m)L1

L1!
x̂m−1

1 (t) cos [α1τ1m (x̂m−1(t))]




m = 2, . . . , M,

gT
m,n,τnm

(t) =
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


sin [αnτnm (x̂m−1(t))]

x̂m−1
1+dn−1

(t) cos [αnτnm (x̂m−1(t))]

−τnm

1!
x̂m−1

1+dn−1
(t) cos [αnτnm (x̂m−1(t))]

...

(−τnm)Ln

Ln!
x̂m−1

1+dn−1
(t) cos [αnτnm (x̂m−1(t))]




n = 2, . . . , N, m = 2, . . . ,M, (3.22)

where {αnτnm , n = 1, . . . , N,m = 2, . . . ,M} are given by

α1τ1m (x̂m−1(t)) =

L1∑

l=0

(−τ1m)l

l!
x̂m−1

l+2 (t),

αnτnm (x̂m−1(t)) =
Ln∑

l=0

(−τnm)l

l!
x̂m−1

l+2+dn−1
(t),

n = 2, . . . , N. (3.23)

Unknown Delays:

As performed in the previous section, the state-vector will be augmented. The

update equation follows (3.17) where the same definitions hold as in the previous

subsection. The remaining equations are given hereafter
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



k1(t) = P−(t)gT
1 (t)

[
g1(t)P

−(t)gT
1 (t) + σ2

1

]−1

ŷ1(t) = x̂−1 (t) sin
[
x̂−3 (t)

]
+ x̂−1+d1

(t) sin
[
x̂−3+d1

(t)
]

+ · · ·+ x̂−1+dN−1
(t) sin

[
x̂−3+dN−1

(t)
]

x̂1(t) = x̂−(t) + k1(t) [y1(t)− ŷ1(t)]

P1(t) = [I− k1(t)g1(t)]P
−(t)

, (3.24)





k2(t) = P1(t)g
T
2 (t)

[
g2(t)P1(t)g

T
2 (t) + σ2

2

]−1

ŷ2(t) = x̂1
1(t) sin [x̂1

3(t)] + x̂1
1+d1

(t) sin
[
x̂1

3+d1
(t)

]

+ · · ·+ x̂1
1+dN−1

(t) sin
[
x̂1

3+dN−1
(t)

]

x̂2(t) = x̂1(t) + k2(t) [y2(t)− ŷ2(t)]

P2(t) = [I− k2(t)g2(t)]P1(t)
...

kM(t) = PM−1(t)g
T
M(t)

[
gM(t)PM−1(t)g

T
M(t) + σ2

M

]−1

ŷM(t) = x̂M−1
1 (t) sin

[
x̂M−1

3 (t)
]
+ x̂M−1

1+d1
(t) sin

[
x̂M−1

3+d1
(t)

]

+ · · ·+ x̂M−1
1+dN−1

(t) sin
[
x̂M−1

3+dN−1
(t)

]

x̂M(t) = x̂M−1(t) + kM(t) [yM(t)− ŷM(t)]

PM(t) = [I− kM(t)gM(t)]PM−1(t)

, (3.25)

with g1 given by (3.21) and

gm(t) = [gm,1(t) . . . gm,N(t)] , m = 2, . . . , M (3.26)

where

g1,1(t) =
[
sin

[
x̂−3 (t)

]
0 x̂−1 (t) cos

[
x̂−3 (t)

]
0 . . . 0

]
,

g1,n(t) = [sin
[
x̂−3+dn−1

(t)
]

0 x̂−1+dn−1
(t) cos

[
x̂−3+dn−1

(t)
]

0 . . . 0], n = 2, . . . , N, (3.27)
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gT
m,1(t) =




sin [α1 (x̂m−1(t))]

x̂m−1
1 (t)

∑L1

l=1

(−(m−1))l(x̂m−1
2 )

l−1

(l−1)!
x̂m−1

l+3 (t)

× cos [α1 (x̂m−1(t))]

x̂m−1
1 (t) cos [α1 (x̂m−1(t))]

−(m−1)x̂m−1
2

1!
x̂m−1

1 (t) cos [α1 (x̂m−1(t))]

...

(−(m−1)x̂m−1
2 )

L1

L1!
x̂m−1

1 (t) cos [α1 (x̂m−1(t))]




m = 2, . . . , M,

gT
m,n(t) =
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


sin [αn (x̂m−1(t))]

x̂m−1
1+dn−1

(t)
∑L1

l=1

(−(m−1))l
(
x̂m−1

l+2+dn−1

)l−1

(l−1)!
x̂m−1

l+3+dn−1
(t)

× cos [αn (x̂m−1(t))]

x̂m−1
1+dn−1

(t) cos [αn (x̂m−1(t))]

−(m−1)x̂m−1
2+dn−1

1!
x̂m−1

1+dn−1
(t) cos [αn (x̂m−1(t))]

...

(
−(m−1)x̂m−1

2+dn−1

)Ln

Ln!
x̂m−1

1+dn−1
(t)

× cos [αnτnm (x̂m−1(t))]




n = 2, . . . , N, m = 2, . . . ,M, (3.28)

where {αn, n = 1, . . . , N,m = 2, . . . , M} are given by

α1 (x̂m−1(t)) =

L1∑

l=0

(−(m− 1)x̂m−1
2

)l

l!
x̂m−1

l+3 (t),

αn (x̂m−1(t)) =

∑Ln

l=0

(
−(m−1)x̂m−1

l+2+dn−1

)l

l!
x̂m−1

l+3+dn−1
(t),

n = 2, . . . , N. (3.29)

We note the dependence of g upon the delay parameters, which shows the impor-

tance of correct estimation of these latter when unknown.
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3.3 Algorithm Description

The proposed algorithm is illustrated in Figure 3.1. It is based on the applica-

tion of the EKF M times: The first EKF is applied on the non-delayed signal by

computing the predicted values of the state-vector and the covariance matrix of the

prediction error. This is followed by the computation of the Kalman filter gain, the

estimated values of the state-vector and of the estimation error covariance matrix

after introduction of the first sensor observation. The result is used as prediction

for the second EKF applied on the signal delayed by τn2. The Kalman gain is then

computed as well as the state-vector estimate with the corresponding estimation error

covariance matrix after introducing the second sensor measurement. This procedure

is repeated until the application of the M th EKF, where the estimation result of the

(m − 1)th EKF is used as prediction for the mth EKF applied on the delayed signal

by τnm. The final estimates of the M th EKF constitute the estimator outputs and

in the same time are used by the first EKF as prediction equations to project ahead

and close the algorithm loop.

The algorithm can diverge if the reference about which the linearization takes place

is poor. The most common situation of this type occurs at the initial starting point

of the recursive process. Frequently, the a priori information about the true state of

the system is poor. This causes a large error in x̂−0 and forces P−
0 to be large. Thus

two problems can arise in getting the extended filter started [20]:

1. A very large P−
0 combined with low-noise measurements at the first step will

cause the P matrix to “jump” from a very large value to a small value in

one step. In practice this is permissible. However, this can lead to numerical

problems due to roundoff. A non-positive definite P matrix at any point in the

recursive process usually leads to divergence.

2. If the error in x̂−0 is large, the first-order approximation used in the linearization

will be poor, and divergence may occur, even with perfect arithmetic.
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Fig. 3.1. Flow chart of the proposed extended Kalman filter-based algorithm.
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With respect to problem 1, we should be especially careful to use all the usual

numerical precautions to preserve the symmetry and positive definiteness of the P

matrix on the first step. In some cases, simply using the symmetric form of the

P-update equation is sufficient to ward off the divergence. This form is as follows:

PM,t = (I− kM,tgM,t)PM−1,t(I− kM,tgM,t)
T + kM,tσ

2
M,tk

T
M,t.

Another way of mitigating the numerical problem is to let P−
0 be considerably

smaller than would normally be dictated by the true a priori uncertainty in x̂−0 .

This will cause suboptimal operation for the first few steps, but this is better than

divergence! A similar result can be accomplished by letting σ2
M,t be abnormally large

for the first few steps. There is no one single cure for all numerical problems. Each

case must be considered on its own merits.

Problem 2 is more subtle than problem 1. Even with perfect arithmetic, poor

linearization can cause a poor x̂−0 to be updated into an even poorer a posteriori

estimate, which in turn gets projected on ahead, and so forth. One remedy to the

poor-linearization problem, that works quite well when the information contained in

the initial measurement is sufficient to determine the initial state-vector algebraically,

is to use the initial measurement to solve for the state-vector, just as if there were no

measurement error. It is hoped this will yield a better estimate of the state-vector

than the original coarse x̂−0 .

It must be noted that none of the solutions just mentioned play any role in the

basic filtering process. Their sole purpose is simply to provide a good reference

for linearization, so that the EKF can do its job of suboptimal estimation (In our

simulations, we assumed the parameter initializations at 20 % of their actual values,

following [29]).

In [34], one finds an approach using an EKF applied for a single-component chirp

signal case. The analytical signal of the chirp was considered, leading to complex

valued measurement equations. An EKF was applied twice for the parameter estima-

tions. A first EKF was applied on the real part of the signal model. A second EKF

was applied using the imaginary part of the signal model by taking the first filter
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estimations as prediction results. Our algorithm originality consists of bypassing the

prediction equations of the mth EKF’s, for m = 2, . . . , M , and substituting them by

the outputs of the (m− 1)th EKF’s, hence, leading to an anticipation in the process.

The same approach is applied for the prediction equations of the first EKF where the

output of the M th EKF is used speeding up the convergence process.

In comparison with the method used in [34], where the linearization was made

around the predicted state-vector, we note that our linearization point is the pre-

ceding EKF estimated state-vector, which represents a better linearization point,

compared to the predicted state-vector, since it is closer to the solution (When the

filter converges). Furthermore, [34] second observation equation does not carry any

new information compared to the first observation equation (Since these equations

represent the analytical signal components). In contrast, in our approach we can

find a new information represented by the time delays. Finally, [34] assumes the

chirp analytical signal representation, hence constraining the algorithm applicability

to the narrowband case only, whereas our algorithm can be applied in the case of

narrowband and wideband signals.

3.4 Conclusion

This chapter was dedicated to the proposed EKF-based approach deriving a new

algorithm for MCPPSs parameter estimations impinging on a multisensor array. The

combination of this scheme with the exploitation of spatial information given by a

multisensor array is the key point of our approach. The drivers behind the chosen

structure of the state vector were the minimisation of the number of nonlinear equa-

tions (where in our case we reduced the nonlinearity to the observation equations

only) and the direct estimation of the instantaneous frequency (IF). The two situ-

ations of known and unknown delays were considered with the presentation of the

EKF equations. In the next chapters, our algorithm will be compared to competitive

algorithms to evaluate its performance. In addition, we will demonstrate through
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simulations that the proposed method performs well in both cases of wideband and

narrowband signals and in situations where the number of sources is superior to the

number of sensors.
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4. APPLICATION TO SOURCE LOCALISATION

The DOA estimation problem has been extensively studied in the signal processing

literature. However, only a small number of proposed solutions are capable of handling

both narrowband and wideband cases. In addition, many of these methods suffer in

performance when the targets are moving relatively fast during the estimation batch

(i.e., the snapshot period). In this section, we recall the different existing algorithm

to solve the problem of DOA estimation, and present our approach with simulation

examples.

4.1 Narrowband Source Localisation

Subspace methods With the knowledge of the number of sources, the signal

subspace and noise subspace can be estimated with the corresponding eigenvectors.

There are three classical methods that can estimate the directions of arrival by ex-

ploiting a fundamental property between the two sets of eigenvectors ÊS and ÊN .

These methods are the Pisarenko pseudo spectrum [36], the multiple signal classifi-

cation (MUSIC) algorithm [37], and the Root-MUSIC [38], [39] method. Given the

fact that ÊH
S ÊN ≈ 0 such that

êH
s ên ≈ 0, ês ∈ ÊS, ên ∈ ÊN , (4.1)

if the signal vector is in the signal DOA’s subspace, the magnitude of the projection

onto ÊN should be small. On the other hand, a projection onto ÊS will result in a

large magnitude. As a result, the search for signal vectors is equivalent to searching

for vectors that are most closely orthogonal to the noise subspace as follows

‖s(φ)HÊN‖ −→ 0 when φ ∈ Θ, (4.2)
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where s(φ) is a column of the steering matrix and Θ is the set of the actual DOA.

