
Ministry of Higher Education and Scientific Research

Ecole Nationale Polytechnique

Electrical Power Engineering department

Final year’s project thesis

To obtain the State Engineer Diploma in Electrical Power

Engineering

Entitled

DESIGN OF AN UNMANNED AERIAL VEHICLE FOR POWER GRID MONITORING

Presented by:

MOKRANI Aymen and KHELALEF Yasser

Defended on the 9th of July 2020

Under the supervision of

Dr. Rabie BELKACEMI

Before the jury composed of:

Pr. Taher ZEBADJI President Ecole Nationale Polytechnique

Dr. Rabie BELKACEMI Supervisor Ecole Nationale Polytechnique

Pr. Abdelhafid HELLAL Examinor Ecole Nationale Polytechnique

ENP 2020

Ministry of Higher Education and Scientific Research

Ecole Nationale Polytechnique

Electrical Power Engineering department

Final year’s project thesis

To obtain the State Engineer Diploma in Electrical Power

Engineering

Entitled

DESIGN OF AN UNMANNED AERIAL VEHICLE FOR POWER GRID MONITORING

Presented by:

MOKRANI Aymen and KHELALEF Yasser

Defended on the 9th of July 2020

Under the supervision of

Dr. Rabie BELKACEMI

Before the jury composed of:

Pr. Taher ZEBADJI President Ecole Nationale Polytechnique

Dr. Rabie BELKACEMI Supervisor Ecole Nationale Polytechnique

Pr. Abdelhafid HELLAL Examinor Ecole Nationale Polytechnique

ENP 2020

 ملخص:

الأطروحة تصميم مركبة جوية بدون طيار لرصد وتتبع شبكة الطاقة ويمثل العمل الذي تم تنفيذه في هذه

 الكهربائية بشكل ذاتي القيادة

يتكون التصميم من عدة أجزاء، وهذا سيسمح لنا إما بالتحكم في النموذج الأصلي يدويا أو ارسال مهمات آلية

ذج وكذلك البرمجيات اللازمة ي الأجهزة والمعدات المستخدمة لبناء النموذاتية القيادة، وهذه الأجزاء ه

 .لتشغيل هذه الأجهزة

الكلمات المفتاحية: مركبة جوية بدون طيار، مركبة ذاتية القيادة، طيار آلي، نظام تشغيل الآليات، الذكاء

 الاصطناعي، الشبكة العصبية، تصنيف الصور.

Résumé :

Le travail réalisé dans cette thèse représente la conception d’un véhicule aérien sans pilote pour

la surveillance autonome du réseau électrique.

La conception se compose de plusieurs parties, ce qui nous permettra soit de contrôler le

prototype manuellement ou de planifier des missions autonomes, ces parties sont,

essentiellement, le matériel et les équipements utilisés pour construire le prototype UAV, ainsi

que les logiciels et programmes qui doivent être installer sur le matériel pour le contrôler.

Mots-clés : Véhicule aérien sans pilote, Véhicule autonome, Auto pilote, Système d’exploitation

robotique, Intelligence artificielle, Réseau neuronal, Classification des images.

Abstract:

The work carried out in this thesis represents the design of an unmanned aerial vehicle for

autonomous power grid monitoring.

The design consists of several parts, which will allow us to either control the prototype manually

or plan autonomous missions, these parts are the hardware and the equipment used to build the

UAV prototype, as well as the software needed to be implemented on the hardware to control it.

Keywords: Unmanned aerial vehicle, Autonomous vehicle, Auto pilot, Robotics operating

system, Artificial intelligence, Neural network, images classification.

ACKNOWLEGEMENTS

We thank ALLAH the Almighty for giving us health and the willingness

to start and finish this thesis.

Our sincere thanks to Dr. Rabie BELKACEMI for accepting to tutor,

supervise and guide us in the development of this modest work.

We also thank the members of the jury, Pr. Taher ZEBBADJI, the

president of the juries, and Pr. Abdelhafid HELLAL, the examiner, for

agreeing to evaluate this work and for all their comments and criticisms,

as well as all the teachers of the Electrical Power engineering department

of the Ecole Nationale Polytechnique.

Our deep thanks also go to our families, for supporting, advising and

encouraging us throughout all our educational cursus.

And finally, a deep gratitude to all the people who have helped and

supported us from near and far.

Table of contents

LIST OF TABLES

LIST OF FIGURES

ABBREVIATIONS

GENERAL INTRODUCTION ... 10

Chapter 1 : Overall Concepts ... 12

1. Introduction: ... 13

2. Quadcopter (Drone): .. 13

3. Hardware: ... 13

3.1. Flight controller: .. 13

3.2. Raspberry Pi: ... 17

4. Software: ... 22

4.1. PX4 Flight stack: ... 22

4.2. MAVLink Communication Protocol:.. 23

4.3. Robotics Operating System ROS: ... 24

5. Conclusion: ... 33

Chapter 2 : QUADCOPTER MODELING ... 34

1. Introduction: ... 35

2. Theoretical operation of the UAV: ... 35

3. Change of reference between the inertial mark and the UAV body marker: 36

4. Angular velocities: .. 38

5. Relationship between Euler angles and quaternions: ... 39

 6. Conclusion: .. 41

Chapter 3 : Software in The Loop Simulation SITL .. 42

1. Introduction: ... 43

2. Software in the loop simulation environment: .. 43

2.1. Gazebo simulator: ... 44

2.2 PX4 Firmware: ... 46

2.3 QGroundControl: ... 47

2.4. MAVROS: ... 48

3. Results and interpretation: .. 49

3.1. Codes to build the ROS package: .. 49

3.2. ROS with SITL Gazebo simulation: ... 53

3.3. Images classification: .. 64

4. Conclusion: ... 69

Chapter 4 : Launching the prototype... 70

1 Introduction: .. 71

2 Identifying the components: ... 71

2.1 The Electronic speed controller (ESC): ... 71

2.2 Battery: ... 74

2.3 Motors: ... 76

2.2 Airframe: .. 80

3. Setting up the Raspberry Pi: ... 81

4. Configuring the PIXHAWK: .. 81

5. Power up the drone: ... 83

5.1 Connecting to the raspberry pi: .. 83

5.2 Launching the programs: .. 84

6. Conclusion: ... 85

BIBLIOGRAPHY .. 89

APPENDIX .. 90

LIST OF TABLES

Table 1.1 Table showing different Raspberry Pi models ... 20

Table 1.2 Table showing different pins functionalities ... 22

LIST OF FIGURES

Figure 1.1 PIXHAWK Hardware .. 17

Figure 1.2 Block Diagram for Raspberry Pi .. 18

Figure 1.3 Raspberry Pi Components .. 20

Figure 1.4 MAVLink’s role ... 23

Figure 1.5 A typical ROS Package structure ... 26

Figure 1.6 A simple ROS Program .. 27

Figure 1.7 roscore command output .. 28

Figure 1.8 rosnode list command output.. 29

Figure 1.9 catkin_init_workspace command output .. 30

Figure 1.10 Typical folders in a ROS workspace .. 31

Figure 1.11 The .bashrc file after editing ... 32

Figure 2.1 Main UAV landmarks .. 35

Figure 2.2 UAV auxiliary markers .. 37

Figure 2.3 Representation of a quaternion ... 40

Figure 3.1 Cycle SITL simulation enivrement .. 44

Figure 3.2 Gazebo simulator interface ... 45

Figure 3.3 Gazebo toolbox ... 46

Figure 3.4 QGROUNDCONTROL user interface... 47

Figure 3.5 Adding dependencies to the CMaleLists.txt file .. 50

Figure 3.6 Adding the libraries to the CMakeLists.txt file .. 50

Figure 3.7 workspace folder .. 51

Figure 3.8 ROS package folder .. 51

Figure 3.9 Inside the ROS package.. 51

Figure 3.10 The nodes (programs) inside the src folder of the ROS package 51

Figure 3.11 Active nodes ... 52

Figure 3.12 Active nodes and topics .. 53

Figure 3.13 PX4 SITL gazebo simulation ... 54

Figure 3.14 MAVROS node output ... 55

Figure 3.15 The output of the drone_control.py node ... 56

Figure 3.16 The output of the input_node.py node .. 56

Figure 3.17 Takeoff mode source code .. 57

Figure 3.18 The position and orientation coordinates in takeoff mode ... 58

Figure 3.19 Takeoff flight mode .. 58

Figure 3.20 Landing flight mode .. 59

Figure 3.21 Landing mode source code ... 59

Figure 3.22 Forward and back source code ... 60

Figure 3.23 Slide right and left source code ... 60

Figure 3.24 Go up and down source code.. 61

Figure 3.25 Hovering mode source code ... 62

Figure 3.26 Position and orientation coordinates in hover mode .. 63

Figure 3.27 Linear and angular velocities in hover mode ... 63

Figure 3.28 Image classification output ... 66

Figure 3.29 The axes systems .. 67

Figure 3.30 functions to calculate the velocity according to the fixed axis xyz 68

Figure 3.31 source code for left and right directions ... 68

Figure 3.32 source code for neutre direction ... 69

Figure 4.1 Connection of the ESC ... 72

Figure 4.2 Block diagram of the different components inside the ESC .. 73

Figure 4.3 Inside a LiPo battery ... 74

Figure 4.4 brushless DC motor .. 76

Figure 4.5 Brushless motor sizing ... 77

Figure 4.6 The threaded bolt holes .. 78

Figure 4.7 Flashing the PIXHAWK with the chosen PX4 version .. 82

Figure 4.8 Airframe selection .. 82

Figure 4.9 Sensors calibration.. 83

ABBREVIATIONS

UAV UNMANNED AERIAL VEHICLE

ESC ELECTRONIC SPEED CONTROL

I2C INTER-INTEGRATED CIRCUIT

ROS ROBOT OPERATING SYSTEM

MAVLINK MICRO AIR VEHICLE LINK

GPS GLOBAL POSITIONING SYSTEM

FMU FLIGHT MANAGEMENT UNIT

GPIO GENERAL PURPOSE INPUT-OUTPUT

SITL SOFTWARE IN THE LOOP

API APPLICATION PROGRAMMING INTERFACE

UDP USER DATAGRAM PROTOCOL

GCS GROUND CONTROL STATION

MCU MICRO CONTROLLER UNIT

LIPO LITHIUM POLYMER

BLDC BRUSHLESS DIRECT CURRENT

GENERAL INTRODUCTION

11

The inspection of high voltage power transmission lines is mainly carried out by manned aerial

vehicles or foot patrol. However, these maintenance methodologies for inspection are somehow

inefficient and expensive. Moreover, helicopter assisted inspection endangers the human life.