Based on this orthogonality property, the Pisarenko pseudo spectrum (Pisarenko,

1973) projects a steering vector onto a single noise eigenvector when estimating the

DOAs. The Pisarenko pseudo spectrum for a particular noise eigenvector is defined

as

P̂Pis(φ) =
1

sH(φ)êkêH
k s(φ)

, k ∈ [k0,M − 1]. (4.3)

It is well known that unless the number of sources is correct, it is not possible to tell

which peak shown in the Pisarenko pseudo spectrum are attributed to the sources

and which are spurious. Unlike the Pisarenko method, the MUSIC algorithm [37]

involves a projection of a steering vector onto the whole noise subspace. The MUSIC

pseudo spectrum is defined as

P̂MUSIC(φ) =
1

sH(φ)ÊN ÊH
Ns(φ)

. (4.4)

Unlike the Pisarenko method, even if the number of sources is over estimated, the

MUSIC method will perform well. The Root-MUSIC algorithm [38], [39], developed

specifically for uniform linear arrays (ULAs), is motivated by the fact that

sH(ωk)ej = 0, j = k0, . . . , M − 1, (4.5)

where ωk is a signal frequency, and ωk = 2π∆
λ

sin(φk). Define the polynomials

using the eigenvectors corresponding to the noise subspace, i.e.,

ej(z) =
1√
M

M−1∑
m=0

ejmz−m, j = k0, . . . , M − 1, (4.6)

such that the signal zeros, zk = ejωk , k = 0, . . . , k0 − 1, are roots of each of the

above polynomials. Define another polynomial P̂RMUSIC(z) as follows

P̂RMUSIC(z)=
M−1∑

j=k0

ej(z)e∗j(1/z
∗),
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=
M−1∏
m=0

(1− zmz−1)(1− z∗mz),

=D(z)D∗(1/z∗), (4.7)

where D(z) =
∏M−1

m=0 (1− zmz−1) can be obtained by a spectral factorization [40]

of P̂RMUSIC(z) and has its roots inside or on the unit circle. The k0 signal zeros are

the roots of D(z) that are closest to the unit circle, i.e. |z| = 1, thereby recovering

the signal angles φk, k = 0, . . . , k0 − 1.

Maximum Likelihood methods When a priori density of a parameter is

known, techniques must be developed that make no presumption about the rela-

tive possibilities of parameter values. In the event of DOA estimation, the maximum

likelihood (ML) estimator can be used that maximizes the likelihood function of the

observation y(n), given other parameters. According to the observation model in

(2.53) with the noise being a Gaussian random variable, we can define the likelihood

function as follows

l(φ;y(n)) , (y(n)|φ) ∼ N(S(φ)a(n), σ2
νIM), (4.8)

where N(m, Σ) refers to a normal distribution with mean m and covariance matrix

Σ. Note that this is a function of the parameter φ and not of y(n). The value of the

parameter that maximizes this function is called the maximum-likelihood estimate,

defined by

φ̂ML = arg maxφ∈Φp(y|φ). (4.9)

The ML estimator in (4.9) can be interpreted as a search for a set of φ such that

the sum of the Euclidean distances between the observations y(n) and the estimates

ŷ(n|φ) is minimized, i.e.,

φ̂ML = arg minφ∈Φ

Nt∑
n=1

‖y(n)− ŷ(n|φ)‖2. (4.10)
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The estimates ŷ(n|φ) are obtained by the least-squares estimate of the amplitude

a(n) as follows

ŷ(n|φ) = S(φ)â(n) (4.11)

where, according to (2.53), the least-squares estimate â(n) is given by

â(n) =
[
SH(φ)S(φ)

]−1
SH(φ)y(n). (4.12)

Defining a model dependent projector matrix by PS(φ) as

PS(φ) = S(φ) = S(φ)
[
SH(φ)S(φ)

]−1
SH(φ), (4.13)

and its orthogonal complement as

P⊥
S (φ) = I−PS(φ), (4.14)

We can rewrite the estimate ŷ(n|φ) as

ŷ(n|φ) = PS(φ)y(n), (4.15)

such that the ML estimator in (4.9) becomes

φ̂ML=arg minφ∈Φ

Nt∑
n=1

‖y(n)− ŷ(n)‖2,

=arg minφ∈Φ

Nt∑
n=1

‖(I− P̂S(φ))y(n)‖2,

=arg minφ∈Φ

Nt∑
n=1

tr(P⊥
S (φ)R̂yy),

=arg minφ∈Φ

Nt∑
n=1

tr(PS(φ)R̂yy), (4.16)

where tr(.) is the trace operator, and R̂yy is the sample covariance matrix. The

same result can also be obtained in a Bayesian context [41], [42], [43], [44]. Since the
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ML estimator does not take any prior knowledge of the parameters into account, it

is expected that the error characteristics of the resulting estimates could be worse

than those that can use prior knowledge. Moreover, like many other optimization

problems, the ML estimation problem is well known to be difficult, as the function to

optimize shows many saddle points and local extrema. Any gradient based method

would need a good initialization in order to succeed.

4.2 Wideband Source Localisation

Focusing technique the coherent Signal-Subspace Method (CSM) [45] is a fo-

cusing technique that transforms the signal subspaces spanned by the columns of

S(φ, ωj) in all frequency bins j = 0, . . . , J − 1 and overlaps them in a predefined sub-

space, known as the focusing subspace [45]. Given a predefined focusing frequency

ωF and hence the focusing location matrix S(φ, ωF ), the objective of the focusing

technique is to find the solution T(ωj) of the equations given by

T(ωj)S(φ, ωj) = S(φ, ωF ), j = 0, . . . , J − 1. (4.17)

Using the focusing matrices T(ωj), the snapshots at different frequency bins can

be transformed into the focusing subspace, i.e.,

y(j)(n) = T(ωj)y(n), (4.18)

and then a set of sample covariance matrices at different frequency bins can be

constructed as

R̂(j)
yy =

J

Nt

jNt/j∑
n=1+j

y(j)(n)y(j)H

(n), j = 0, . . . , J − 1 (4.19)

Eventually, a universal focused sample covariance matrix that can be used for

detection and estimation can be obtained as follows
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R̂(F )
yy =

1

J

J−1∑
j=0

R̂(j)
yy ,

=S(φ, ωF )R̂(F )
aa SH(φ, ωF ) + R(F )

ν (4.20)

where

R̂(F )
aa =

1

J

J−1∑
j=0

R̂aa(ωj),

R(F )
ν =

1

J

J−1∑
j=0

T(ωj)Σν(ωj)T
H(ωj). (4.21)

Given that the sample covariance matrix in (4.20) approximately corresponds to

that for narrowband signals, it is then possible to apply narrowband methods to the

wideband problem. While the CSM algorithm improves the efficiency of the estima-

tion by considering the energy in the sub-bands into the focusing signal subspace, it

suffers from a few problems that degrade the overall performance. Firstly, the trans-

formation involving the matrices T(ωj) will change the original noise structure as well

as the SNR levels at the output of the processor. In particular, if the observation

noise is Gaussian and white, the transformed noise is no longer white. Secondly, it was

pointed out that the method suffers from an asymptotic bias of the peaks in the spatial

spectrum. This bias increases with the bandwidth of the sources and the deviation of

the focusing points from the true DOAs. Nevertheless, it was shown [46] that if the

matrices T(ωj) are unitary transformations, the focusing is lossless. The Two-sided

Correlation Transformation (TCT), which is another focusing technique and uses a

similar focusing concept as in the CSM, performs the focusing transformation on the

covariance matrix of the sources instead of the location matrix. The transformation

matrix at each frequency bin is unitary and minimizes the distance between the fo-

cusing subspace and the transformed signal subspace. The TCT and the CSM differ

in two areas. Firstly, the transformation of the subspace using the TCT is performed

through a two-sided transformation applied to the source covariance matrix, which
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can be shown to result in a smaller error. Secondly, given that many high resolution

algorithms for DOA estimation are based on the eigen-decomposition of the covari-

ance matrix, the TCT applies the transformation on the source covariance matrix

instead of the location matrix. Similar to the CSM procedures, a predefined focusing

covariance matrix is given, and the objective of the TCT is to find all solutions of the

transformation matrices that minimize the distance between the focusing covariance

matrix and source covariance matrices in all frequency bins, under the constraint that

the transformation matrices are kept unitary. Let R̂
(F )
aa be the focusing covariance

matrix, and U(ωj) for j = 0, . . . , J − 1 be the focusing matrices. Then the TCT

focusing matrices can be found by the following optimization

minU(ωj)‖Û(ωj)−U(ωj)R̂
(F )
aa UH(ωj)‖

s.t. UH(ωj)U(ωj) = I (4.22)

for j = 0, . . . , J−1. Once the set of focusing matrices is obtained, the transformed

covariance matrices at different frequency bins can be constructed as

R̂yy(ωj) =
J

Nt

jNt/J∑
n=1+j

y(j)(n)y(j)H

(n), j = 0, . . . , J − 1, (4.23)

where

y(j)(n) = U(ωj)y(n). (4.24)

Finally, a universal focused sample covariance matrix can be constructed as follows

R̂(F )
yy =

1

J

J−1∑
j=0

R̂yy(ωj). (4.25)

The covariance matrix in (4.25) is approximatively equal to that for narrowband

signals, and hence can be applied to narrowband methods previously developed for

detection and estimation problems when the signals are narrowbamd. If the observa-

tion noise is Gaussian and white, then a preprocessing step can be taken to reduce
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the noise components in the covariance matrices. This step requires a low-resolution

beamformer to estimate the number of sources and the DOAs of the sources. With the

knowledge of the estimated number of sources, performing an eigen-decomposition on

the covariance matrices R̂yy(ωj) at the jth frequency bin yields an estimate of the

noise power as follows

σ̂2
ν(ωj) =

1

M − k0

M−1∑

m=k0

λ̂m

(
R̂yy(ωj)

)
, (4.26)

where λ̂m

(
R̂yy(ωj)

)
for m = 0, . . . , M − 1 are the estimated eigenvalues of the

R̂yy(ωj) that are arranged in descending order. Therefore, the source covariance

matrices can be rewritten as

R̂aa(ωj) = B(ωj)
[
R̂yy(ωj)− σ̂2

ν(ωj)I
]
BH(ωj), j = 0, . . . , J − 1 (4.27)

where

B(ωj) =
[
SH(φ, ωj)S(φ, ωj)

]−1
SH(φ, ωj) (4.28)

As a result, the noise-free focused sample covariance matrix can be simplified as

R̂(F )
yy = S(φ, ωF )R̂(F )

aa SH(φ, ωF ) (4.29)

where

R̂(F )
aa =

1

J

J−1∑
j=0

R̂aa(ωj), (4.30)

S(φ, ωF ) = U(ωj)S(φ, ωj), j = 0, . . . , J − 1 (4.31)

Finally, the desired focused covariance matrix will be applied to appropriate al-

gorithms for detection and estimation. The TCT method has a smaller subspace

fitting error than the CSM, and has unbiased estimates of the DOAs, regardless of
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the bandwidth of the signals. Both the CSM and the TCT techniques transform the

wideband signals into a common subspace, where the transformed signals approxi-

mately become narrowband. Since these methods operate in the frequency domain,

and the accuracy of the focusing relies on the size of the frequency bins, they require

a relatively larger amount of data than other competing methods. Furthermore, it is

assumed that an appropriately selected focusing matrix or focusing frequency ωF will

be given in each method, but such a selection could be arbitrary. When an inappro-

priate focusing matrix is selected, the overall detection and estimation performance

is significantly degraded.

Asymptotic Maximum-Likelihood Methods The asymptotic maximum -

likelihood (AML) method [47], [48], and [3] are extension of the ML estimators. In

particular, when the signals in the estimation problem are wideband and J is suffi-

ciently large and there is no frequency correlation in the sources, the set of frequency

spectra Y(ωj) for all j can be considered independent so that the AML methods can

perform DOA estimation jointly in J frequency bins. Denote the AML estimate of

the DOAs by φ̂AML. We define P̂j as the projection matrix for ω = ωj onto the range

of S(φ̂AML, ωj), given by

P̂j = S(φ̂AML, ωj)
[
S(φ̂AML, ωj)S

H(φ̂AML, ωj)
]−1

SH(φ̂AML, ωj), j = 0, . . . , J − 1,

(4.32)

and Ĉyy(ωj) as the sample covariance matrix for the observations at ωj, given by

Ĉyy(ωj) =
1

Nt

Nt∑
n=1

Y(ωj)Y
H(ωj), j = 0, . . . , J − 1. (4.33)

Accordingly, the orthogonal complement of P̂j is given by

P̂⊥
j = I− P̂j. (4.34)

Depending on the knowledge of the observation noise variance σ2
ν at ωj, there

are three cases by which the total likelihood function Ll(φ̂AML), l = 1, 2, 3, can be
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defined [3], provided the number of sources k0 is available. In each case, the AML

estimate φ̂AML can be obtained by

φ̂AML = arg maxφ∈Φ

J−1∑
j=0

Ll(φ̂AML), l = 1, 2, 3, (4.35)

1. When ηj , σ2
ν(ωj), j = 0, . . . , J − 1, is known, the total likelihood function

L1(φ̂ML) is defined by

L1(φ̂ML) =
J−1∑
j=0

−1

ηj

tr
[
P̂⊥

j Ĉyy(ωj)
]
− log det

[
P̂jĈyy(ωj)P̂j + ηjP̂

⊥
j

]
(4.36)

2. When ηj , σ2
ν(ωj), j = 0, . . . , J − 1, is unknown, then an estimate of ηj is

computed as follows

ηj =
tr

[
P̂⊥

j Ĉyy(ωj)
]

M − k0

, (4.37)

such that the total likelihood function L2(φ̂AML) is given by

L2(φ̂AML) = −ϕ(φ̂AML)− (M − k0)
J−1∑
j=0

log tr
[
P̂⊥

j Ĉyy(ωj)
]
, (4.38)

where

ϕ(φ̂AML) =
J−1∑
j=0

log det
[
P̂jĈyy(ωj)P̂j + P̂⊥

j

]
. (4.39)

3. When ηj , σ2
ν(ωj) = σ2

ν , j = 0, . . . , J−1, and σ2
ν is unknown, then an estimate

of ηj is computed as follows

η̂ =

∑J−1
j=0 tr

[
P̂⊥

j Ĉyy(ωj)
]

J(M − k0)
(4.40)

such that the total likelihood function L3(φ̂AML) is given by
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L3(φ̂AML) = −ϕ(φ̂AML)− J(M − k0)log
J−1∑
j=0

tr
[
P̂⊥

j Ĉ(ωj)
]
. (4.41)

It is possible performing parameter estimation by maximum likelihood in the

frequency domain, but the global search in the parameter space of interest is com-

putationally complex and generally not used in practice. In particular, to sustain a

high accuracy in the estimation, the number of frequency bins J and the number of

snapshots Nt need to be large, adding more computational burden to the algorithm.

Furthermore, the knowledge of the model and the the initial estimates play a critical

role in the performance of the method. The estimates can be unreliable if the model

is inaccurate or the initial estimates are not precise enough. More detailed discussion

of the AML estimator for wideband signals can be found in [49], [50].

4.3 Application of the Proposed Algorithm

Using our approach, the estimation of the DOA is almost straightforward since

these later are related to the time delay parameters as we will see below.

If we consider N PPS sources impinging on an ULA of sensors consisting of M

sensors. The outputs of the array sensors obey the model presented by (3.1) and

(3.2).

If the N sources are located at the directions α1, α2,· · ·,αN , the time delay τnm is

related to these DOA through the equation

τnm =
(m− 1)d

c
cos(αn), n = 1, . . . , N, m = 1, . . . , M (4.42)

where c is the wave propagation speed, and d is the inter-sensor separation distance.

Hence, the DOA estimation problem is resolved by replacing in (3.12) the time de-

lay parameters τn2, n = 1, . . . , N by their corresponding DOAs αn, n = 1, . . . , N

(and accordingly replacing the delays in the EKF equations) leading to the following

expression

x(t)=
[
a1 α1 φ1(t) φ

(1)
1 (t) . . . φ

(L1)
1 (t) . . . . . . aN αN φN(t) φ

(1)
N (t) . . . φ

(LN )
N (t)

]T

,
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We have seen in Section 3 that our approach allows the simultaneous estimation

of the time delay parameters and the PPS parameters (by incorporating the time

delays within the state vector), implicating the simultaneous estimation of the PPS

parameters and their DOAs. In addition, the same algorithm can be used for both

narrowband and wideband cases without need of any transformation.

We provide below an example illustrating the performance of our algorithm in

terms of time delay parameters estimation.

We consider the case of three linear frequency modulated sources impinging on a

4-sensor array arriving from directions α1 = 10o, α2 = 20o, and α3 = 30o with respect

to the broadside [33]. Hence, we have N = 3, L1 = L2 = L3 = 2 and M = 4 with:

a1 = 1.0, b01 = π
2

rd, b11 = 0.5 rd
s
, b21 = 0.0025 rd

s2 .

a2 = 0.8, b02 = π
4

rd, b12 = 1.5 rd
s
, b22 = −0.0020 rd

s2 .

a3 = 0.7, b03 = π
6

rd, b13 = 0.1 rd
s
, b23 = 0.0010 rd

s2 .

We consider 512 samples and choose the initial diagonal covariance matrix with

the following diagonal elements 10−2, 10−2, 10−3, 10−8, 10−2, 10−2, 10−2, 10−8, 10−2,

10−2, 10−4, 10−8.

Figure 4.1 illustrates the the MSEs/CRLBs comparison for the three estimated

DOAs and where we conclude that the algorithm performs well since the estimator

MSEs achieve their corresponding CRLBs for SNR lower than 7 dB.
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Fig. 4.1. Proposed algorithm DOAs estimation example: case of 3
PPS sources impinging, from different directions, on a 4 sensor array.
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5. PERFORMANCE EVALUATION

In this chapter, we present the performance of the proposed approach. In all our

simulation examples, we assume a ULA with omnidirectional sensors. The sonar

case is considered with the sound propagation speed v = 1500m/s and the inter-

element spacing d = 1.5m/s. The sampling period and a sample size of 1 second

and 512 samples are considered, respectively. The parameter initializations are at

20% of the actual values. The signal-to-noise ratio is defined by SNR (dB) =

10 log10

[∑N
n=1 (a2

n) /(2σ2)
]

and ranges from 0 dB to 20 dB, where the additive noises

are zero-mean white Gaussian with variances {σ2
i , i = 1, . . . , N}. The performances

are measured by comparing the mean square errors (MSE’s), obtained through 100

Monte-Carlo trials, with their corresponding Cramér-Rao lower bounds (CRLB’s).

The delays are assumed unknown in all our simulation examples. Hence, the state-

vector form given in (3.12) is considered. These nuisance parameters are initialized

at 20% of their actual values.

5.1 Cramèr-Rao Lower bound Derivation

In this section, we derive for our model the Fisher information matrix (FIM). We

assume M deterministic signals {sm (t,Ψ) ,m = 1, . . . , M} with unknown parame-

ter vector Ψ observed in zero mean independent AWGNs {vm(t),m = 1, . . . ,M} of

variances {σ2
m,m = 1, . . . , M}, respectively. For t = 0, . . . , P − 1, we have





y1 (t,Ψ) = s1 (t,Ψ) + v1(t)
...

yM (t,Ψ) = sM (t,Ψ) + vM(t)

. (5.1)
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The FIM elements {FIM (Ψ)i,j}, as defined in [51], are given by

FIM (Ψ)i,j = −E

(
∂2ln p {y1 (t,Ψ) , . . . , yM (t,Ψ)}

∂ψi∂ψj

)
, (5.2)

where ψi, ψj are the entries of the vector Ψ and p stands for the probability density.

Having {ym,m = 1, . . . , M} mutually independent, we get

p {y1 (t,Ψ) , . . . , yM (t,Ψ)} =

p {y1 (t,Ψ)} × p {y2 (t,Ψ)} × · · · × p {yM (t,Ψ)} ,

(5.3)

and
∂2ln p {y1 (t,Ψ) , . . . , yM (t,Ψ)}

∂ψi∂ψj

=

1

σ2
1

P−1∑
t=0

[
(y1 (t,Ψ)− s1 (t,Ψ))

∂2s1 (t,Ψ)

∂ψi∂ψj

]

− 1

σ2
1

P−1∑
t=0

∂s1 (t,Ψ)

∂ψi

∂s1 (t,Ψ)

∂ψj

+ · · ·

+
1

σ2
M

P−1∑
t=0

[
(yM (t,Ψ)− sM (t,Ψ))

∂2sM (t,Ψ)

∂ψi∂ψj

]

− 1

σ2
M

P−1∑
t=0

∂sM (t,Ψ)

∂ψi

∂sM (t,Ψ)

∂ψj

.

(5.4)

We then obtain

FIM (Ψ)i,j =
1

σ2
1

P−1∑
t=0

(
∂s1 (t,Ψ)

∂ψi

∂s1 (t,Ψ)

∂ψj

)

+ · · ·+ 1

σ2
M

P−1∑
t=0

(
∂sM (t,Ψ)

∂ψi

∂sM (t,Ψ)

∂ψj

)
. (5.5)

The CRLB expression is then deduced from the following equation
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CRLB (Ψ) = FIM (Ψ)−1 . (5.6)

In application to our model defined by the equations 3.1 and 3.2, we get





s1 (t,Ψ) =
∑N

n=1 an sin [φn(t)]

s2 (t,Ψ) =
∑N

n=1 an sin
[
φn

(
t− τn2

∆

)]
...

sM (t,Ψ) =
∑N

n=1 an sin
[
φn

(
t− τnM

∆

)]

Ψ = [a1 τ12 b01 b11 . . . bL11 . . . . . . aN τN2 b0N b1N

. . . bLNN ]T = [ψ1 ψ2 . . . ψdN
]T

. (5.7)

We give below the FIM entry expressions for the monocomponent chirp signal

impinging on two-sensor array by using (5.5) and (5.7) (the FIM element expressions

for the general case of MCPPS’s impinging on a multi-sensor array are too heavy to

present on this document)

FIM (Ψ)11=
1

σ2
1

P−1∑
t=0

sin2 [φ1(t)] +
1

σ2
2

P−1∑
t=0

sin2 [φ2(t)]

FIM (Ψ)12=
1

σ2
2

P−1∑
t=0

{a1 (2b2 (τ − t∆)− b1)

× sin [φ2(t)] cos [φ2(t)]}

FIM (Ψ)13=
1

σ2
1

P−1∑
t=0

a1 sin [φ1(t)] cos [φ1(t)]

+
1

σ2
2

P−1∑
t=0

a1 sin [φ2(t)] cos [φ2(t)]

FIM (Ψ)14=
1

σ2
1

P−1∑
t=0

a1t∆ sin [φ1(t)] cos [φ1(t)]

+
1

σ2
2

P−1∑
t=0

{a1 (t∆− τ) sin [φ2(t)]

× cos [φ2(t)]}
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FIM (Ψ)15=
1

σ2
1

P−1∑
t=0

a1t
2∆2 sin [φ1(t)] cos [φ1(t)]

+
1

σ2
2

P−1∑
t=0

{a1 (t∆− τ)2 sin [φ2(t)]

× cos [φ2(t)]}

FIM (Ψ)21=FIM (Ψ)12

FIM (Ψ)22=
1

σ2
2

P−1∑
t=0

{a2
1 (2b2 (τ − t∆)− b1)

2

× cos2 [φ2(t)]}

FIM (Ψ)23=
1

σ2
2

P−1∑
t=0

{a2
1 (2b2 (τ − t∆)− b1)

× cos2 [φ2(t)]}

FIM (Ψ)24=
1

σ2
2

P−1∑
t=0

{a2
1 (2b2 (τ − t∆)− b1)

× (t∆− τ) ∆ cos2 [φ2(t)]}

FIM (Ψ)25=
1

σ2
2

P−1∑
t=0

{a2
1 (2b2 (τ − t∆)− b1)

× (t∆− τ)2 cos2 [φ2(t)]}
FIM (Ψ)31=FIM (Ψ)13

FIM (Ψ)32=FIM (Ψ)23

FIM (Ψ)33=
1

σ2
1

P−1∑
t=0

a2
1 cos2 [φ1(t)]

+
1

σ2
2

P−1∑
t=0

a2
1 cos2 [φ2(t)]

FIM (Ψ)34=
1

σ2
1

P−1∑
t=0

a2
1t∆ cos2 [φ1(t)]

+
1

σ2
2

P−1∑
t=0

a2
1 (t∆− τ) cos2 [φ2(t)]
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FIM (Ψ)35=
1

σ2
1

P−1∑
t=0

a2
1t

2∆2 cos2 [φ1(t)]

+
1

σ2
2

P−1∑
t=0

a2
1 (t∆− τ)2 cos2 [φ2(t)]

FIM (Ψ)41=FIM (Ψ)14

FIM (Ψ)42=FIM (Ψ)24

FIM (Ψ)43=FIM (Ψ)34

FIM (Ψ)44=
1

σ2
1

P−1∑
t=0

a2
1t

2∆2 cos2 [φ1(t)]

+
1

σ2
2

P−1∑
t=0

a2
1 (t∆− τ)2 cos2 [φ2(t)]

FIM (Ψ)45=
1

σ2
1

P−1∑
t=0

a2
1t

3∆3 cos2 [φ1(t)]

+
1

σ2
2

P−1∑
t=0

a2
1 (t∆− τ)3 cos2 [φ2(t)]

FIM (Ψ)51=FIM (Ψ)15

FIM (Ψ)52=FIM (Ψ)25

FIM (Ψ)53=FIM (Ψ)35

FIM (Ψ)54=FIM (Ψ)45

FIM (Ψ)55=
1

σ2
1

P−1∑
t=0

a2
1t

4∆4 cos2 [φ1(t)]

+
1

σ2
2

P−1∑
t=0

a2
1 (t∆− τ)4 cos2 [φ2(t)],

where τ = τ12, b0 = b01, b1 = b11, b2 = b21, φ1(t) = b0 + b1t∆ + b2t
2∆2, and φ2(t) =

b0 + b1 (t∆− τ) + b2 (t∆− τ)2.
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5.2 Application to Polynomial Phase Signals

The first example consists of three linear frequency modulated sources impinging

on a 4-sensor array arriving from directions α1 = 10o, α2 = 20o, and α3 = 30o with

respect to the broadside [33]. Hence, we have N = 3, L1 = L2 = L3 = 2 and M = 4

with:

a1 = 1.0, b01 = π
2

rd, b11 = 0.5 rd
s
, b21 = 0.0025 rd

s2 .

a2 = 0.8, b02 = π
4

rd, b12 = 1.5 rd
s
, b22 = −0.0020 rd

s2 .

a3 = 0.7, b03 = π
6

rd, b13 = 0.1 rd
s
, b23 = 0.0010 rd

s2 .