Recently, unmanned aerial vehicles have been under development in several research centers all

over the world due to its potential applications. In this work, we are going to talk about these

methodologies and focus more on the unmanned aerial system based on the quadrotor helicopter

for high voltage power line inspection. Our interest is to equip the quadrotor helicopter with the

necessary payload in order to be able to carry out a qualitative inspection, therefore the hardware

architecture of the aerial robotic system is presented.

In this project, we are interested in building a drone prototype where a camera is integrated in it

that does image classification. The type of images processed by the onboard computer in the drone

are high voltage power lines, and depending of the direction of these lines (left, right, direct) the

computer will send commands to the flight controller of the drone to adjust its direction and keep

tracking the power lines in order for it to be able to perform its main objective that is: a qualitative

power line inspection.

In the first chapter, we will discuss all the concepts used in building the model, starting from the

hardware equipment, to the software that need to be implemented on the hardware and the

programs and platforms used to build to command and control the prototype.

The chapter that follows contains the mathematical and mechanical models that describe the UAV

motion, which will help us eventually determine the necessary variables to control in order to

command the UAV.

In chapter three, all the hardware and software elements discussed will be put into test in a

simulation environment, where we will observe the drone’s behavior to various commands and

codes before attempting to try it on the field.

Finally, on chapter four, we will discuss the methodology to follow in order to launch the UAV

model, as well as the components needed and chosen to build the prototype.

Chapter 1 : Overall Concepts

13

1. Introduction:

UAVs have evolved throughout this century to be used today in several fields. The UAV is a

flying device that does not require a human pilot. These autonomous aircraft were used for the

first time in the military field during the First World War. The evolution of technology has now

reached the level of electronics, allowing the performance of the UAV to be improved in a way

that is significative. UAVs are now used in the medical audiovisual and engineering fields.

This chapter will discuss a category of drones called quadcopters. We will note, in a non-

exhaustive way, the different technologies behind these devices, their applications, the different

controllers used to pilot the UAV.

2. Quadcopter (Drone):

The quadcopter and rotary wing UAVs differ from fixed wing UAVs in their ability to move with

a greater degree of freedom. The quadcopter has the advantage of being easy to control and

inexpensive. Its ability to hover and fly at low speeds makes the quadcopter an interesting

element in the use of UAVs in research. These UAVs can be several different sizes, from the size

of a coin to several meters long. Smaller quadcopters are often categorized as micro UAVs and

have special properties. The quadcopter belongs to the category of multi-rotor wing UAVs. It

consists of four main components: the four engines, the chassis, the electronic board and the

radio receiver.

3. Hardware:

3.1. Flight controller:

3.1.1. Introduction:

An autopilot is an embedded card has as a roll to perform on-board operations during the

unmanned tasks of a vehicle, such as the flight of an aircraft, the journey of an autonomous car,

the immersion of a submarine robot, or any other type of mobile robot.

Unlike a development card, the autopilot usually has a greater capacity for processing and

data transfer. This is because:

• Orientation and position sensors are read.

• Signals are read from the remote control.

14

• Other sensors coupled to the system are read, either through analog ports or digital or

serial transmission protocols.

• Flight data is stored for later statistical or graphical use.

• The unmanned vehicle is intercommunicated with other vehicles or a base on the

ground, using wireless networks.

• The battery is measured.

• Visual and sound alerts are sent.

• The control is processed.

• The data obtained is filtered.

• The control is written to the motors.

• Selected processes are executed in real-time modules.

• Demanding mathematical operations are performed in very short times, such as

multiplication of large dimension matrices, calculation of trajectories, and estimation

of speeds and accelerations.

 With the demand for resources, a development card tends to collapse or simply can’t achieve

such performance. For example, the Arduino development board, in its mega model, cannot

operate more than a brushless motor at 490hz since in principle its clock barely manages 300hz

for a single motor, compromising the operation of the rest of the ports and systems.

Now, if we compare it against another type of development cards or even more sophisticated and

specialized processors such as a Raspberry Pi, the autopilot only contains the minimum

equipment necessary and is only optimized for the teleoperation of a vehicle; that is, writing to an

adequate number of motors (from 4 to 12, for example), writing to auxiliary motors (servos, for

example), reading of positioning and orientation data, data feedback and control by the remote

user, storage of flight data, and additional reading of on-board equipment (distance sensors, GPS

redundant modules, etc.). Therefore, space, weight, and power consumption are optimized for the

task of driving a vehicle.

Among the best-known autopilots are the Pixhawk, the Naza, the ArduPilot, the Crazyflie, and

the CC3D.

3.1.2. PIXHAWK:

The Pixhawk dates back to 2008. It was initially developed as a student project in the ETH of

Switzerland by Lorenz Meier, and it was marketed in mid-2012 by the company 3DR.

Throughout this text, you will see that the ETH is an important part of the history of drone

design. [1]

15

The Pixhawk has in its FMUv2 version (which will be used for this text) the following features

(note that they change a little bit between manufacturers and clones):

Processor:

• 32-bit STM32F427

• 168Mhz RAM 256Kb

• 2MB flash memory

Integrated Sensors:

• 3-axis gyro with 16-bit resolution ST Micro L3GD20

• Accelerometer with 3-axis magnetometer and 14 bits of resolution ST Micro

LSM303D

• Accelerometer with redundant 3-axis gyroscope Invensense MPU 6000

• Barometer MS5611

• Some versions have GPS

Weigh and dimensions:

• 33-40 grams depending on the model and manufacturer 80x45x15mm

approximately

• Power consumption: 3.3V and 6.6V ADC inputs

Communication ports:

• I2C

• Analog inputs 3.3V and 6V

• SPI

• MicroUSB

• Futaba and Spektrum radio ports

• Power port

• CAN

• 5 UART

• PPM port

• microSD

16

Throughout this text, we will use Pixhawk version 1 or its clones 2.4.8 or 2.4.6 (note that they are

only names, since the real version 2 of the autopilot dates from 2017). However, the use of the

libraries is extensible to other autopilots of the Pixhawk family and even other families of

autopilots and drones.

As mentioned, although version 1 or its clones contain more ports, the most used are as follows

(and as shown in Figure 1.1):

• Serial communication port (wired): With this port, it’s possible to connect an Arduino or

any other development card with the intention of external processing of data and

receiving only simplified information. For example, one use is image processing with the

Raspberry Pi to identify positions of objects and send these positions to the Pixhawk by

standard serial protocol. See FRONT 3 in Figure 1.1.

• Serial communication ports (wireless): With this port, it’s possible to connect an intercom

in order to transfer data wirelessly between autopilots (altitudes, angles, sequences of

operation). This shouldn’t be confused with the radio control port; this interface operates

at 915Hz, except in Europe and countries with the European standards. See FRONT 2 in

Figure 1.1.

• Analog interface ports: With these ports, it’s possible to connect analog sensors such as

potentiometers, ultrasonic position sensors, temperature sensors, or pressure sensors. The

Pixhawk has three analog ports; one at 6.6V and two shared at 3.3V. See FRONT 13 and

FRONT 14 in Figure 1.1.

• Ports of digital interface: It is possible to use these ports as GPIO ports (generic digital

input and output ports). With them it’s possible to use push buttons, LEDs, or any other

device that works with binary logic (on and off). They are shared with the Auxiliary

PWM ports. See AUXILIARY SLOTS PWM in Figure 1.1.

• Fast PWM ports for brushless motors: These ports are used to connect the main motors of

the system and operate at 419hz. See MAIN SLOTS PWM in Figure 1.1.

• PWM ports of slow writing or auxiliary ports: These ports are for servos and motors

aimed at secondary operation of the system (fins, robotic arms of support, stabilizers of

cameras, etc.). They operate at 50hz. See AUXILIARY SLOTS PWM in Figure 1.1.

• Radio interface ports: The most commonly used is the PPM port, not to be confused with

the serial ports of wireless communication. They work in a way that allows the user to

have manual control of the vehicle. This can serve as an emergency stop or to activate a

sequence of operations in a semi-automatic way (takeoff, trajectory following, rotation

17

and anchoring, descent). This interface works at 3Mhz, except in countries with European

standards. See RC Input Port in Figure 1.1.

• LED signaling: This is a Toshiba device incorporated in order to indicate visual alerts.

See FRONT 15 in Figure 1.1.

• SD memory port: This stores the flight data to use later for statistics or graphics. See

SIDES 2 in Figure 1.1.

• Emergency or auxiliary buzzer: Used to activate a variety of sound alerts. See FRONT 8

in Figure 1.1.

• Security switch: If it is not activated, the motors simply will not turn. The security switch

is a button to avoid cutting or injuring anyone with propellers or motors due to unwanted

behavior. See FRONT 7 in Figure 1.1.

Figure 1.1 PIXHAWK Hardware

3.2. Raspberry Pi:

3.2.1. Introduction:

The Raspberry Pi is a series of small single-board computers developed in the United

Kingdom by the Raspberry Pi Foundation to promote teaching of basic computer science in

schools and in developing countries. The original model became far more popular than

anticipated, selling outside its target market for uses such as robotics. It now is widely used even

in research projects, such as for weather monitoring because of its low cost and portability. It

https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/United_Kingdom
https://en.wikipedia.org/wiki/United_Kingdom
https://en.wikipedia.org/wiki/Raspberry_Pi_Foundation
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Developing_countries
https://en.wikipedia.org/wiki/Target_market
https://en.wikipedia.org/wiki/Robotics

18

does not include peripherals (such as keyboards and mice) or cases. However, some accessories

have been included in several official and unofficial bundles.

The Raspberry Pi hardware has evolved through several versions that feature variations in the

type of the central processing unit, amount of memory capacity, networking support, and

peripheral-device support.

Figure 1.2 Block Diagram for Raspberry Pi

This block diagram describes Model B and B+; Model A, A+, and the Pi Zero are similar, but

lack the Ethernet and USB hub components. The Ethernet adapter is internally connected to an

additional USB port. In Model A, A+, and the Pi Zero, the USB port is connected directly to

the system on a chip (SoC). On the Pi 1 Model B+ and later models the USB/Ethernet chip

contains a five-port USB hub, of which four ports are available, while the Pi 1 Model B only

provides two. On the Pi Zero, the USB port is also connected directly to the SoC, but it uses

a micro USB (OTG) port. Unlike all other Pi models, the 40 pin GPIO connectors are omitted on

the Pi Zero with solderable through holes only in the pin locations.[2]. The Pi Zero WH remedies

this, as shown in this table:

https://en.wikipedia.org/wiki/Keyboard_(computing)
https://en.wikipedia.org/wiki/Mouse_(computing)
https://en.wikipedia.org/wiki/Computer_case
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/Micro_USB
https://en.wikipedia.org/wiki/File:Raspberrypi_block_function_v01.svg

19

Family Model
Form

Factor
Ethernet Wireless GPIO Released Discontinued

Raspberry

Pi Zero
W/WH Zero No Yes 40-pin 2017

Raspberry

Pi Zero
Zero Zero No No 40-pin 2015

Raspberry

Pi 4

B

(1 GiB)
Standard Yes Yes 40-pin 2019 Yes

Raspberry

Pi 4

B

(2 GiB)
Standard Yes Yes 40-pin 2019[31]

Raspberry

Pi 4

B

(4 GiB)
Standard Yes Yes 40-pin 2019[31]

Raspberry

Pi 4

B

(8 GiB)
Standard Yes Yes 40-pin 2020

Raspberry

Pi 3
B Standard Yes Yes 40-pin 2016

Raspberry

Pi 3
A+ Compact No Yes 40-pin 2018

Raspberry

Pi 3
B+ Standard Yes Yes 40-pin 2018

Raspberry

Pi 2
B Standard Yes No 40-pin 2015

Raspberry

Pi
B Standard Yes No 26-pin 2012 Yes

https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-TechRepublicPi4-34
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-TechRepublicPi4-34

20

Table 1.1 Table showing different Raspberry Pi models

3.2.2. Components:

The components of a Raspberry Pi are similar to those you will find in any modern device

(phone, tablet, laptop, desktop...) as shown in figure 1.3:

Figure 1.3 Raspberry Pi Components

Raspberry

Pi
A Standard No No 26-pin 2013 Yes

Raspberry

Pi
B+ Standard Yes No 40-pin 2014

Raspberry

Pi
A+ Compact No No 40-pin 2014

21

3.2.3. General purpose input-output (GPIO) connector:

Raspberry Pi 1 Models A+ and B+, Pi 2 Model B, Pi 3 Models A+, B and B+, Pi 4, and Pi Zero,

Zero W, and Zero WH GPIO J8 have a 40-pin pinout. Raspberry Pi 1 Models A and B have only

the first 26 pins.

In the Pi Zero and Zero W the 40 GPIO pins are unpopulated, having the through-holes exposed

for soldering instead. The Zero WH (Wireless + Header) has the header pins preinstalled, as

shown in table 1.2:

GPIO# 2nd func. Pin# Pin# 2nd func. GPIO#

 +3.3 V 1

2 +5 V

2 SDA1 (I²C) 3 4 +5 V

3 SCL1 (I²C) 5 6 GND

4 GCLK 7 8 TXD0 (UART) 14

 GND 9 10 RXD0 (UART) 15

17 GEN0 11 12 GEN1 18

27 GEN2 13 14 GND

22 GEN3 15 16 GEN4 23

 +3.3 V 17 18 GEN5 24

10 MOSI (SPI) 19 20 GND

22

9 MISO (SPI) 21 22 GEN6 25

11 SCLK (SPI) 23 24 CE0_N (SPI) 8

 GND 25 26 CE1_N (SPI) 7

(Pi 1 Models A and B stop here)

0 ID_SD (I²C) 27

28 ID_SC (I²C) 1

5 N/A 29 30 GND

6 N/A 31 32 12

13 N/A 33 34 GND

19 N/A 35 36 N/A 16

26 N/A 37 38 Digital IN 20

 GND 39 40 Digital OUT 21

Table 1.2 Table showing different pins functionalities

4. Software:

4.1. PX4 Flight stack:

The Pixhawk autopilot is hardware-compatible with the ArduPilot, PX4, Dronekit, MAVROS

libraries, and even with Parrot Bebop drone. On the other hand, the ArduPilot libraries are

compatible with the Pixhawk autopilot, the APM, Snapdragon, ErleBrain NAVio, and Parrot

23

Bebop drone. The complete lists of compatibilities as well as versions currently not supported are

on their respective web pages.

Similar SDK projects are:

• PX4

• Paparazzi

• Crazyflie

• Dronekit

PX4 is the Professional Autopilot. Developed by world-class developers from industry and

academia, and supported by an active worldwide community, it powers all kinds of vehicles from

racing and cargo drones through to ground vehicles and submersibles. It is the flight controller

software that will be used during this project.[3]

4.2. MAVLink Communication Protocol:

MAVLink is a very lightweight messaging protocol for communicating with drones (and

between onboard drone components). MAVLink follows a modern hybrid publish-subscribe and

point-to-point design pattern: Data streams are sent / published as topics while configuration sub-

protocols such as the mission protocol or parameter protocol are point-to-point with

retransmission.

Messages are defined within XML files. Each XML file defines the message set supported by a

particular MAVLink system, also referred to as a "dialect". The reference message set that is

implemented by most ground control stations and autopilots is defined in common.xml (most

dialects build on top of this definition).

The MAVLink toolchain uses the XML message definitions to generate MAVLink libraries for

each of the supported programming languages. Drones, ground control stations, and other

MAVLink systems use the generated libraries to communicate. These are typically MIT-licensed,

and can therefore be used without limits in any closed-source application without publishing the

source code of the closed-source application.[3]

Figure 1.4 MAVLink’s role

24

4.3. Robotics Operating System ROS:

4.3.1. Introduction:

The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a

collection of tools, libraries, and conventions that aim to simplify the task of creating complex

and robust robot behavior across a wide variety of robotic platforms.[4]

4.3.2. ROS Goal:

The quality that makes ROS better, unique, and powerful is not because it is a framework with

the most features. Instead, ROS was mainly and primarily built to support code reuse in robotics

research and development as it is a distributed framework of processes (also known as Nodes)

that enables executables to be individually designed and easily coupled at runtime.

In support of this primary goal of sharing and collaboration, there are several other goals of the

ROS framework [4]:

• Thin: ROS is designed to be as thin as possible, so that code written for ROS can be

used with other robot software frameworks. A corollary to this is that ROS is easy to

integrate with other robot software frameworks: ROS has already been integrated with

OpenRAVE, Orocos, and Player.

• Language independence: the ROS framework is easy to implement in any modern

programming language (C++, Python, JAVA…).

• Easy testing

• Scaling: ROS is appropriate for large runtime systems and for large development

processes.

ROS currently only runs on Unix-based platforms. Software for ROS is primarily tested on

Ubuntu and Mac OS X systems. Even though a port to Microsoft Windows for ROS is possible,

it has not yet been fully explored.

4.2.3. ROS Concepts:

ROS has three levels of concepts: The Filesystem level, the Computation Graph level, and the

Community level. These levels and concepts. First, ROS Filesystem Level which covers ROS

resources that you encounter on disk. Second is Computational Graph level, this latter is the

network of ROS processes that are processing data together. Third and finally, The ROS

25

Community Level concepts which are ROS resources that enable separate communities to

exchange software and knowledge.

4.2.3.1. ROS Filesystem Level:

• Packages: Packages are the main unit for organizing software in ROS. A package may

contain ROS runtime processes (nodes), a ROS-dependent library, datasets,

configuration files, or anything else that is usefully organized together. Packages are

the most atomic build item and release item in ROS. Meaning that the most granular

thing you can build and release is a package.

• Metapackages: Metapackages are specialized Packages which only serve to represent

a group of related other packages. Most commonly metapackages are used as a

backwards compatible place holder for converted rosbuild Stacks.

• Package Manifests: Manifests (package.xml) provide metadata about a package,

including its name, version, description, license information, dependencies, and other

meta information like exported packages.

• Repositories: A collection of packages which share a common VCS system. Packages

which share a VCS share the same version and can be released together using the

catkin release automation tool bloom. Often these repositories will map to converted

rosbuild Stacks. Repositories can also contain only one package.

• Message (msg) types: Message descriptions, stored in

my_package/msg/MyMessageType.msg, define the data structures for messages sent

in ROS.

• Service (srv) types: Service descriptions, stored in

my_package/srv/MyServiceType.srv, define the request and response data structures

for services in ROS.

26

Figure 1.5 A typical ROS Package structure

4.2.3.2. ROS Computation Graph Level:

The basic Computation Graph concepts of ROS are nodes, Master, Parameter Server, messages,

services, topics, and bags, all of which provide data to the Graph in different ways.