We choose the initial diagonal covariance matrix with the following diagonal el-

ements 10−2, 10−2, 10−3, 10−8, 10−2, 10−2, 10−2, 10−8, 10−2, 10−2, 10−4, 10−8. The

propagation delays are given as follows:

τ12 = 0.000174 second, τ22 = 0.000342 second, τ32 = 0.0005 second.

τ13 = 0.000348 second, τ23 = 0.000684 second, τ33 = 0.0010 second.

τ14 = 0.000522 second, τ24 = 0.001026 second, τ34 = 0.0015 second.

And where the delays are related to the DOAs according to the relation: τnm =

((m− 1)d/v sin(αn), n = 1, . . . , 3,m = 2, . . . , 4).

Figure 5.1 shows the filter error covariance matrix evolution for SNR = 10 dB

along with the MSEs/CRLBs comparison in the case of known phase degree (part

(a)) and overestimated phase degree (part (b)). In both cases, the algorithm performs

well, where the estimator MSE’s achieve their corresponding CRLB’s for SNR lower

than 5 dB, with earlier convergence of the filter in case (a) (concluded from the error

covariance matrix trace plot). For case (b), a wider model was considered by taking

in expression (3.12) N = 3 and L1 = L2 = L3 = 5. The filter converges to zero for

the parameters {bln, n = 1, . . . , 3, l = 3, . . . , 5}. This can be seen as phase degree

determination method when these latter are unknown. We only considered the two

high order coefficients {bln, l = 1, . . . , 2, n = 1, . . . , 3} to illustrate the algorithm per-

formance since it was noticed, after an extensive number of simulations, that these

parameters are estimated prior to the initial phases {b0n, n = 1, . . . , 3}, and their
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Fig. 5.1. Mean square errors and the corresponding Cramér-Rao
lower bounds versus varying signal-to-noise ratio, along with the er-
ror covariance matrix trace evolution at SNR = 10 dB. a- case known
phase degrees (equalling 3), b- unknown phase degrees (actual values
equalling 3 and overestimated to 5). .

good estimation would implicate good estimation of the initial phases.

Figure 5.2 illustrates the evaluation of the algorithm performance in the case where

two of the three sources impinge from the same direction. The same simulation con-

ditions as in the first example, part (a), are kept except the angles of arrival, where

we now have α1 = 10o, α2 = 10o, and α3 = 30o. Our estimator remains efficient

with performances similar to Figure 5.1 (a). The situation of similar angles of ar-

rival translates into similar delays in the state-vector. Reducing the dimension of the
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Fig. 5.2. Mean square errors and the corresponding Cramér-Rao lower
bounds versus varying signal-to-noise ratio, case where two signals
impinge from the same direction.

state-vector is possible in applications where we a priori know that some sources are

impinging from the same direction. This is done by omitting the redundant delay

variable obtaining a reduced computation cost.

In example 3, the performance of the algorithm is presented for fifth order PPS

source models where the same state-vector as in Example 1, (b) is considered. Fig-

ure 5.3 illustrates the error covariance matrix trace evolution for SNR = 10 dB. A

bad evolution can be noticed for the first 20 samples and a good evolution for the

remaining samples, where the filter converges to the actual parameter values. An

extensive number of simulations have been performed where we observe cases of filter
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Fig. 5.3. Error covariance matrix trace evolution at SNR = 10 dB,
case of PPS’s of high phase degree (5th order).

divergence. This is due to the very small values of the higher order phase coefficients

producing a badly conditioned error covariance matrix.

In example 4, the approach of [34] has been implemented and compared to our

algorithm with considering a wideband chirp signal with the following parameters:

a0 = 1, b0 = 0 rd, b1 = 0 rd
s
, and b2 = 0.0061 rd

s2 .

Figure 5.4 shows that the proposed method outperforms the one of [34] where,

for this latter, we have non-decaying MSE’s for SNR greater than 4 dB whereas for

our estimator, the MSE’s become closer to their respective CRLB’s for higher SNR

values (for the phase parameters).
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Fig. 5.4. Performance comparison with [34], case wideband chirp sig-
nal (a 2-sensor array has been used for our approach).

In example 5 the comparison of our algorithm is extended to the method developed

in [19] (Product High-Order Ambiguity Function, PHAF). Example 1 - (a) scenario

is taken with the actual PPS’s parameter values (narrowband signals)

a1 = 1, b01 = 0 rd, b11 = 0.25 rd
s
, b21 = 0.25/512 rd

s2 .

a2 = 1, b02 = 0 rd, b12 = 0.50 rd
s
, b22 = 0.50/512 rd

s2 .

a3 = 1, b03 = 0 rd, b13 = 0.75 rd
s
, b23 = 0.75/512 rd

s2 .

Figure 5.5 illustrates the simulation results. Our algorithm offers abetter performance

where a more efficient estimator is obtained. Performances of both methods have

been evaluated considering the higher order coefficients because PHAF performance
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Fig. 5.5. Performance comparison with [19], case 3 narrowband chirp
signals (a 4-sensor array has been used for our approach).

is highly dependent on the estimation result of these parameters [19] (the number of

lags used for PHAF implementation equals 6). We note that using our approach, it is

possible to estimate the DOA of the sources whereas this is impossible using PHAF.

In example 6, the performances of our approach are compared with those of [16]

(ML approach) in the case of wideband sources by considering a scenario given in [16]

where we have two sources impinging on a 10-sensor array

a1 = 1, b01 = 0 rd, b11 = 0.24π rd
s
, b21 = −0.0024π rd

s2 .

a2 = 1, b02 = 0 rd, b12 = 0.30π rd
s
, b22 = 0.0024π rd

s2 .

The sampling period is taken equal to 0.01 seconds and the sources impinge from the

directions α1 = 20o and α2 = 25o. The simulation results are shown in Figure 5.6.
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Fig. 5.6. Performance comparison with [16], case two wideband chirp
signals impinging on a 10-sensor array.

Our algorithm, although being a suboptimal estimator, offers a good alternative to

the ML estimator when seeking less complexity and real-time applications. Indeed,

the estimator MSE’s become closer to their respective CRLB’s for high SNR values.

In the last example, the performances of our approach is evaluated in the case of 3

wideband sources impinging on a 2-sensor array (number of sources greater than the

number of sensors)

a1 = 1, b01 = 0 rd, b11 = 0π rd
s
, b21 = 0.0061π rd

s2 .

a2 = 1, b02 = 0 rd, b12 = 0.24π rd
s
, b22 = − 0.0024π rd

s2 .

a1 = 1, b01 = 0 rd, b11 = 0.30π rd
s
, b21 = 0.0024π rd

s2 .



73

0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

45

50

55

SNR (dB)

M
S

E
,C

R
LB

  (
dB

)

MSE
Alpha1

CRLB
Alpha1

MSE
Alpha2

CRLB
Alpha2

MSE
Alpha3

CRLB
Alpha3

Fig. 5.7. DOA estimation performance, case three wideband chirp
signals impinging on a 2-sensor array.

where the sources impinge from the directions α1 = 10o and α2 = 20o, and α3 = 30o.

The simulation results are shown in Figure 5.7. Our algorithm provides good results

where the estimator MSE’s become closer to their respective CRLB’s for high SNR

values.

To compare our approach with the one used in [19] and [34] in terms of computational

cost (CC ), we consider the general case of N PPS’s of degrees Ln impinging on a

sensor array of M elements. By assuming P observations and I iterations (I = P ), the

following CC is obtained for our algorithm in terms of number of scalar multiplications

Mulcost (division) and scalar additions (Addcost) (subtractions):

Mul cost = [
(
1 + N + 2U + 3U2 + U3

)
M

+
(
U2 + 2U3

)
]I − U3

Add cost =
[(

1 + N + U + U2
)
M − U − U2 + 2U3

]
I

+ U2 + 3U3.
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Where U = N (Ln + 2) and U = N (Ln + 3) when the delays are considered known

and unknown, respectively. The CC for the method presented in [34] is as follows

Mul cost =
(
2 + 4U + 7U2 + 4U3 + 2N

)
I + U2 + U3

Add cost =
(
2 + U + U2 + 4U3 + 2N

)
I − U + U3.

Where U = N (Ln + 2).

For the PHAF algorithm presented in [19], The CC is as follows:

Mul cost=2N + 2 (2− L) P + (L + 1) P 2 + (L− 1) P 3

Add cost=−1− (L + 1) P + (2 + L) P 2.

Where L represents the number of lags used in the algorithm.

Let’s now consider the following example: three well separated chirp signals (N =

3, ln = 2), where 512 observations are available (P = 512). Two sensors, at least, are

needed for our algorithm to be applicable, so we consider this situation and hence

take M = 2. The minimum number of lags for the PHAF is considered taking L = 2

in the corresponding CC relations. For a fair comparison between our algorithm and

the one presented in [34], the situation where the delays are unknown is considered

by taking U = N (Ln + 3) = 15 in our CC relation (where U = N (Ln + 2) = 12

in [34] CC relation).

Finally, although the proposed EKF algorithm might converge earlier than the

last observation iteration, we consider the worst case where I = P . Figures cited in

Table 5.1 are then obtained. It can be noticed from this example that our algorithm

needs less number of operations than the one presented in [19] and needs relatively the

same number of operations as the one presented in [34] (knowing that the convergence

of the filter for our approach happens earlier than in the case of [34]).
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Table 5.1
Computational cost comparisons

Method Mul cost Add cost

Our approach 7749841 3593326

Method of [34] 4085584 3624628

Method of [19] 135004166 1047039
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6. CONCLUSIONS

In our study, we performed a synthesis work of the literature existing methods treat-

ing the problem of polynomial phase signal parameters estimation. We have identified

the problems and restrictions encountered by these latter: The majority of the pro-

posed approaches are only applicable to the case of monocomponent signals. For

the methods extensible to the multicomponent case, a high signal-to-noise ratio is

needed to guarantee a good parameter estimation result. In addition, the majority

of the existing methods do not directly address the problem of source localisation

when identifying the signals, and require the use of dedicated techniques, making

the conjoint resolution of the identification and localisation of the signals a complex

problem. Moreover, when dealing with wideband signals, the majority of the existing

techniques use a pre-processing step and a transformation to the frequency domain,

increasing by this the computation cost.

This work presents a new methodology using the combination of the state-space

representation and the use of the Kalman filtering technique with the exploitation of

the spatial information available through the use of an antenna array. We showed how

this combination presents a new outlooks and offers many advantages to problems in

the field:

• The approach is proven improving the estimation result compared to the case

where no spatial information is exploited using a single sensor.

• The algorithm is applicable to both monocomponent and multicomponent cases

and allows the joint estimation of the signals’ phase parameters and their angles-

of-arrival.
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• The particular choice of the state vector allows a direct estimation of the signals’

instantaneous frequency, a very important parameter in many applications, and

hence decreasing its estimation error.

• The performance of the algorithm remains good in the case when the number

of sources is superior to the number of the antenna elements and in situations

where the phases’ polynomial degree is unknown.

• The approach is applicable in situation requiring real-time processing of the

data, this thankfully to the nature of the Kalman filter.

• Finally, and in particular, our approach allows the wideband signal processing

to be performed in the time-domain and without any additional processing cost

(compared to the narrowband application).

There are a few areas that are worth being explored in the future, such as the

implementation of the algorithm on DSPs or FPGAs and the verification of the al-

gorithms with real-life data. Throughout the entire research, only simulated data

were used in the development of the algorithm and all results were based on these

simulated data. While the performance of this algorithm was consistent with the

theoretical test residing in the Cram(́e)r-Rao lower bound, real-life data should be

collected and used to verify its practical performance. In addition, the array sensor

elements in the entire research were assumed appropriately calibrated and identical.