• Nodes: Nodes are processes that perform computation. ROS is designed to be

modular at a fine-grained scale; a robot control system usually comprises many nodes.

For example, one node controls a laser range-finder, one node controls the wheel

motors, one node performs localization, one node performs path planning, one Node

provides a graphical view of the system, and so on. A ROS node is written with the

use of a ROS client library, such as roscpp or rospy.

• Master: The ROS Master provides name registration and lookup to the rest of the

Computation Graph. Without the Master, nodes would not be able to find each other,

exchange messages, or invoke services.

• Parameter Server: The Parameter Server allows data to be stored by key in a central

location. It is currently part of the Master.

• Messages: Nodes communicate with each other by passing messages. A message is

simply a data structure, comprising typed fields. Standard primitive types (integer,

floating point, boolean, etc.) are supported, as are arrays of primitive types. Messages

can include arbitrarily nested structures and arrays (much like C structs).

• Topics: Messages are routed via a transport system with publish / subscribe

semantics. A node sends out a message by publishing it to a given topic. The topic is a

name that is used to identify the content of the message. A node that is interested in a

certain kind of data will subscribe to the appropriate topic. There may be multiple

concurrent publishers and subscribers for a single topic, and a single node may

publish and/or subscribe to multiple topics. In general, publishers and subscribers are

not aware of each other’s' existence. The idea is to decouple the production of

information from its consumption. Logically, one can think of a topic as a strongly

typed message bus. Each bus has a name, and anyone can connect to the bus to send

or receive messages as long as they are the right type.

• Services: The publish / subscribe model is a very flexible communication paradigm,

but its many-to-many, one-way transport is not appropriate for request / reply

interactions, which are often required in a distributed system. Request / reply is done

via services, which are defined by a pair of message structures: one for the request

27

and one for the reply. A providing node offers a service under a name and a client

uses the service by sending the request message and awaiting the reply. ROS client

libraries generally present this interaction to the programmer as if it were a remote

procedure call.

• Bags: Bags are a format for saving and playing back ROS message data. Bags are an

important mechanism for storing data, such as sensor data, that can be difficult to

collect but is necessary for developing and testing algorithms.

The ROS Master acts as a nameservice in the ROS Computation Graph. It stores topics and

services registration information for ROS nodes. Nodes communicate with the Master to report

their registration information. As these nodes communicate with the Master, they can receive

information about other registered nodes and make connections as appropriate. The Master will

also make callbacks to these nodes when this registration information changes, which allows

nodes to dynamically create connections as new nodes are run. [4]

Figure 1.6 A simple ROS Program

4.2.3.3. ROS Community Level:

These resources include:

• Distributions: ROS Distributions are collections of versioned stacks that you can

install. Distributions play a similar role to Linux distributions: they make it easier to

install a collection of software, and they also maintain consistent versions across a set

of software.

• Repositories: ROS relies on a federated network of code repositories, where different

institutions can develop and release their own robot software components.

28

• The ROS Wiki: The ROS community Wiki is the main forum for documenting

information about ROS. Anyone can sign up for an account and contribute their own

documentation, provide corrections or updates, write tutorials, and more.

4.2.4. ROS Command Tools:

The use of ROS requires a set of command-line tools. They are used to explore various aspects of

ROS. We can implement almost all the capabilities of ROS using these tools. The command-line

tools are executed in the Linux terminal; like the other commands in Linux. [5]

▪ The roscore command: $ roscore

 is a very important tool in ROS. When we run this command in the terminal, it starts

the ROS master, the parameter server, and a logging node. We can run any other ROS

program/node after running this command. So, run roscore on one terminal window,

and use another terminal window to enter the next command to run a ROS node.

Figure 1.7 roscore command output

▪ The rosnode command: explores all the aspects of a ROS node.

For example, we can list the number of ROS nodes running on our system. If you type

any of the commands, you get complete help for the tool.

$ rosnode list

29

Figure 1.8 rosnode list command output

▪ The rostopic command: provides information about the topics publishing/subscribing

in the system. This command is very useful for listing topics, printing topic data, and

publishing data.

$ rostopic list

If there is a topic called /chatter, we can print/echo the topic data using the following

command.

$ rostopic echo /<topic_name>

If we want to publish a topic with data, we can easily do this command.

$ rostopic pub topic_name msg_type data

▪ The roslaunch command is also useful in ROS. If you want to run more than ten ROS

nodes at time, it is very difficult to launch them one by one.

In this situation, we can use roslaunch files to avoid this difficulty. ROS launch files

are XML files in which you can insert each node that you want to run. Another

advantage of the roslaunch command is that the roscore command executes with it, so

we don’t need to run an additional roscore command for running the nodes.

The following is the syntax for running a roslaunch file. The 'roslaunch' is the

command to run a launch file, along with that we have to mention package name and

name of launch file.

$ roslaunch ros_pkg_name launch_file_name

▪ To run a ROS node, you have to use the rosrun node. Its usage is very simple.

$ rosrun ros_pkg_name node_name

4.2.5. Programming with ROS:

4.2.5.1. Creating a ROS workspace:

As any framework, a workspace is needed to be able to start working with the framework. For

ROS, a workspace is where ROS packages are kept. We can create new packages, install existing

30

packages, build and create new executables. To create a ROS workspace folder, its name and

location does not matter. To do so, we enter the following command in a new terminal.

$ mkdir -p ~/catkin_ws/src

This creates a folder called catkin_ws, inside of which is another folder called src. The ROS

workspace is also called the catkin workspace.

What is important and mandatory though is that the src folder shouldn’t be changed, yet we can

change the workspace folder name.

After entering the command, we can switch to the src folder by using the cd command.

$ cd catkin_ws/src

The following command initializes a new ROS workspace. If we are not initializing a workspace,

we cannot create and build the packages properly.

$ catkin_init_workspace

After this command, we see the message in Figure 1.9:

Figure 1.9 catkin_init_workspace command output

There is a CMakeLists.txt inside the src folder. After initializing the catkin workspace, we can

build the workspace. We can able it to build the workspace without any packages. To build the

workspace, we can switch from the catkin_ws/src folder to the catkin_ws folder.

$ ~/catkin_ws/src$ cd ..

The command to build the catkin workspace is catkin_make.

$ ~/catkin_ws$ catkin_make

31

We get the following output after entering this command, now we can see a few folders in

addition to the src folder:

Figure 1.10 Typical folders in a ROS workspace

• src Folder:

The src folder inside the catkin workspace folder is the place where it is possible to

create, or clone, new packages from repositories. ROS packages only

build and create an executable when it is in the src folder. When we

execute the catkin_make command from the workspace folder, it checks

inside the src folder and build each package.

• Build Folder:

When we run the catkin_make command from the ROS workspace, the

catkin tool creates some build files and intermediate cache CMake files

inside the build folder. These cache files help prevent from rebuilding all

the packages when running the catkin_make command; for example, if

you build five packages, and then add a new package to the src folder, only the new

package builds during the next catkin_make command. This is because of those cache

files inside the build folder. If you delete the build folder, all the packages build again.

• Devel Folder:

When we run the catkin_make command, each package is built, and if the build

process is successful, the target executable is created. The executable is stored inside

the devel folder, which has shell script files to add the current workspace to the ROS

workspace path. We can access the current workspace packages only if we run this

script. Generally, the following command is used to do this.

source ~/<workspace_name>/devel/setup.bash

32

It is important now to add the workspace environment. This means we have to set the workspace

path so that the packages inside the workspace become accessible and visible.

To do this, you have to do the following steps.

• We open the .bashrc file in the home folder and add the following line at the end of

the file.

• At a terminal, we switch to the home folder and select the .bashrc file.

$ gedit .bashrc

• Add the following line at the end of .bashrc.

source ~/catkin_ws/devel/setup.bash

Figure 1.11 The .bashrc file after editing

As we already know, the .bashrc script in the home folder executes when a new terminal session

starts. So, the command inserted in the .bashrc file also executes. setup.bash in the following

command has variables to add to the Linux environment.

source ~/catkin_ws/devel/setup.bash

When we source this file, the workspace path is added in the current terminal session. Now when

we use any terminal, we can access the packages inside this workspace.

33

4.2.5.2. ROS Build system:

In ROS, there is a build system for compiling ROS packages. The name of the build system that

we are using is catkin. catkin is a custom build system made from the CMake build system and

Python scripting. CMake is not directly used because building a set of ROS packages is

complicated. The complexity increases with the number of packages and package dependencies.

The catkin build system takes cares of all these things.

4.2.5.3 Creating a ROS package:

After creating the necessary workspace, it is possible for us now to create a catkin ROS package

by using the following command.

$ catkin_create_pkg ros_package_name package_dependencies

The command that we use to create the package is catkin_create_ pkg. The first parameter for

this command is the package name, and the dependencies of the package follow it. You have to

execute the command from the src folder in the catkin workspace.[5]

Inside the package is the src folder, package.xml, CMakeLists.txt, and the include folder.

• CMakeLists.txt: This file has all the commands to build the ROS source code inside

the package and create the executable.

• package.xml: This is basically an XML file. It mainly contains the package

dependencies, information, and so forth.

• src: The source code of ROS packages is kept in this folder. Normally, C++ files are

kept in the src folder. If you want to keep Python scripts, you can create another

folder called scripts inside the package folder.

• include: This folder contains the package header files. It can be automatically

generated, or third-party library files go in it.

5. Conclusion:

This chapter has listed the different technologies used to control a quadcopter, where we use the

flight controller PIXHAWK with the PX4 flight stack installed in it, and an onboard computer

called the Raspberry Pi where ROS will be implemented in it.

Chapter 2 : QUADCOPTER

MODELING

35

1. Introduction:

In order to control a drone, we need first to understand how it works, in some other words, the

mathematical and mechanical models behind its movements. Hence in this chapter, we will

elaborate the physical movements of the drone and as well as the different models and equations

that describe that.

2. Theoretical operation of the UAV:

The quadcopter is made up of 4 engines allowing to orient the UAV (Figure 2.1). The angular

velocity ω1 and ω1 of the M1 and M3 engines go counter-clockwise and the velocities ω2 and ω4 of

the M2 and M4 engines go clockwise. The quadcopter can be oriented in different ways: the so-

called extra configuration, where the UAV's nose is in front of the M1 engine, and the cross

configuration, where the nose is between the M1 and M2 engines. A positive rotation of the yaw

angle is achieved by increasing the velocities of the M2 and M4 engines relative to the velocities

of the M1 and M3 engines. An increase in the velocities of the M1 and M3 motors relative to the

velocities of the M2 and M4 motors will produce negative yaw rotation.

Figure 2.1 Main UAV landmarks

When the UAV is in a cross configuration, the speed difference between the four engines is used

to perform a roll or pitch rotation. Indeed, an increase of the velocities of motors M1 and M4 in

relation to the velocities of motors M2 and M3 allows for positive pitch rotation and vice versa

for negative rotation. An increase in the velocities of the M1 and M2 motors in relation to the

speeds of the M3 and M4 motors achieves a positive rotation in roll and vice versa for a negative

rotation.[6]

36

When the UAV is in an extra configuration, the difference in velocities between the two

engines is used to make the roll and pitch rotations. An increase in velocity of engine M1

compared to M3 will make a positive rotation in pitch. An increase in the velocity of motor

M4 with respect to M2 will make a positive rotation in roll.

Two main markers are used to describe the movement of the UAV. Mark {i} represents the

inertial marker, it's fixed in relation to the Earth. Marker {b} represents the marker on the

drone's body. The z-axis of frame {b} is always normal to the UAV body. The {b} marker

has been taken to be in a cross configuration.

The orientation of the UAV can be represented in different ways. One can, indeed, use

quaternions or Euler angles. Contrary to Euler angles, quaternions do not need to have

auxiliary markers to be properly described. They can also avoid the phenomenon known as

gimbal lock, which takes away two degrees of freedom from the UAV. This phenomenon

as well as the quaternions will be explained in more detail in the rest of this chapter.

3. Change of reference between the inertial mark and the UAV body marker:

Three auxiliary markers {ri}, {rψ} and {rθ} must be used to describe Euler angles, the yaw-

pitch-roll convention will be used (Figure 2.2):

• The origin of the {ri} marker {ri} is in the center of the drone's body. Its

orientation is the same as the orientation of the inertial marker {i};

• The {rψ} marker follows an angular rotation ψ on the z axis of the {i} marker;

• The {rθ} marker follows an angular rotation θ on the y-axis of the {rψ} marker;

• The marker {rθ} follows an angle rotation φ on the x-axis of the marker {rθ} and is
confused with the mark {b}.

37

Figure 2.2 UAV auxiliary markers

Rotation matrices can be used to describe changes in the benchmark. We will call y
xR the rotation

matrix allowing to go from the {y} to the {x} marker. We then have the following rotation

matrices:

38

From equations (2.1), (2.2) and (2.3), we can find the rotation matrix ri
bR allowing to pass

from the inertial reference mark {ri} to the body reference mark {b}:

In other words, an iX vector expressed in the {i} marker can be expressed in the {b}

marker by a bX vector using the following expression:

4. Angular velocities:

The quadcopter has a gyroscope to record the angular velocities of the UAV with respect

to the {i} marker and expressed in the {b} marker. These speeds can be symbolized by a

vector bω. This vector is composed of three coordinates p,q,r describing respectively the

angular velocities around the x, y and z axes of frame {b}:

Equation 2.1

bω= [
𝑝
𝑞
𝑟

]

In order to be able to implement a command to control the UAV orientation, the Euler

angle velocities must be expressed. It is therefore important to find a relation between the data

from the gyroscope and the angles. It can be shown that the change in angular rate from one

benchmark to another is:

With i+1ωi+1 the angular velocity of the marker {i+1} with respect to the inertial marker

expressed in the marker {i+1}, i
i+1Ri the rotation matrix passing from the old marker to the new

one, θi+1 The angular velocity of the angle of rotation and i+1Zi+1 the collinear unit vector with the

axis of rotation in the new marker. From (2.8) and by recurrence, we can deduce:

39

5. Relationship between Euler angles and quaternions:

In order to see the limits of modelling with Euler angles, the J matrix must be inverted. We

end up with this result:

The relation (2.12) allows to see the limits of UAV modeling with Euler angles.

φ¨and ψ¨ are undefined when θ is at 90 degrees. The UAV then loses two degrees of

freedom. This phenomenon is called dial blocking. Using Euler angles forbids the UAV to

make more complicated trajectories (to make acrobatic trajectories for example). This

project being limited to make simple trajectories, the orientation of the UAV will never

reach these singularities. However, these singularities can pose a problem when trying to

recover orientation angles using sensors (gyroscope, accelerometer and magnetometer).

The UAVs used in this project use quaternions to record orientations, so it is important to

understand the fundamentals and the relationship between Euler angles and quaternions.[7]

Quaternions are used to describe the orientation of a benchmark using a unit vector and an

angle θre f (see Figure 2.3).

40

Figure 2.3 Representation of a quaternion

One way to define a quaternion q is to define its elements as follows:

With �̂�𝑥, �̂�𝑦 and �̂�𝑧 the elements of the unit vector. The conjugate of the quaternion q is then

represented as follows:

If we define 𝑎𝑏𝑞 as the quaternion to describe the orientation of a marker {b} comparing to a

marker {a} and goes a given vector 𝑣𝑎 in the marker {a}, the relation describing the vector 𝑣𝑎 into

the marker {b} is:

The symbol ⊗ being the product of quaternions using Hamilton's principle. We can then, from

relations (2.13), (2.14) and (2.15), establish the rotation matrix of the UAV orientation according

to the elements of the quaternion:

41

From the inverse rotation matrix of equation (2.5) and by identification, we find the following

expressions:

 6.

Conclusion:

In this chapter, we highlighted the mathematical model for the mechanical movements of the

drone. This model will help us understand how the drone actually work by knowing its different

variables that can be adjusted and controlled which will eventually help us build the ROS

package to control the drone.

Chapter 3 : Software in The Loop

Simulation SITL

43

1. Introduction:

Simulators allow PX4 flight code to control a computer modeled vehicle in a simulated

"world". You can interact with this vehicle just as you might with a real vehicle, using

QGroundControl, an offboard API, or a radio controller/gamepad.

PX4 supports both Software In The Loop (SITL) simulation, where the flight stack runs on

computer (either the same computer or another computer on the same network) and Hardware

In the Loop (HITL) simulation using a simulation firmware on a real flight controller board.

2. Software in the loop simulation environment:

The diagram below shows a typical SITL simulation environment for any of the supported

simulators. The different parts of the system connect via UDP, and can be run on either the

same computer or another computer on the same network.[3]

• PX4 uses a simulation-specific module to connect to the simulator's local TCP port

4560. Simulators then exchange information with PX4 using the Simulator MAVLink

API described above. PX4 on SITL and the simulator can run on either the same

computer or different computers on the same network.

• PX4 uses the normal MAVLink module to connect to ground stations (which listen on

port 14550) and external developer APIs like MAVSDK or ROS (which listen on port

14540).

• A serial connection is used to connect Joystick/Gamepad hardware via

QGroundControl.

44

Figure 3.1 Cycle SITL simulation enivrement

2.1. Gazebo simulator:

Robot simulation is an essential tool in every roboticist's toolbox. A well-designed simulator

makes it possible to rapidly test algorithms, design robots, perform regression testing, and

train AI system using realistic scenarios. Gazebo offers the ability to accurately and

efficiently simulate populations of robots in complex indoor and outdoor environments.

It is a 3D dynamic simulator with the ability to simulate various robots in indoor and outdoor

environments. While similar to game engines, Gazebo offers physics simulation at a much

higher degree of fidelity, a suite of sensors, and interfaces.

Gazebo interface consists of multiple sections. First of them - scene is the main part of the

simulator. This is where the simulated objects are animated and interact with the

environment. Second section are panels.[7]

45

Figure 3.2 Gazebo simulator interface

The left panel appears by default when you launch Gazebo. There are three tabs in the panel:

• WORLD: displays the models that are currently in the scene, and allows you to view

and modify model parameters, like their pose

• INSERT: The Insert tab is where you add new objects (models) to the simulation.

• LAYERS: The Layers tab organizes and displays the different visualization groups

that are available in the simulation.

The right panel is hidden by default. It is used to interact with the mobile parts of a selected

model (the joints). If there are no models selected in the Scene, the panel does not display any

information.

Third section are two toolbars. One of them is located above the Scene and one below. The

upper toolbar is a main one and includes most-used options: select, move, rotate, scale, create

shape, copy and paste, as shown in this figure:

46

Figure 3.3 Gazebo toolbox

The Bottom Toolbar is useful during the simulation. It displays simulation time, real time and

Real Time Factor, which is a relationship between two previous ones. The state of the world

in Gazebo is calculated once per iteration. You can see the number of iterations on the right

side of the bottom toolbar. Each iteration advances simulation by a fixed number of seconds,

called the step size.

2.2 PX4 Firmware:

It is an open source repository holds the PX4 flight control solution for drones, with the main

applications located in the src/modules directory. It also contains the PX4 Drone Middleware

Platform, which provides drivers and middleware to run drones.

This repository can be found on GitHub website via this link:

https://github.com/PX4/Firmware

To clone this repository into our system, a git command is used:

git clone https://github.com/PX4/Firmware.git

This repository will play the role of the flight controller, instead of using the PIXHAWK

hardware itself, it contains different worlds and models, and support many types of airframes

that can be loaded into Gazebo to be simulated, as well as its compatibility with the

QGROUNDCONTROL that is the ground control station which we’ll be discussing in what

follows.