Robustness of the algorithm to these assumptions should be conducted as well. In

addition, the implementation of the algorithm on DSPs or FPGAs is also considered
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Estimation of Multi-Component Polynomial-Phase
Signals Impinging on a Multi-Sensor Array

Using State-Space Modeling
Mounir Adjrad and Adel Belouchrani,Member, IEEE

Abstract— This contribution addresses the problem of estimat-
ing the parameters of multi-component polynomial-phase signals
when impinging on a multi-sensor array. An original approach
is proposed based on a state-space modelization of the signal
and the application of an extended Kalman filter for the state
estimation. The use of a multi-sensor array allows the exploitation
of a spatial information and leads to the consideration of
multiple filters with different observation equations. Computer
simulations are used to demonstrate the effectiveness of the
proposed algorithm.

I. INTRODUCTION

POLYNOMIAL-PHASE signals (PPS’s) are good model in
a variety of applications, e.g., radar systems transmitting

chirp signals or in communications systems using continuous-
phase modulation where the amplitude is constant and the
phase is a continuous function of time. The phase of the
signals used in these applications can then be modeled as
a finite-order polynomial within a finite-duration interval as
is known from Weierstrass theorem where any continuous
function on a closed interval can be uniformly approximated
by polynomials [13]. In some applications, there is a direct use
of a polynomial shaping pulse, in which case the polynomial
modeling would be exact. This explains why the parameter
estimation of constant-amplitude PPS’s embedded in noise has
received a considerable attention in the literature [14], [24],
[26]. The extension to PPS’s with time-varying amplitude was
also dealt with in [9], [30], [35]. Recently, there has been
a growing interest in estimating the parameters of multiple
polynomial-phase sources impinging on a multi-sensor array
[4], [17], [27], [29]. Such situation arises, for example, in
SAR signal processing or in the propagation of PPS’s through
multipath channels.

The maximum likelihood (ML) is one of several algorithms
that have been proposed to solve the problem at hand. It is
known to possess good asymptotic properties. However, its
implementation is difficult because it requires the resolution
of multivariate nonlinear optimization problem. The problem
becomes more difficult when dealing with multi-component
signals. Several simpler approaches were proposed for linear
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FM signals [1]. Another method for estimating the instanta-
neous phase of sinusoids embedded in noise was proposed in
[31], where the estimation was obtained by linear regression
of the instantaneous phase calculated directly from the signal
after phase unwrapping. The method provides good results for
signal-to-noise ratio (SNR) above 15 dB. This approach was
then extended in [24] for analyzing PPS’s of a generic degree.
However, the application of these methods is limited to the
case of single-component signals1 . The high-order ambiguity
function (HAF) was specifically introduced to estimate the
parameters of PPS’s [6], [8], [16], [23]. The HAF-based
method is suboptimal with respect to the ML method, but it is
much simpler to implement and provides performances quite
close to the optimal ones, at least at high SNR. However,
since the HAF is a nonlinear method, it suffers from two
basic problems: noise-masking effects at low SNR and cross
terms in the presence of multicomponent signals. Moreover, if
the observed signal is composed of the sum of PPS’s having
the same highest order phase coefficients, its HAF exhibits
spurious peaks generating an ambiguity problem in the HAF-
based estimation method. The ambiguity problem was solved
by introducing the product-HAF (PHAF) [5]. Spatial time-
frequency distribution concept has been developed and em-
ployed in [7], [34] for the purpose of localization of spatial
sources, where the PPS-like sources have been given great
importance.

The majority of methods presented in the literature are
limited to processing narrowband data. In many applications
(e.g. radar and communications), this is indeed a realistic
assumption. However, in other cases (e.g. sonar), the received
signal may be broadband. Most algorithms developed to solve
problems for wideband signals usually transform the received
signals from the time domain to the frequency domain using
Fourier transform as a pre-processing step [18], [32]. The
motivation of this transformation is that the transformed model
in the frequency domain is structurally similar to that for
narrowband signals in the time domain. The following burdens
are further reasons why most algorithms for wideband signal
processing operate in the frequency domain: given that the
time delay parameters are seldom scalar multiples of the
sampling rate, resolving signals from different delays is very
difficult, unless the sampling rate is increased significantly, so
that the error between the inter-sensor delay and the closest
sampling instant is reduced sufficiently. In other words, if

1The resulting signal from the sum of PPS’s is not necessarily a PPS [6].
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one develops an algorithm in an attempt to resolve wideband
signals in the time domain, oversampling may be required
and more sophisticated hardware is also required. Quite few
authors have dealt with the wideband situation in the time
domain [19], [33] and using spatial time-frequency concept
[20].

This paper introduces a new technique based on the Kalman
filter (KF) algorithm. The KF is considered as the best
minimum mean-squared linear estimator for the problem at
hand and has been used in [2], [15], [25]. It offers the
possibility of extending the single-component PPS parameter
estimation to the Multi-Components (MC) PPS’s case [3]
where the approach proposed in [2] is generalized to the MC
PPS’s case of any order impinging on a multi-sensor array.
The method presents a number of other attractive features.
It is very adequate for real-time applications because of the
recursive nature of the resulting algorithm and the modest use
of memory (due to the nature of the KF itself). Moreover,
in contrast to the majority of the literature, it allows the
consideration of a real-valued (RV) modelization hence the
applicability of the algorithm to situations where the source
signals are wideband without need to transform the received
signals from the time domain to the frequency domain. This
last point will be developed further in the next section.

The paper is organized as follows. In Section II, The
problem of MC PPS’s parameter estimation is stated and a
summary of the KF technique is presented along with the
chosen state-space modelization. The proposed algorithm is
presented in Section III. Numerical simulations illustrating the
usefulness of the proposed technique and comparisons with the
methods proposed in [5], [15], [19] are given in Section IV.

II. PROBLEM FORMULATION

A. Data Model

The general model considered in the majority of the litera-
ture is as follows

s(t) =
N∑

n=1

an exp [jφn(t)] , (1)

with φn(t) =
∑Ln

l=0 bln(t∆)l for t = 0, . . . , P − 1, where
P , N , and Ln represent the sample size, the number of
components, and the component phase degree, respectively.
The amplitudean is a real constant and the instantaneous
phaseφn(t) of each component is a polynomial.∆ represents
the sampling interval.

In many practical applications, the original sources are
RV, while most of the previously mentioned methods as-
sume the data consists of a double number of complex-
valued (CV) PPS’s. To do so, knowing that generally the
transmitted signal parameters are unknown, we apply the
Hilbert transform (HT) on the RV data. Modeling the signals
by an exponential assumes that the HT exactly generates
the quadrature component of the RV PPS. This assumption
is always verified for narrowband signals, where the PPS’s
amplitude and phase spectrums are separated [10], [11]. This
is theabsolute definition of a narrowband PPS. In the majority
of the literature, the narrowband situation is definedrelatively

to the sensor array where a signal is considered narrowband
if its complex envelope satisfies the conditionBsτmax � 1
with Bs representing the maximum bandwidth of the signal
complex envelope andτmax equaling the maximum travel
time between any two elements in the array. This latter is
considered as a consequence of the narrowband assumption
on the source signals rather than a definition. This analysis
becomes more clear when dealing with time-varying amplitude
PPS’s. The conclusion for this analysis is as follows:the more
closely a signal approaches a narrowband condition, the better
the Hilbert- transformed signal approximates the quadrature
signal, and the more likely the Hilbert-based analytic signal
is to provide an accurate model of a real system with a
particular Instantaneous Frequency (IF); also the better in
general will be the estimate of the instantaneous frequency
[10]. This justifies the choice of modelization (2) presented
hereafter instead of (1). In addition, taking a RV modelization
allows considering half of the number of the data needed in
the CV case.

Considering the following signal modelization

s(t) =
N∑

n=1

an sin [φn(t)] , (2)

We propose to exploit the spatial information provided by a
Uniform linear array (ULA) ofM sensors. Hence, the vector
array outputs{ym,m = 1, . . . ,M} obey the following model

y1(t) =
N∑

n=1

an sin [φn(t)] + v1(t), (3)

ym(t) =
N∑

n=1

an sin
[
φn

(
t− τnm

∆

)]
+vm(t), m = 2, . . . ,M,

(4)
where {vm,m = 1, . . . ,M} are independent, real valued,
additive white Gaussian noises (AWGN) with zero means and
variances{σ2

m,m = 1, . . . ,M}. {τnm, n = 1, . . . , N,m =
2, . . . ,M} are real valued parameters representing the propa-
gation time delays of thenth source waveform impinging at
themth array sensor with respect to signal received at the first
sensor2.

B. Kalman Filter Theory

The KF addresses the general problem of trying to estimate
the statex ∈ �n of a discrete-time controlled process that
is governed by a linear stochastic difference equation [12]. It
estimates the process by using a form of feedback control:
the filter estimates the process state at some time and then
obtains feedback in the form ofnoisy measurements. As
such, the equations for the KF fall into two groups: time
update equations and measurement update equations. The time
update equations are responsible for projecting forward (in
time) the current state and error covariance estimates to obtain
the a priori estimates for the next time step. The measurement
update equations are responsible for the feedback -i.e. for
incorporating a new measurement into the a priori estimate

2These delays are not necessarily multiples of the sampling period.
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to obtain an improved a posteriori estimate. The time update
equation can also be thought of as predictor equations, while
the measurement update equations can be thought of as correc-
tor equations. Indeed the final estimation algorithm resembles
that of a predictor-corrector algorithm for solving numerical
problems.

Some of the most successful applications of Kalman filter-
ing have been in situations with nonlinear dynamics and/or
nonlinear measurement relationships which is the case of
PPS’s parameter estimations problem according to (1). Two
basic ways of linearizing the problem exist: one is to linearize
about some nominal trajectory in state-space that does not
depend on the measurement data. The resulting filter is usually
referred to as a linearized KF. The other method is to linearize
about a trajectory that is continually updated with the state
estimates resulting from the measurements. When this is done,
the filter is called an extended KF (EKF). The former assumes
that an approximate trajectory may be determined by some
means. This assumption is less likely to be true in the majority
of radar, sonar and communications applications. This last
point explains the use of the EKF version of the KF.

C. State-Space Modelization

The state-space modelization consists of putting the state
and measurement equations according to the state-vector
choice. In practice, from (4), two cases can arise: situations
where the delays are known and applications where these
parameters are unknown. We then give the state-space rep-
resentation for both cases.

1) Known Delays: The chosen state-model has the follow-
ing state-vector

X(t) = [a1 φ1(t) φ
(1)
1 (t) . . . φ(L1)

1 (t) . . . . . .

aN φN (t) φ
(1)
N (t) . . . φ(LN )

N (t)]T , (5)

where(.)T and (.)(l) stand for the matrix transpose operator
and thelth derivative operator with respect tot, respectively
(the component phase degrees{Ln} are assumed known3).
The dimension ofX(t) is given by 4: dN =

∑N
n=1 (Ln + 2).

The following state-model is in order

{
X(t+ 1) = FX(t)
ym(t) = gm [X(t)] + vm(t), m = 1, . . . ,M , (6)

whereF andg are given by

F =




F1 0 · · · 0

0 F2
. . .

...
...

. . .
. . . 0

0 · · · 0 FN


 , (7)

3This assumption can be relaxed as will be seen in the Simulation Section.
4The nth signal component is represented in the state-vector by(Ln + 2)

elements.

with

Fn =




1 0 0 · · · 0
0 1 ∆

1! · · · ∆Ln

Ln!
...

. . .
. . .

. . .
...

...
. . .

. . . 1 ∆
1!

0 · · · · · · 0 1



, n = 1, . . . , N, (8)

and

g1 [X(t)] = x1(t) sin [x2(t)] + x1+d1(t) sin [x2+d1(t)] + · · ·
+ x1+dN−1(t) sin

[
x2+dN−1(t)

]
, (9)

gm [X(t)] = x1(t) sin

[
L1∑
l=0

(−τ1m)l

l!
xl+2(t)

]

+ x1+d1(t) sin

[
L2∑
l=0

(−τ2m)l

l!
xl+2+d1(t)

]
+ · · ·

+ x1+dN−1(t) sin

[
LN∑
l=0

(−τNm)l

l!
xl+2+dN−1(t)

]
,

m = 2, . . . ,M, (10)

where{xk(t), k = 1, . . . , dN} are the entries ofX(t).