47

2.3 QGroundControl:

QGroundControl provides full flight control and mission planning for any MAVLink enabled

drone. Its primary goal is ease of use for professional users and developers. All the code is

open-source source, so anyone can contribute and evolve it as they want.[3]

The key features of QGROUNDCONROL are:

• Full setup/configuration of ArduPilot and PX4 powered vehicles.

• Flight support for vehicles running PX4 and ArduPilot (or any other autopilot that

communicates using the MAVLink protocol).

• Mission planning for autonomous flight.

• Flight map display showing vehicle position, flight track, waypoints and vehicle

instruments.

• Video streaming with instrument display overlays.

• Support for managing multiple vehicles.

• QGC runs on Windows, OS X, Linux platforms, iOS and Android devices.

Figure 3.4 QGROUNDCONTROL user interface

48

2.4. MAVROS:

2.4.1. Definition:

MAVROS is the official supported bridge between ROS and the MAVLink protocol that we

discussed earlier. It is a ready ROS package that enables MAVLink extendable

communication between computers running ROS, MAVLink enabled autopilots, and

MAVLink enabled GCS.

2.4.2. Installation:

First step is to create a ROS workspace where the MAVROS package will be installed in,

following these commands:

mkdir -p ~/catkin_ws/src

cd ~/catkin_ws

catkin init

wstool init src

Next step is to install ROS Python tools: wstool (for retrieving sources), rosinstall, and

catkin_tools, through the following command:

sudo apt-get install python-catkin-tools python-rosinstall-generator -y

init ~/catkin_ws/src

The following step is to install MAVLINK and MAVROS:

• MAVLink:

rosinstall_generator --rosdistro kinetic mavlink | tee /tmp/mavros.rosinstall

• MAVROS:

rosinstall_generator --upstream-development mavros | tee -a /tmp/mavros.rosinstall

Now creating workspace and dependencies:

wstool merge -t src /tmp/mavros.rosinstall

wstool update -t src -j4

rosdep install --from-paths src --ignore-src -y

49

Next is installing GeofraphicLib datasets:

./src/mavros/mavros/scripts/install_geographiclib_datasets.sh

Build source:

catkin build

And finally, sourcing the setup.bash file:

source devel/setup.bash

Launching and using MAVROS protocol will discussed in the following.

3. Results and interpretation:

3.1. Codes to build the ROS package:

3.1.1. Creation of the catkin workspace:

The first step in this process is to create the workspace we will be working in (as mentioned

in chapter 1), following these commands:

mkdir -p /project_ws/src

cd project_ws/src

catkin_init_workspace

cd ..

catkin_make

Finally add this line “source /project_ws/devel.bash” to the .bashrc file.

3.1.2. Creation of the ROS package:

The step that follows is to create our ROS package which will contain the nodes (programs)

that will run our drone:

cd project_ws/src

catkin_create_pkg pfe_pkg std_msgs rospy mavros mavros_msgs geometry_msgs

geographic_msgs tf sensor_msgs

Whereas:

• pkg_pfe is the name we gave to our package

• “std_msgs rospy mavros mavros_msgs geometry_msgs geographic_msgs tf

sensor_msgs” are the dependencies that our programs need to be executed

50

The next step is to go inside the ROS package we created, open the CMakeList.txt file and do

few modifications (adding libraries and dependencies…) as shown in figure 3.5 and 3.6

Figure 3.5 Adding dependencies to the CMaleLists.txt file

Figure 3.6 Adding the libraries to the CMakeLists.txt file

Next is to cd into the src folder of the ROS package, and put there the python

nodes(programs) that we will use to run the drone.

51

The final step is to go outside the ROS package folder and run the following command:

catkin_make

The result is shown in figure 3.7, 3.8, 3.9 and 3.10:

Figure 3.7 workspace folder

Figure 3.8 ROS package folder

Figure 3.9 Inside the ROS package

Figure 3.10 The nodes (programs) inside the src folder of the ROS package

52

3.1.3. Nodes:

In this project we will use two main nodes that we created (in addition to the MAVROS node

that we discussed earlier). The First node is the “drone_control.py” node, and the second one

is “input_node.py” node.

User input node will take the flight mode requested by the user, publish to the user input

topic, then the drone control node will subscribe to that topic and send data to the MAVROS

node according to the flight mode message.

Using rqt_graph command, we can see all the nodes that our system consists of, as well as the

capacity to see active topics as well.

Figure 3.11, shows the active nodes in our program:

Figure 3.11 Active nodes

53

While figure 3.12 shows all the nodes as well as the active topics of this system:

Figure 3.12 Active nodes and topics

N.B:

The source code of the nodes was built using python programming language, and the scripts

can be found in the appendix A and B document.

3.2. ROS with SITL Gazebo simulation:

To run the simulation, we have to follow few steps, the first one is to launch the PX4 SITL

Gazebo simulation, then we launch the MAVROS node, that will enable the communication

54

between our ROS package and the PX4 software through the MAVLink protocol, then finally

running the drone control node followed by the user input node. More details are in what

follows:

• As mentioned earlier, the first thing to do is launch the PX4 SITL Gazebo simulation,

this will load a drone model called “iris” in the Gazebo simulation scene, as shown in

figure 3.13.

Command: sudo make px4_sitl gazebo

Figure 3.13 PX4 SITL gazebo simulation

• Next thing to do is to launch the MAVROS node to be able to connect to the PX4

firmware through the MAVLink protocol, as shown in figure 3.14:

55

In a new tab type:

roslaunch mavros px4.launch fcu_url:="udp://:14540@127.0.0.1:14557"

Figure 3.14 MAVROS node output

When “mission received” message appears, it means the MAVROS node is ready.

56

• Now in a new tab we launch the drone control node:

Command: cd project_ws && rosrun pfe_pkg drone_control.py

Figure 3.15 The output of the drone_control.py node

• Finally, in another tab, we launch the user input node:

Command: cd project_ws && rosrun pfe_pkg input_node.py

Figure 3.16 The output of the input_node.py node

57

Testing the codes:

• Takeoff flight mode: ‘to' as user input, the drone will fly to the target height that is set

in the program.

The part of the code that does that is in figure 3.17:

Figure 3.17 Takeoff mode source code

In this mode, after setting the drone to offboard mode that will allow us to command the

different variables as we want, we use the /mavros/setpoint_position/pose topic, the messages

in this topic are simply the coordinates of the drone comparing to a fixed xyz axes where the

(0.0.0) point is the takeoff position.

By setting

pose.pose.position.x = x_pos

pose.pose.position.y = y_pos

pose.pose.position.z = targetHeight

whereas x_pos, y_pos are initialized with 0 value and targetHeight is initialized with 1 meter,

the drone will only go according to the z axis with a distance of 1 meter.

58

Figure 3.18 shows the different value of the /mavros/setpoint_position/pose topic (using the

command rostopic echo /mavros/setpoint_position/pose):

Figure 3.18 The position and orientation coordinates in takeoff mode

Figure 3.19 shows the drone in the simulation environment

Figure 3.19 Takeoff flight mode

59

• Land flight mode: ‘l’ is the user input; the drone will automatically land as shown in

figure 3.20:

Figure 3.20 Landing flight mode

The part of the code that does that is in figure 3.21:

Figure 3.21 Landing mode source code

as we can see, we did not command the position variables of the drone, but instead we used

an existing mode within the MAVROS node called “AUTO.LAND” which will make the

drone land automatically.

• As we saw the in the user input_node output, there are the forward, back, slide right,

slide left, go up and go down modes, by choosing one of these modes, the drone will

move accordingly.

60

The part of code for this matter is in figures 3.22, 3.23, 3.24:

Figure 3.22 Forward and back source code

Figure 3.23 Slide right and left source code

61

Figure 3.24 Go up and down source code

As we can see, we once again used the /mavros/setpoint_position/pose topic variables. Hence

if we want to slide the drone right or left we need to make the drone move according the y

axis by changing the pose.pose.position.y value, similarly if we want to move the drone back

and forth we need to make it move according to the x axis by changing pose.pose.position.x

value and finally to move the drone up and down we move it according to the z axis by

changing the pose.pose.position.z value.

• Once we moved the drone up/down slide left/right and forward/back, we need to stop

it at that desired position, to do that we use the Hovering flight mode, where the user

input is ‘h’, and the drone will hover in the air in the desired position.

62

The source code for the hover mode is in figure 3.25:

Figure 3.25 Hovering mode source code

In this mode, we use the velocity variables in the /mavros/setpoint_velocity topic, this topic

has six variables: twist.linear.x, twist.linear.y, twist.linear.z, whereas these variables will give

the drone velocity values to move the drone according the specified axis, and twist.angular.x,

twist.angular.y, twist.angular.z which will make the drone rotate around itself according to

the specified axis.

By setting these variables to 0, the drone will stop moving while maintaining its current

altitude.

The values of these different variables are shown in figure 3.21, using the command: rostopic

echo /mavros/setpoint_velocity and rostopic echo /mavros/setpoint_position/pose.

63

Figure 3.26 Position and orientation coordinates in hover mode

Figure 3.27 Linear and angular velocities in hover mode

64

For the tracking flight modes, we will be discussing them in what follows.

3.3. Images classification:

3.3.1. Introduction:

As mentioned earlier, a tracking flight mode exists (‘t’ as a user input), the camera of the

drone will spot the cable from above, and changes its directions accordingly. The system that

does image classification is a trained neural network built using TensorFlow and Keras

platforms. The advantage of these platform is to avoid building a complicated powerful

neural network from scratch, for the reason that they provide useful and powerful modules

for that matter.

3.3.2. TensorFlow:

TensorFlow, in the most general terms, is a software framework for numerical computations

based on dataflow graphs. It is designed primarily, however, as an interface for expressing

and implementing machine learning algorithms, chief among the deep neural networks.

TensorFlow was designed with portability in mind, enabling these computation graphs to be

executed across a wide variety of environments and hardware platforms. With essentially

identical code, the same TensorFlow neural net could, for instance, be trained in the cloud,

distributed over a cluster of many machines or on a single laptop. It can be deployed for

serving predictions on a dedicated server or on mobile device platforms such as Android or

iOS, or Raspberry Pi single-board computers.[8]

TensorFlow is also compatible, of course, with Linux, macOS, and Windows operating

systems.

The core of TensorFlow is in C++, and it has two primary high-level frontend languages and

interfaces for expressing and executing the computation graphs. The most developed frontend

is in Python, used by most researchers and data scientists. The C++ frontend provides quite a

low-level API, useful for efficient execution in embedded systems and other scenarios.

3.3.3. Keras:

Keras is one of the most popular and powerful TensorFlow extension libraries. Among the

extensions we survey in this chapter, Keras is the only one that sup ports both Theano—upon

which it was originally built—and TensorFlow. This is possible because of Keras’s complete

65

abstraction of its backend; Keras has its own graph data structure for handling computational

graphs and communicating with TensorFlow.

In fact, because of that it could even be possible to define a Keras model with either

TensorFlow or Theano and then switch to the other.

Keras has two main types of models to work with: sequential and functional. The sequential

type is designed for simple architectures, where we just want to stack layers in a linear

fashion. The functional API can support more-general models with a diverse layer structure,

such as multioutput models.[9]

3.3.4. Code:

The source codes to train the neural network system, as well as the source code to start image

classification can be found in the appendix C document.

To start the image classification program, we use the following command:

python3 imageclassification.py

The program will open the camera of the computer running the simulation, the frames

captured by the camera will be scaled and filtered according to the resolution and the dataset

used when training the model.

The output of the program is a string (R for right, L for left, S for straight, and U for

unknown image), this output will be sent to the drone control node through pyperclip module

which is a python module to copy and paste data between different platform.

The drone control node will receive the data from the image classification program, and when

choosing tracking flight mode, the node will send message to MAVROS topics to control the

drone accordingly.

66

Figure 3.28 shows the output of the program:

Figure 3.28 Image classification output

67

3.3.4.1. Mechanical equations to adjust the drone’s speed:

Figure 3.29 The axes systems

By a simple projection we can say:

𝑙𝑖𝑛𝑒𝑎𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑋1 = 𝑋𝑣𝑒𝑙. cos(𝑦𝑎𝑤) Equation 3.1

𝑙𝑖𝑛𝑒𝑎𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑌1 = 𝑋𝑣𝑒𝑙. sin(𝑦𝑎𝑤) Equation 3.2

And

𝑙𝑖𝑛𝑒𝑎𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑋2 = 𝑌𝑣𝑒𝑙. sin(𝑦𝑎𝑤) Equation 3.3

𝑙𝑖𝑛𝑒𝑎𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑌2 = 𝑌𝑣𝑒𝑙. cos(𝑦𝑎𝑤) Equation 3.4

So

𝑙𝑖𝑛𝑒𝑎𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑋 = 𝑙𝑖𝑛𝑒𝑎𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑋1 + 𝑙𝑖𝑛𝑒𝑎𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑋2 Equation 3.5

𝑙𝑖𝑛𝑒𝑎𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑌 = 𝑙𝑖𝑛𝑒𝑎𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑌1 + 𝑙𝑖𝑛𝑒𝑎𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑌2 Equation 3.6

Yaw value can be obtained by using the equation 2.17.

68

3.3.4.2. Source Code:

To adjust the drone’s movement for image classification program output we will use the

/mavros/setpoint_velocity topic, this latter, as we mentioned earlier, has six variables: linear

velocities (xyz) and angular velocities (xyz). In our case we only need the linear velocities xy

and the angular velocity z.

The linear velocities xy go with the fixed axis xy, while the angular velocity z goes with the

perpendicular axis z’ on the drone’s body.

Hence, to adjust the drone’s velocity according to the relative axis x’y’z’, we need to convert

them to the fixed axis xyz using the equation 3.5 and 3.6.

The part of the code that does that is in figure 3.30:

Figure 3.30 functions to calculate the velocity according to the fixed axis xyz

• The image classification output is ‘R’ or ‘L:

Figure 3.31 source code for left and right directions

69

As we can see, we’re adjusting the xvel (to keep the drone moving forward, and the

twist.angular.z variable to make the drone rotate according to the direction.

• The image classification output is ‘N’:

Figure 3.32 source code for neutre direction

In this case we only adjusted the xvel value to keep the drone moving forward only.

4. Conclusion:

Throughout this chapter, we could see the benefits of using the simulation Gazebo to run the

PX4 firmware, for the reason that it allowed us to access the different variables of the drone,

as well as being able to test the codes inside the simulation environments before attempting to

test in reality.

This chapter also showed the power of the ROS-MAVLink (MAVROS) combination, for that

it provides us with a powerful and reliable communication protocol between the PX4

firmware, the simulator and the API used to control the drone (ROS).

Chapter 4 : Launching the prototype

71

1 Introduction:

After the promising result of the SITL simulation, it is now time to test the programs on a real

drone, hence in this final chapter we will discuss the different components that were used to

build up the drone (the body airframe, controllers…) as well the necessary configuration and

tools to launch the drone which includes calibrating the Pixhawk sensors as well us setting

the Raspberry Pi to be the onboard computer.

2 Identifying the components:

The four types of components we’re going to be interfacing with in the drone are

the Electronic Speed Controller (ESC), the motors, airframe, battery.[1]

2.1 The Electronic speed controller (ESC):

The ESC is also easily identified as it is where the main power lead (plug for the battery) is

attached. It regulates the power from the battery to the motors, and thus controls the speed of

the motor. Using good quality ESC’s means you should have a reliable and smooth flight

experience, though of course, there are other factors to consider which are:

• Current Rating – Amperage

The first thing to look at when choosing ESC is the current rating, which is measured in

Amps. Motors draw current when they spin, if we draw more Amps than your ESC can

handle, it will start to overheat and eventually fail.[12] There are three things that tend to

increase our current draw and put more stress on our ESC:

➢ Higher motor KV

➢ Larger motor size (stator width and height)

➢ Heavier propellers (length and pitch)

• Battery limitations

When you draw current from LiPo battery, the voltage sags due to internal resistance. When

you reach the discharge limit of the battery, the voltage would sag so much, it can no longer

sustain the high current draw.

72

It’s completely okay to use larger ESC’s than required, downsides are the extra weight, size

and cost. In fact, there are advantages with higher current ESC’s, which are the lower chance

of overheat and higher efficiency.

On an ESC, there are MOSFET (or FET) that basically do all the hard work handling high

current. The FET’s are bigger and beefier on higher current ESC’s, and they don’t generate as

much heat as the smaller ones, therefore they can be more energy efficient.

2.1.1 Connection of the ESC:

ESC is powered directly by LiPo battery, and motor speed is controlled by a signal from the

flight controller.

The motors are connected to the ESC through 3 wires. The wire order doesn’t actually matter.

If the motor spins the wrong direction, simply swap any two wires.

Figure 4.1 Connection of the ESC

2.1.2 Anatomy of the ESC:

An ESC is made up of the following components:

• Micro Controller

• Gate Drivers

• MOSFET

• LDO

73

• Arrays of filtering capacitors

• Optional: Current Sensor

• Optional: LED

Whereas:

• LDO

These are voltage regulators for converting voltage down to power the micro controller and

other components.

• Micro Controller

Micro controller, or MCU, is the brain of an ESC.

• Gate Driver

Gate drivers are used to drive the MOSFET’s in our ESC, and actually bring benefits to the

performance. It’s connected to the gate of a MOSFET hence the name “gate driver”.

• MOSFET

MOSFET are like switches, it switches the power on and off thousands of times per second,

this is how the motors are driven.

Figure 4.2 Block diagram of the different components inside the ESC

74

2.2 Battery:

A LiPo battery powers all of the electronics, and motors on your drone. The difference with

LiPo batteries and the ones you would use in your TV remote is the chemicals used in the

battery. LiPo batteries are based on Lithium Polymer chemistry (hence the name LiPo) which

allow these batteries to have a very high energy density compared to other types of batteries.

A battery with a higher energy density will be able to hold more energy compared to another

battery of the same weight which is why LiPo batteries are commonly used with R/C aircraft

and drones.

A LiPo battery is constructed from individual cells, where each cell consists of some metal

and chemicals packaged together to generate an electrical charge. By connecting these cells

together in various ways, we are able to make different LiPo batteries with various voltages,

and capacities.[11]

Figure 4.3 Inside a LiPo battery

75

In what follows we find the meaning of the numbers in a LiPo Battery:

2.2.1 Cells:

A battery is constructed from rectangular cells which are connected together to form the

battery. A cell which can be considered a battery in itself, holds a nominal voltage of 3.6V.

By connecting more of these in series, the voltage can increase to 7.2V for a 2-cell battery,

11.1V for a 3-cell battery and so on. By connecting more batteries in parallel the capacity can

be increased. Often we will see numbers like 3S2P, which mean the battery as 3 cells (3S)

connected in series, and there are 2 cell sets connected in parallel (2P) , giving a total number

of 6 individual cells in the battery.

So, the number of cells is what defines the voltage of the battery. Having a higher voltage

means the battery can provide more power to drive bigger motors, however more power does

not necessarily mean the battery will provide energy for longer, that is defined by the battery

capacity.

2.2.2 Capacity:

The capacity of a battery is a representation of how long it can provide energy for, often

quoted in mili Amp hours, (mAH). The bigger this number, the more capacity the battery has,

so it can run your motors for longer. However, the higher the capacity of a battery, the

heavier it is so there is always a tradeoff between the battery capacity and weight for your

aircraft.