By defining the parameter vector as

Θ = [a1 b01 b11 . . . bL11 . . . . . . aN b0N b1N . . . bLNN ]T ,
(11)

one obtains
Θ̂(t) = AF

−tX̂(t), (12)

whereΘ̂, X̂ are the estimates ofΘ andX, respectively,F is
as defined in (7) andA is given by

A =




A1 0 · · · 0

0 A2
. . .

...
...

. . .
. . . 0

0 · · · 0 AN


 , (13)

where

An =




1 0 · · · · · · 0

0 1
. . .

. . .
...

...
. . . 1

1!

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 1
Ln!



, n = 1, . . . , N. (14)

2) Unknown Delays: In this situation, the delays need to be
included by augmenting the state-vector given by (5) where the
nth signal component will be represented in the state-vector
by (Ln + 3) elements and the dimension ofX(t) becomes
equal todN =

∑N
n=1 (Ln + 3). The state-vector expression is

given by

X(t) = [a1 τ12 φ1(t) φ
(1)
1 (t) . . . φ(L1)

1 (t) . . . . . .

aN τN2 φN (t) φ
(1)
N (t) . . . φ(LN )

N (t)]T (15)
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We note that only the set{τn2, n = 1, . . . , N} has been
included. The reason is because for an ULA, the remaining
delays are found using the relationτnm+1 = mτn2, m =
2, . . . ,M .

The same state-model and state transition matrixF given by
(6) and (7), respectively, are considered with new expressions
for Fn andg

Fn =




1 0 0 · · · · · · 0
0 1 0 · · · · · · 0
0 0 1 ∆

1! · · · ∆Ln

Ln!
...

...
. . .

. . .
. . .

...
...

...
. . .

. . . 1 ∆
1!

0 · · · · · · · · · 0 1



, n = 1, . . . , N,

(16)

g1 [X(t)] = x1(t) sin [x3(t)] + x1+d1(t) sin [x3+d1(t)] + · · ·
+ x1+dN−1(t) sin

[
x3+dN−1(t)

]
, (17)

gm [X(t)] = x1(t) sin
[∑L1

l=0
(−(m−1)x2)

l

l! xl+3(t)
]

+x1+d1(t) sin
[∑L2

l=0
(−(m−1)x2+d1)

l

l! xl+3+d1(t)
]

+ · · ·

+x1+dN−1(t) sin
[∑LN

l=0

(−(m−1)x2+dN−1)
l

l! xl+3+dN−1(t)
]
,

m = 2, . . . ,M, (18)

The parameter vector given by (11) is augmented by the
inclusion of the nuisance parameters as follows

Θ = [a1 τ12 b01 b11 . . . bL11 . . . . . . aN τN2 b0N b1N

. . . bLN N ]T , (19)

The same relation as (12) relates the parameter vector to the
estimated state-vector withF and A defined in (7) and (13)
(Fn is given by (16)).An expression is as follows

An =




1 0 · · · · · · · · · 0

0 1
. . .

. . .
. . .

...

0 0 1
. . .

. . .
...

...
. . .

. . . 1
1!

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · · · · 0 1

Ln!



, n = 1, . . . , N.

(20)

The main motivations behind the chosen structure of the
state-vector are: the obtention of a minimum number of
nonlinear equation and direct estimation of the instantaneous
frequency (IF), a very important parameter as stressed in [10],
[21]. Indeed, from (6), we obtain a state-space modelization
with a linear state equation and nonlinear observation equa-
tions. Furthermore, from (5) and (15), it is possible to directly
estimate the IF{φ(1)

n (t), n = 1, . . . , N} of each component,

and hence minimizing the estimation error that would have
resulted from indirect estimation. In the next Section, we
present the EKF-based algorithm.

III. THE PROPOSED EXTENDED KALMAN FILTER

A. Estimation Algorithm

The EKF technique consists of linearizing, to the first order,
models (3) and (4) and applying an optimal state estimation
filter. The filter equations are given for both cases of known
and unknown delay paramters.

1) Known Delays: The update equations are given as
follows {

X̂−(t) = FX̂M (t)
P
−(t) = FPM (t)FT , (21)

where X̂−(t) and P
−(t) are the predicted state-vector and

covariance error matrix at the time instantt, respectively.

The estimation equations are




K1(t) = P−(t)GT
1 (t)

[
G1(t)P−(t)GT

1 (t) + σ2
1

]−1

ŷ1(t) = x̂−1 (t) sin
[
x̂−2 (t)

]
+ x̂−1+d1

(t) sin
[
x̂−2+d1

(t)
]

+ · · · + x̂−1+dN−1
(t) sin

[
x̂−2+dN−1

(t)
]

X̂1(t) = X̂−(t) + K1(t) [y1(t) − ŷ1(t)]
P1(t) = [I − K1(t)G1(t)] P−(t)

,

(22)




K2(t) = P1(t)GT
2 (t)

[
G2(t)P1(t)GT

2 (t) + σ2
2

]−1

ŷ2(t) = x̂1
1 (t) sin

[
x̂1

2 (t)
]
+ x̂1

1+d1
(t) sin

[
x̂1

2+d1
(t)

]
+ · · · + x̂1

1+dN−1
(t) sin

[
x̂1

2+dN−1
(t)

]
X̂2(t) = X̂1(t) + K2(t) [y2(t) − ŷ2(t)]
P2(t) = [I − K2(t)G2(t)] P1(t)
...

KM (t) = PM−1(t)GT
M (t)

[
GM (t)PM−1(t)GT

M (t) + σ2
M

]−1

ŷM (t) = x̂M−1
1 (t) sin

[
x̂M−1

2 (t)
]
+ x̂M−1

1+d1
(t) sin

[
x̂M−1

2+d1
(t)

]
+ · · · + x̂M−1

1+dN−1
(t) sin

[
x̂M−1

2+dN−1
(t)

]
X̂M (t) = X̂M−1(t) + KM (t) [yM (t) − ŷM (t)]
PM (t) = [I − KM (t)GM (t)] PM−1(t)

,

(23)

where {X̂m(t),m = 1, . . . ,M, t = 0, . . . , P − 1} are the
estimated state-vectors,{x̂−k , k = 1, . . . , 2 + dN−1} and
{x̂m

k , k = 1, . . . , 2 + dN−1,m = 1, . . . ,M − 1} are the
entries ofX̂− and {X̂m,m = 1, . . . ,M − 1}, respectively.
{Pm(t),m = 1, . . . ,M} are the covariance error matrices,
{Km, m = 1, . . . ,M} are the Kalman filter gain vectors and
I is the(dN × dN ) identity matrix.

The filter is initialized byX̂−
0 andP

−
0 . The final estimatêX

of X equalsX̂M (P − 1). The vectors{Gm,m = 1, . . . ,M}
are found by linearizing, at the first order, (9) and (10)
around the predicted state-vector and the estimated state-
vector, respectively. Hence, the following relations

G1(t) =
(
∂g1[X(t)]
∂X(t)

)
X(t)=X̂−(t)

, (24)
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Gm(t) =
(
∂gm[X(t)]
∂X(t)

)
X(t)=X̂m−1(t)

, m = 2, . . . ,M,

(25)

where∂ stands for the partial derivation operator. We then find

G1(t) = [G1,1(t) . . . G1,N (t)] , (26)

Gm(t) = [Gm,1,τ1m(t) . . . Gm,N,τNm(t)] , m = 2, . . . ,M,
(27)

where

G1,1(t) =
[
sin

[
x̂−2 (t)

]
x̂−1 (t) cos

[
x̂−2 (t)

]
0 . . . 0

]
, (28)

G1,n(t) = [sin
[
x̂−2+dn−1

(t)
]

x̂−1+dn−1
(t) cos

[
x̂−2+dn−1

(t)
]

0 . . . 0], n = 2, . . . , N, (29)

GT
m,1,τ1m

(t) =


sin
[
α1τ1m

(
X̂m−1(t)

)]

x̂m−1
1 (t) cos

[
α1τ1m

(
X̂m−1(t)

)]
−τ1m

1! x̂m−1
1 (t) cos

[
α1τ1m

(
X̂m−1(t)

)]
...

(−τ1m)L1

L1!
x̂m−1

1 (t) cos
[
α1τ1m

(
X̂m−1(t)

)]




m = 2, . . . ,M, (30)

GT
m,n,τnm

(t) =


sin
[
αnτnm

(
X̂m−1(t)

)]

x̂m−1
1+dn−1

(t) cos
[
αnτnm

(
X̂m−1(t)

)]
−τnm

1! x̂m−1
1+dn−1

(t) cos
[
αnτnm

(
X̂m−1(t)

)]
...

(−τnm)Ln

Ln! x̂m−1
1+dn−1

(t) cos
[
αnτnm

(
X̂m−1(t)

)]




n = 2, . . . , N, m = 2, . . . ,M, (31)

where{αnτnm , n = 1, . . . , N,m = 2, . . . ,M} are given by

α1τ1m

(
X̂m−1(t)

)
=

L1∑
l=0

(−τ1m)l

l!
x̂m−1

l+2 (t), (32)

αnτnm

(
X̂m−1(t)

)
=

Ln∑
l=0

(−τnm)l

l!
x̂m−1

l+2+dn−1
(t),

n = 2, . . . , N. (33)

2) Unknown Delays: As performed in the previous section,
the state-vector will be augmented. The update equation fol-
lows (21) where the same definitions hold as in the previous
subsection. The remaining equations are given hereafter


K1(t) = P−(t)GT
1 (t)

[
G1(t)P−(t)GT

1 (t) + σ2
1

]−1

ŷ1(t) = x̂−1 (t) sin
[
x̂−3 (t)

]
+ x̂−1+d1

(t) sin
[
x̂−3+d1

(t)
]

+ · · · + x̂−1+dN−1
(t) sin

[
x̂−3+dN−1

(t)
]

X̂1(t) = X̂−(t) + K1(t) [y1(t) − ŷ1(t)]
P1(t) = [I − K1(t)G1(t)] P−(t)

,

(34)


K2(t) = P1(t)GT
2 (t)

[
G2(t)P1(t)GT

2 (t) + σ2
2

]−1

ŷ2(t) = x̂1
1 (t) sin

[
x̂1

3 (t)
]
+ x̂1

1+d1
(t) sin

[
x̂1

3+d1
(t)

]
+ · · · + x̂1

1+dN−1
(t) sin

[
x̂1

3+dN−1
(t)

]
X̂2(t) = X̂1(t) + K2(t) [y2(t) − ŷ2(t)]
P2(t) = [I − K2(t)G2(t)] P1(t)
...

KM (t) = PM−1(t)GT
M (t)

[
GM (t)PM−1(t)GT

M (t) + σ2
M

]−1

ŷM (t) = x̂M−1
1 (t) sin

[
x̂M−1

3 (t)
]
+ x̂M−1

1+d1
(t) sin

[
x̂M−1

3+d1
(t)

]
+ · · · + x̂M−1

1+dN−1
(t) sin

[
x̂M−1

3+dN−1
(t)

]
X̂M (t) = X̂M−1(t) + KM (t) [yM (t) − ŷM (t)]
PM (t) = [I − KM (t)GM (t)] PM−1(t)

,

(35)

with G1 given by (26) and

Gm(t) = [Gm,1(t) . . . Gm,N (t)] , m = 2, . . . ,M, (36)

where

G1,1(t) =
[
sin

[
x̂−3 (t)

]
0 x̂−1 (t) cos

[
x̂−3 (t)

]
0 . . . 0

]
, (37)

G1,n(t) = [sin
[
x̂−3+dn−1

(t)
]

0 x̂−1+dn−1
(t) cos

[
x̂−3+dn−1

(t)
]

0 . . . 0], n = 2, . . . , N, (38)

GT
m,1(t) =


sin
[
α1

(
X̂m−1(t)

)]

x̂m−1
1 (t)

∑L1
l=1

(−(m−1))l(x̂m−1
2 )l−1

(l−1)! x̂m−1
l+3 (t)

× cos
[
α1

(
X̂m−1(t)

)]

x̂m−1
1 (t) cos

[
α1

(
X̂m−1(t)

)]
−(m−1)x̂m−1

2
1! x̂m−1

1 (t) cos
[
α1

(
X̂m−1(t)

)]
...

(−(m−1)x̂m−1
2 )L1

L1!
x̂m−1

1 (t) cos
[
α1

(
X̂m−1(t)

)]




m = 2, . . . ,M, (39)
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GT
m,n(t) =



sin
[
αn

(
X̂m−1(t)

)]

x̂m−1
1+dn−1

(t)
∑L1

l=1

(−(m−1))l
“

x̂m−1
l+2+dn−1

”l−1

(l−1)! x̂m−1
l+3+dn−1

(t)

× cos
[
αn

(
X̂m−1(t)

)]

x̂m−1
1+dn−1

(t) cos
[
αn

(
X̂m−1(t)

)]
−(m−1)x̂m−1

2+dn−1
1! x̂m−1

1+dn−1
(t) cos

[
αn

(
X̂m−1(t)

)]
...

“
−(m−1)x̂m−1

2+dn−1

”Ln

Ln! x̂m−1
1+dn−1

(t)

× cos
[
αnτnm

(
X̂m−1(t)

)]




n = 2, . . . , N, m = 2, . . . ,M, (40)

where{αn, n = 1, . . . , N,m = 2, . . . ,M} are given by

α1

(
X̂m−1(t)

)
=

L1∑
l=0

(−(m− 1)x̂m−1
2

)l

l!
x̂m−1

l+3 (t), (41)

αn

(
X̂m−1(t)

)
=

∑Ln

l=0

“
−(m−1)x̂m−1

l+2+dn−1

”l

l! x̂m−1
l+3+dn−1

(t),

n = 2, . . . , N. (42)

We note the dependence ofG upon the delay parameters,
which shows the importance of correct estimation of these
latter when they are unknown.

B. Discussion

The proposed algorithm is illustrated in Figure. 1. It is based
on the application of the EKFM times: The first EKF is
applied on the non-delayed signal by computing the predicted
values of the state-vector and the covariance matrix of the
prediction error. This is followed by the computation of the
Kalman filter gain, the estimated values of the state-vector and
of the estimation error covariance matrix after introduction of
the first sensor observation. The result is used as prediction
for the second EKF applied on the signal delayed byτn2.
The Kalman gain is then computed as well as the state-vector
estimate with the corresponding estimation error covariance
matrix after introducing the second sensor measurement. This
procedure is repeated until the application of theM th EKF,
where the estimation result of the(m − 1)th EKF is used
as prediction for themth EKF applied on the delayed signal
by τnm. The final estimates of theM th EKF constitute the
estimator outputs and in the same time are used by the first
EKF as prediction equations to project ahead and close the

Initialization X̂−
0 andP

−
0

�
Kalman Gain Computation (EKF1)

K1,t = P
−
t GT

1,t

(
G1,tP

−
t GT

1,t + σ2
1,t

)−1�

P
−
t

Project Ahead (EKF1)

X̂−
t = FX̂M,t

P
−
t = FPM,tF

T

�

X̂M,t, PM,t

�
K1,t, X̂−

t , P
−
t

�
Input y1,t

Update (EKF1)
ŷ1,t = x̂−

1,t sin
(
x̂−

2,t

)
+ x̂−

1+d1,t sin
(
x̂−

2+d1,t

)
+

· · · + x̂−
1+dN−1,t sin

(
x̂−

2+dN−1,t

)
X̂1,t = X̂−

t + K1,t (y1,t − ŷ1,t)
P1,t = (I − K1,tG1,t) P

−
t

...

...

...

Kalman Gain Computation (EKFM )

KM,t = PM−1,tG
T
M,t

(
GM,tPM−1,tG

T
M,t + σ2

M,t

)−1

�

KM,t, X̂M−1,t, PM−1,t

�

Input yM,t

Update (EKFM)
ŷM,t = x̂M−1

1,t sin
(
x̂M−1

2,t

)
+ x̂M−1

1+d1,t sin
(
x̂M−1

2+d1,t

)
+

· · · + x̂M−1
1+dN−1,t sin

(
x̂M−1

2+dN−1,t

)
X̂M,t = X̂M−1,t + KM,t (yM,t − ŷM,t)

PM,t = (I − KM,tGM,t) PM−1,t

�

Output X̂t = X̂M,t

Fig. 1. Flow chart of the proposed extended Kalman filter-based algorithm.

algorithm loop.
The algorithm can diverge if the reference about which the

linearization takes place is poor. The most common situation
of this type occurs at the initial starting point of the recursive
process. Frequently, thea priori information about the true
state of the system is poor. This causes a large error inX̂−

0

and forcesP−
0 to be large. Thus two problems can arise in

getting the extended filter started [12]:

1) A very largeP−
0 combined with low-noise measurements

at the first step will cause theP matrix to “jump” from a
very large value to a small value in one step. In practice
this is permissible. However, this can lead to numerical
problems due to roundoff. A non-positive definiteP
matrix at any point in the recursive process usually leads
to divergence.

2) If the error inX̂−
0 is large, the first-order approximation

used in the linearization will be poor, and divergence
may occur, even with perfect arithmetic.

With respect to problem 1, we should be especially careful
to use all the usual numerical precautions to preserve the
symmetry and positive definiteness of theP matrix on the
first step. In some cases, simply using the symmetric form of
the P-update equation is sufficient to ward off the divergence.
This form is as follows:

PM,t = (I − KM,tGM,t)PM−1,t(I − KM,tGM,t)T +
KM,tσ

2
M,tK

T
M,t.

Another way of mitigating the numerical problem is to let
P
−
0 be considerably smaller than would normally be dictated

by the true a priori uncertainty inX̂−
0 . This will cause

suboptimal operation for the first few steps, but this is better
than divergence! A similar result can be accomplished by
letting σ2

M,t be abnormally large for the first few steps. There
is no one single cure for all numerical problems. Each case
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must be considered on its own merits.
Problem 2 is more subtle than problem 1. Even with perfect

arithmetic, poor linearization can cause a poorX̂−
0 to be

updated into an even poorera posteriori estimate, which in
turn gets projected on ahead, and so forth. One remedy to the
poor-linearization problem, that works quite well when the
information contained in the initial measurement is sufficient
to determine the initial state-vector algebraically, is to use the
initial measurement to solve for the state-vector, just as if there
were no measurement error. It is hoped this will yield a better
estimate of the state-vector than the original coarseX̂−

0 .
It must be noted that none of the solutions just mentioned

play any role in the basic filtering process. Their sole purpose
is simply to provide a good reference for linearization, so that
the EKF can do its job of suboptimal estimation5.

In [15], one finds an approach using an EKF applied for a
single-component chirp signal case. The analytical signal of
the chirp was considered, leading to complex valued measure-
ment equations. An EKF was applied twice for the parameter
estimations. A first EKF was applied on the real part of the
signal model. A second EKF was applied using the imaginary
part of the signal model by taking the first filter estimations
as prediction results. Our algorithm originality consists of
bypassing the prediction equations of them th EKF’s, for
m = 2, . . . ,M , and substituting them by the outputs of
the (m − 1)th EKF’s, hence, leading to an anticipation in
the process. The same approach is applied for the prediction
equations of the first EKF where the output of theM th EKF
is used speeding up the convergence process.

In comparison with the method used in [15], where the
linearization was made around the predicted state-vector, we
note that our linearization point is the preceding EKF es-
timated state-vector, which represents a better linearization
point, compared to the predicted state-vector, since it is closer
to the solution (When the filter converges). Furthermore,
[15] second observation equation does not carry any new
information compared to the first observation equation (Since
these equations represent the analytical signal components).
In contrast, in our approach we can find a new information
represented by the time delays. Finally, [15] assumes the
chirp analytical signal representation, hence constraining the
algorithm applicability to the narrowband case only, whereas
our algorithm can be applied in the case of narrowband and
wideband signals (See Section IV, Example 5).

C. Computational Cost

To compare our approach with the one used in [5] and [15]
in terms of computational cost (CC), let’s consider the general
case ofN PPS’s of degreesLn impinging on a sensor array
of M elements. By assumingP observations andI iterations
(I ≤ P ), the following CC is obtained for our algorithm in
terms of number of scalar multiplicationsMul cost (division)

5In our simulations, we assumed the parameter initializations at 20 % of
their actual values, following [25].

TABLE I

COMPUTATIONAL COST COMPARISONS

Method Mul cost Add cost

Our approach 7749841 3593326
Method of [15] 4085584 3624628
Method of [5] 135004166 1047039

and scalar additionsAdd cost (subtractions):

Mul cost = [
(
1 +N + 2U + 3U2 + U3

)
M

+
(
U2 + 2U3

)
]I − U3

Add cost =
[(

1 +N + U + U2
)
M − U − U2 + 2U3

]
I

+ U2 + 3U3.

WhereU = N (Ln + 2) and U = N (Ln + 3) when the
delays are considered known and unknown, respectively. The
CC for the method presented in [15] is as follows

Mul cost =
(
2 + 4U + 7U2 + 4U3 + 2N

)
I + U2 + U3

Add cost =
(
2 + U + U2 + 4U3 + 2N

)
I − U + U3.

WhereU = N (Ln + 2).
For the PHAF algorithm presented in [5], TheCC is as

follows:

Mul cost=2N + 2 (2 − L)P + (L+ 1)P 2 + (L− 1)P 3

Add cost=−1 − (L+ 1)P + (2 + L)P 2.

WhereL represents the number of lags used in the algorithm.
Let’s now consider the following example: three well sepa-

rated chirp signals(N = 3, Ln = 2), where 512 observations
are available(P = 512). Two sensors, at least, are needed for
our algorithm to be applicable, so we consider this situation
and hence takeM = 2. The minimum number of lags for
the PHAF is considered takingL = 2 in the corresponding
CC relations. For a fair comparison between our algorithm
and the one presented in [15], the situation where the delays
are unknown is considered by takingU = N (Ln + 3) = 15
in our CC relation (whereU = N (Ln + 2) = 12 in [15]
CC relation). Finally, although the proposed EKF algorithm
might converge earlier than the last observation iteration, we
consider the worst case whereI = P . Figures cited in Table.
1 are then obtained. It can be noticed from this example
that our algorithm needs less number of operations than the
one presented in [5] and needs relatively the same number
of operations as the one presented in [15] (knowing that the
convergence of the filter for our approach happens earlier than
in the case of [15]).

IV. NUMERICAL RESULTS

In all our simulation examples, we assume a ULA with
omnidirectional sensors. The sonar case is considered with the
sound propagation speedv = 1500 m/s and the inter-element
spacingd = 1.5 m. The signal is generated according to (2)
with a sampling period and a sample size of 1 second and 512
samples, respectively. The parameter initializations are at 20 %
of the actual values (see footnote 5). The signal-to-noise ratio
is defined bySNR (dB) = 10 log10

[∑N
n=1

(
a2

n

)
/(2σ2)

]
and
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ranges from 0 dB to 20 dB, where the additive noises are zero-
mean white Gaussian with variances{σ2

i , i = 1, . . . , N}. The
performances are measured by comparing the mean square
errors (MSE’s), obtained through100 Monte-Carlo trials, with
their corresponding Cram´er-Rao lower bounds (CRLB’s, see
appendix for the bound derivations). The delays are assumed
unknown in all our simulation examples. Hence, the state-
vector form given in (15) is considered. These nuisance
parameters were initialized at 20 % of their actual values.

The first example consists of three linear frequency mod-
ulated sources impinging on a 4-sensor array arriving from
directionsα1 = 10o, α2 = 20o, andα3 = 30o with respect to
the broadside [3]. Hence, we haveN = 3, L1 = L2 = L3 = 2
andM = 4 with:

a1 = 1.0, b01 = π
2 rd, b11 = 0.5 rd

s , b21 = 0.0025 rd
s2 .

a2 = 0.8, b02 = π
4 rd, b12 = 1.5 rd

s , b22 = −0.0020 rd
s2 .

a3 = 0.7, b03 = π
6 rd, b13 = 0.1 rd

s , b23 = 0.0010 rd
s2 .

We choose the initial diagonal covariance matrix with the
following diagonal elements10−2, 10−2, 10−3, 10−8, 10−2,
10−2, 10−2, 10−8, 10−2, 10−2, 10−4, 10−8. The propagation
delays are given as follows6:
τ12 = 0.000174 second,τ22 = 0.000342 second,τ32 = 0.0005
second.
τ13 = 0.000348 second,τ23 = 0.000684 second,τ33 = 0.0010
second.
τ14 = 0.000522 second,τ24 = 0.001026 second,τ34 = 0.0015
second.

Figure. 2 shows the filter error covariance matrix evo-
lution for SNR = 10 dB along with the MSE’s/CRLB’s
comparison in the case of known phase degree (part (a))
and overestimated phase degree (part (b)). In both cases,
the algorithm performs well, where the estimator MSE’s
achieve their corresponding CRLB’s for SNR lower than 5 dB,
with earlier convergence of the filter in case (a) (concluded
from the error covariance matrix trace plot). For case (b),
a wider model was considered by taking in (15)N = 3
and L1 = L2 = L3 = 5. The filter converges to zero for
the parameters{bln, n = 1, . . . , 3, l = 3, . . . , 5}. This can
be seen as phase degrees determination method when these
latter are unknown. We only considered the two high order
coefficients{bln, l = 1, . . . , 2, n = 1, . . . , 3} to illustrate the
algorithm performance since it was noticed, after an extensive
number of simulations, that these parameters are estimated
prior to the initial phases{b0n, n = 1, . . . , 3}, and their
good estimation would implicate good estimation of the initial
phases.

Figure. 3 illustrates the evaluation of the algorithm perfor-
mance in the case where two of the three sources impinge from
the same direction. The same simulation conditions as in the
first example, part (a), are kept except the angles of arrival,
where we have nowα1 = 10o, α2 = 10o, andα3 = 30o.
Our estimator remains efficient with performances similar to
Figure. 1 - (a). The situation of similar angles of arrival
translates into similar delays in the state-vector. Reducing the

6The delays are related to the direction-of-arrival (DOA) according to the
relation τnm = (m−1)d

v
sin (αn), n = 1, . . . , 3, m = 2, . . . , 4.

Fig. 2. Example. 1: Mean square errors and the corresponding Cram´er-
Rao lower bounds versus varying signal-to-noise ratio, along with the error
covariance matrix trace evolution at SNR = 10 dB. a- case known phase
degrees (equaling 3), b- unknown phase degrees (actual values equaling 3
and overestimated to 5).

Fig. 3. Example. 2: Mean square errors and the corresponding Cram´er-Rao
lower bounds versus varying signal-to-noise ratio, case where two signals
impinge from the same direction.

dimension of the state-vector is possible in applications where
we a priori know that some sources are impinging from the
same direction. This is done by omitting the redundant delay
variable obtaining a reduced computation cost.

In examples 3, The performance of the algorithm is pre-
sented for fifth order PPS source models where the same state-
vector as in Example. 1, (b) is considered. Figure. 4 illustrates
the error covariance matrix trace evolution for SNR = 10. A
bad evolution can be noticed for the first 20 samples and a
good evolution for the remaining samples, where the filter
converges to the actual parameter values. An extensive number
of simulations have been performed where we cases of filter
divergence. This is due to the very small values of the higher
order phase coefficients producing a badly conditioned error
covariance matrix.

In example 4, the approach of [15] has been implemented
and compared to our algorithm with considering a wideband
chirp signal with the following parameters:a0 = 1, b0 = 0
rd, b1 = 0 rd

s , andb2 = 0.0061 rd
s2 .
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Fig. 4. Example. 3: Error covariance matrix trace evolution at SNR = 10
dB, case of PPS’s of high phase degree (5th order).

Fig. 5. Example. 4: Performance comparison with [15], case wideband chirp
signal (a 2-sensor array has been used for our approach).

Figure. 5 shows that the proposed method outperforms the
one of [15] where, for this latter, we have non-decaying MSE’s
for SNR greater than 4 dB whereas for our estimator, the
MSE’s become closer to their respective CRLB’s for higher
SNR values (for the phase parameters).

In example 5 the comparison of our algorithm is extended to
the method developed in [5] (Product High-Order Ambiguity
Function, PHAF). Example 1 - (a) scenario is assumed with
the actual PPS’s parameter values (narrowband signals)

a1 = 1, b01 = 0 rd, b11 = 0.25 rd
s , b21 = 0.25/512 rd

s2 .
a2 = 1, b02 = 0 rd, b12 = 0.50 rd

s , b22 = 0.50/512 rd
s2 .

a3 = 1, b03 = 0 rd, b13 = 0.75 rd
s , b23 = 0.75/512 rd

s2 .

Figure. 6 illustrates the simulation results. Our algorithm
offers a better performance where a more efficient estimator
is obtained. Performances of both methods have been evalu-
ated considering the higher order coefficients because PHAF
performance is highly dependent on the estimation result of
these parameters [5] (the number of lags used for PHAF
implementation equals 6). We note that using our approach, it
is possible to estimate the DOA of the sources (see footnote
6) whereas this is impossible using PHAF.

Fig. 6. Example. 5: Performance comparison with [5], case 3 narrowband
chirp signals (a 4-sensor array has been used for our approach).

Fig. 7. Example. 6: Performance comparison with [19], case two wideband
chirp signals impinging on a 10-sensor array.

In the last example, the performances of our approach are
compared with those of [19] (Maximum Likelihood approach,
ML) in the case of wideband sources by considering a scenario
given in [20] where we have two sources impinging on a 10-
sensor array

a1 = 1, b01 = 0 rd, b11 = 0.24π rd
s , b21 = −0.0024π rd

s2 .
a2 = 1, b02 = 0 rd, b12 = 0.30π rd

s , b22 = 0.0024π rd
s2 .

The sampling period is taken equal to0.01 seconds and
the sources impinge from the directionsα1 = 20o and
α2 = 25o. The simulation results are shown in Figure. 7.
Our algorithm, although being a suboptimal estimator, offers
a good alternative to the ML estimator when seeking less
complexity and real-time applications. Indeed, the estimator
MSE’s become closer to their respective CRLB’s for high SNR
values.

Finally, the algorithm has been tested for other scenarios
like cases where there are more sources than sensors and we
found that the algorithm performs well.
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V. CONCLUSION

Extended Kalman Filter-based approach was applied to
derive a new algorithm for parameter estimations of MC PPS’s
impinging on a multi-sensor array. The combination of this
scheme with the exploitation of a spatial information given by
a multi-sensor array was shown to provide a high convergence
rate and statistical features close to the CRLB’s. The new
method was compared with competitive algorithms to evaluate
its performance. It was demonstrated through simulations that
the proposed method performs well in both cases of wideband
and narrowband signals.

VI. APPENDIX

In this section, we derive the Fisher information matrix
(FIM) for our model.

A. Parameters of M Signals in AWGN

We supposeM deterministic signals{sm (t,Ψ) ,m =
1, . . . ,M} with unknown parameter vectorΨ observed in
zero mean independent AWGNs{vm(t),m = 1, . . . ,M}
of variances{σ2

m,m = 1, . . . ,M}, respectively. Fort =
0, . . . , P − 1,


y1 (t,Ψ) = s1 (t,Ψ) + v1(t)
...
yM (t,Ψ) = sM (t,Ψ) + vM (t)

. (43)

The FIM elements{FIM (Ψ)i,j}, as defined in [22], are
given by

FIM (Ψ)i,j = −E
(
∂2ln p {y1 (t,Ψ) , . . . , yM (t,Ψ)}

∂ψi∂ψj

)
,

(44)

whereψi, ψj are the entries of the vectorΨ andp stands for
the probability density. Having{ym,m = 1, . . . ,M} mutually
independent,
p {y1 (t,Ψ) , . . . , yM (t,Ψ)} =

p {y1 (t,Ψ)}×p {y2 (t,Ψ)}×· · ·×p {yM (t,Ψ)} ,
(45)

and
∂2ln p {y1 (t,Ψ) , . . . , yM (t,Ψ)}

∂ψi∂ψj
=

1
σ2

1

P−1∑
t=0

[
(y1 (t,Ψ) − s1 (t,Ψ))

∂2s1 (t,Ψ)
∂ψi∂ψj

]

− 1
σ2

1

P−1∑
t=0

∂s1 (t,Ψ)
∂ψi

∂s1 (t,Ψ)
∂ψj

+ · · ·

+
1
σ2

M

P−1∑
t=0

[
(yM (t,Ψ) − sM (t,Ψ))

∂2sM (t,Ψ)
∂ψi∂ψj

]

− 1
σ2

M

P−1∑
t=0

∂sM (t,Ψ)
∂ψi

∂sM (t,Ψ)
∂ψj

.

(46)

We then obtain

FIM (Ψ)i,j =
1
σ2

1

P−1∑
t=0

(
∂s1 (t,Ψ)
∂ψi

∂s1 (t,Ψ)
∂ψj

)

+ · · · + 1
σ2

M

P−1∑
t=0

(
∂sM (t,Ψ)

∂ψi

∂sM (t,Ψ)
∂ψj

)
. (47)

The CRLB expression is then given by

CRLB (Ψ) = FIM (Ψ)−1
. (48)

B. Application to Model (3)-(4)

According to (3) and (4),


s1 (t,Ψ) =
∑N

n=1 an sin [φn(t)]
s2 (t,Ψ) =

∑N
n=1 an sin

[
φn

(
t− τn2

∆

)]
...
sM (t,Ψ) =

∑N
n=1 an sin

[
φn

(
t− τnM

∆

)]
Ψ = [a1 τ12 b01 b11 . . . bL11 . . . . . . aN τN2 b0N b1N

. . . bLN N ]T = [ψ1 ψ2 . . . ψdN ]T

.

(49)
Ψ results is equivalent(19).

We give the FIM entry expressions for the single-
component chirp signal impinging on two-sensor array by
using (47) and (49) (theFIM element expressions for the
general case of MC PPS’s impinging on a multi-sensor array
are too heavy to be presented)

FIM (Ψ)11 =
1
σ2

1

P−1∑
t=0

sin2 [φ1(t)] +
1
σ2

2

P−1∑
t=0

sin2 [φ2(t)]

FIM (Ψ)12 =
1
σ2

2

P−1∑
t=0

{a1 (2b2 (τ − t∆) − b1)

× sin [φ2(t)] cos [φ2(t)]}

FIM (Ψ)13 =
1
σ2

1

P−1∑
t=0

a1 sin [φ1(t)] cos [φ1(t)]

+
1
σ2

2

P−1∑
t=0

a1 sin [φ2(t)] cos [φ2(t)]

FIM (Ψ)14 =
1
σ2

1

P−1∑
t=0

a1t∆ sin [φ1(t)] cos [φ1(t)]

+
1
σ2

2

P−1∑
t=0

{a1 (t∆ − τ) sin [φ2(t)]

× cos [φ2(t)]}

FIM (Ψ)15 =
1
σ2

1

P−1∑
t=0

a1t
2∆2 sin [φ1(t)] cos [φ1(t)]

+
1
σ2

2

P−1∑
t=0

{a1 (t∆ − τ)2 sin [φ2(t)]

× cos [φ2(t)]}
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FIM (Ψ)21 = FIM (Ψ)12

FIM (Ψ)22 =
1
σ2

2

P−1∑
t=0

{a2
1 (2b2 (τ − t∆) − b1)

2

× cos2 [φ2(t)]}

FIM (Ψ)23 =
1
σ2

2

P−1∑
t=0

{a2
1 (2b2 (τ − t∆) − b1)

× cos2 [φ2(t)]}

FIM (Ψ)24 =
1
σ2

2

P−1∑
t=0

{a2
1 (2b2 (τ − t∆) − b1)

× (t∆ − τ) ∆ cos2 [φ2(t)]}

FIM (Ψ)25 =
1
σ2

2

P−1∑
t=0

{a2
1 (2b2 (τ − t∆) − b1)

× (t∆ − τ)2 cos2 [φ2(t)]}
FIM (Ψ)31 = FIM (Ψ)13
FIM (Ψ)32 = FIM (Ψ)23

FIM (Ψ)33 =
1
σ2

1

P−1∑
t=0

a2
1 cos2 [φ1(t)]

+
1
σ2

2

P−1∑
t=0

a2
1 cos2 [φ2(t)]

FIM (Ψ)34 =
1
σ2

1

P−1∑
t=0

a2
1t∆ cos2 [φ1(t)]

+
1
σ2

2

P−1∑
t=0

a2
1 (t∆ − τ) cos2 [φ2(t)]

FIM (Ψ)35 =
1
σ2

1

P−1∑
t=0

a2
1t

2∆2 cos2 [φ1(t)]

+
1
σ2

2

P−1∑
t=0

a2
1 (t∆ − τ)2 cos2 [φ2(t)]

FIM (Ψ)41 = FIM (Ψ)14
FIM (Ψ)42 = FIM (Ψ)24
FIM (Ψ)43 = FIM (Ψ)34

FIM (Ψ)44 =
1
σ2

1

P−1∑
t=0

a2
1t

2∆2 cos2 [φ1(t)]

+
1
σ2

2

P−1∑
t=0

a2
1 (t∆ − τ)2 cos2 [φ2(t)]

FIM (Ψ)45 =
1
σ2

1

P−1∑
t=0

a2
1t

3∆3 cos2 [φ1(t)]

+
1
σ2

2

P−1∑
t=0

a2
1 (t∆ − τ)3 cos2 [φ2(t)]

FIM (Ψ)51 = FIM (Ψ)15
FIM (Ψ)52 = FIM (Ψ)25

FIM (Ψ)53 = FIM (Ψ)35
FIM (Ψ)54 = FIM (Ψ)45

FIM (Ψ)55 =
1
σ2

1

P−1∑
t=0

a2
1t

4∆4 cos2 [φ1(t)]

+
1
σ2

2

P−1∑
t=0

a2
1 (t∆ − τ)4 cos2 [φ2(t)],

whereτ = τ12, b0 = b01, b1 = b11, b2 = b21, φ1(t) = b0 +
b1t∆+ b2t

2∆2, andφ2(t) = b0 + b1 (t∆ − τ)+ b2 (t∆ − τ)2.
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