2.2.3 Discharge Rate:

The discharge rate is a very important specification to check when buying a battery. This

number, also known as the battery C rating (or continuous C rating) defined how fast we can

extract the energy from your battery. If your motors draw more energy that what battery we

can provide, we can possibly damage your battery which can result in we crashing our drone.

To work out the actual current in Amps we simply multiply the capacity by the C value. So, a

2200mAh battery with a C rating of 25C would have a continuous current output of 25 x 2.2

= 55A continuous current output.

In this project, we used a 5200 mAh, with a rating of 50C, with a 3 cells battery (3.7 V

output per cell) which an output of 11.1 V

76

2.3 Motors:

2.3.1 Introduction:

There are a few types of motors that are used to build drones. But as the drone needs to be

thrust in the air to float, we should use some powerful motors. The cheap, lightweight,

small, and powerful motors used in drones are Brushless DC motors (BLDC). As the name

implies, a brushless drone motor lacks the brushes. The brushless motor can be effectively

divided into two separate components; the rotor and the stator. The stator is the central unit

into which the rotor is mounted. The stator is made up of a network of radial

electromagnets that alternatively power on and off to produce a temporary magnetic field

when a current is passed through the windings. The rotor holds a collection of permanent

magnets which are positioned in close proximity to the semi-permanent stator

electromagnets. Attractive and repulsive interaction of the stator and rotor magnets is

translated into rotational movement. When assembled, the shaft of the rotor is inserted into

a pair of ball bearings located in the stator that maintain linear, smooth revolution of the

rotor.[10]

Figure 4.4 brushless DC motor

77

2.3.2 Motor Sizing and Identification:

The size of a brushless motor is identified by a four-digit code that details the dimensions of

the stator in millimeters, for example: 2206. The first two numbers in the series determine the

diameter of the stator, in this case, 22mm. The final two describe the height of the stator, the

last two numbers in this series are “06” therefore the stator unit is 6mm tall. It is important to

remember that these numbers do not describe the external dimensions of the brushless motor

itself.

Figure 4.5 Brushless motor sizing

2.3.3 Mounting Patterns and Thread Size:

Mounting patterns and thread sizing is dependent on the type of motor and its application.

The mounting pattern defines the positioning of the threaded bolt holes on the base of the

motor. Each number describes the diameter of a circle with its center placed in the middle of

the motor shaft. Usually, four holes are placed along the circumference of the circle, if two

numbers are given, two holes are placed on each circle. For example, a 2205 with 16×19

spacing will have four M3 size threaded holes distributed evenly on both the circumference

of the 16mm circle and 19mm circle. The dimensions of the threaded shaft are given by an

ISO screw thread rating, which describes the outer diameter of the shaft.

78

Figure 4.6 The threaded bolt holes

2.3.4 Velocity Constant — How fast a Motor Spins:

kV=RPM per 1 Volt

k = The kV rating of the motor e.g. 2300

V = Voltage input e.g. 16.8v

Example: 2300(kV rating) X 16.8(Voltage) = 38,640(Revolutions Per Minute)

The velocity constant (kV) determines how many rotations a motor can make within a minute

without a load (no propeller) and at a constant current of 1 Volt. Simply, kV is a

representation of how fast the motor can potentially spin. The kV of a motor is defined by the

strength of the magnetic field at the stator and the amount of turns in the windings. A motor

with a lower kV is best suited for efficiently driving heavy propellers. A high kV motor is

optimized for lightweight propellers.

2.3.5 Thrust:

Thrust is one of the key factors to consider when choosing a motor. The thrust output of a

motor is usually measured in grams and varies depending on how fast the motor is spinning

and the propeller that it is rotating. Before a multicopter can begin to accelerate, a certain

amount of thrust is required to overcome drag, as well as the pull of gravity.

79

2.3.6 Weight and Drone Motor Momentum:

When selecting a motor, it’s not all about thrust numbers. The weight of the motor should

also be considered, as it has a significant impact on the flight characteristics of the

multicopter. Due to the moment of inertia, a heavier motor will be more resistant to changes

in acceleration than a lighter motor. The primary issue with a heavy multicopter motor being

resistant of acceleration is that it will provide inaccurate flight characteristics and poor

responsiveness once in the air. If maneuverability is a priority, a lightweight motor is an

exemplary choice. On the other hand, an application in which maximum all-out speed is a

must; larger motors will be able to provide the higher thrust numbers that are required.

2.3.7 Drone Motor Response Time:

Torque is a measurement of how quickly a motor can reach a certain RPM, directly affecting

the responsiveness of a motor. Torque allows a multicopter to briskly maneuver through flips

and rolls, additionally improving the accuracy of these movements. The amount of torque a

motor can output also influences propeller selection. Heavier props will require more torque

to accelerate than lighter props. The best gauge for motor torque is the dimensions of the

stator. Larger stators tend to be capable of producing greater torque. Although, a larger stator

will increase the total weight of the motor.

2.3.8 Drone Motor Efficiency:

Motor efficiency is a balancing act, requiring an equilibrium to be struck between the

electrical power entering the motor and the mechanical power being produced by the motor

as it spins. The importance of motor efficiency varies based on the situation. If high speed is

prioritized, short flight times are often seen to be acceptable; quadcopter races may only last

for two minutes! In the contrary, long-range multicopters require maximum efficiency to

achieve longer flight times, increasing the distance that can be travelled.

In this project we used an A2212/19T 1000KV model.

80

2.2 Airframe:

The airframe consists of two parts which are:

• The booms: Shorter booms increase maneuverability, while longer booms increase

stability. Booms must be tough to hold up in a crash, while interfering with prop

downdraft as little as possible. In many drones, the boom is part of the main body.

Other drones have a definite boom as a separate part.

• Main Drone Body Part: This is the central hub from which booms radiate like

spokes on a wheel. It houses battery, main boards, processors avionics, cameras, and

sensors.

• Landing Gear: Drones, which need high ground clearance may adopt helicopter style

skids mounted directly to the body, while other drones which have no hanging

payload may omit landing gear altogether.

In this project we used the F450 Drone model which is presented in following figure:

F450 drone kit model

81

3. Setting up the Raspberry Pi:

As we saw in the previous chapter, with used a computer to run ROS programs to control the

drone, now that we are running practical tests, we cannot use a big computer, hence using the

Raspberry Pi as a companion computer (will be mounted on the drone) will be a good

choice.

But before that, the Pi needs configuration, which will be mentioned in the following steps:

The Raspberry Pi is best characterized by the funky and useful Raspbian operating system.

As the name suggests, Raspbian is designed specifically for the Raspberry Pi and is suitable

for most applications. However, if you want to use your Raspberry Pi for desktop computing,

you might be disappointed. Raspbian is based on Debian, a Linux operating system designed

for stability. Updates take place only once every few years meaning you won’t have the latest

version of programs and their features. Fortunately, there’s a way to bring the popular Ubuntu

desktop operating system to your Raspberry Pi. Ubuntu MATE uses an extremely lightweight

desktop environment and there’s even a version designed specifically for your Raspberry Pi’s

ARM architecture. we need to install UBUNTU linux distribution, because ROS needs this

distribution so that it will be able to work[11]. To install it, we can find instructions in the

following website:

https://www.techradar.com/how-to/how-to-install-ubuntu-on-the-raspberry-pi

The next step is to install Robotics Operating System ROS on the UBUNTU mate

distribution, to do this we can find instructions in the official ROS website:

http://wiki.ros.org/ROSberryPi/Installing%20ROS%20Kinetic%20on%20the%20Raspberry

%20Pi

The last and final step is to create a ROS package for our programs, the same way we did in

chapter3 (SITL Simulation).

4. Configuring the PIXHAWK:

We open the QGROUNDCONTROL and plug in the PIXHAWK through USB cable.

Installing the compatible version of PX4 (in our case PX4 Pro v1.10 stable release).

https://www.techradar.com/how-to/how-to-install-ubuntu-on-the-raspberry-pi
http://wiki.ros.org/ROSberryPi/Installing%20ROS%20Kinetic%20on%20the%20Raspberry%20Pi
http://wiki.ros.org/ROSberryPi/Installing%20ROS%20Kinetic%20on%20the%20Raspberry%20Pi

82

Figure 4.7 Flashing the PIXHAWK with the chosen PX4 version

Picking the compatible airframe according to the drone’s model where the PIXHAWK will

be mounted. In our case it is a Generic Quadcopter.

Figure 4.8 Airframe selection

83

Next step is to calibrate the sensors, there are different types of sensors to be calibrated

(Compass, Gyroscope, Accelerometer, and level horizon), by clicking on each sensor, the

different movements needed to calibrate the PIXHAWK will appear.

Figure 4.9 Sensors calibration

5. Power up the drone:

By plugging the power cable of the battery, the PIXHAWK will be turned on and ready to

receive the mission commands. The Raspberry Pi will be powered through its +5V and GND

pins and the telemetry module port on the Pixhawk.

5.1 Connecting to the raspberry pi:

In order to do that we use the remote-control application that is implemented on the Windows

operating system. A WIFI network is needed, so that when the Raspberry Pi powers up, it

connects to it, and we on the other hand will connect to the same network, so that we will be

able to access the Raspberry Pi through its IP address.

84

5.2 Launching the programs:

Similarly, to the simulation part, we will proceed with the same command, except this time,

we do not need to run the PX4 SITL gazebo simulation, because the programs will be

executed with PIXHAWK hardware itself.

Hence, first thing to do is to launch the MAVROS node to be able to communicate with the

PIXHAWK

And second, we launch the drone control node followed by the user input node in the

packages we created previously

Unfortunately, due to the reason that we did not have access to a Raspberry Pi camera, we

cannot perform tracking mode and image classification in reality. In order for us to gain some

time when launching the different programs, we created some abbreviation files, where series

of commands are written in the file, and when we want to launch them, we just execute those

files.

./aa file

cd ~/catkin_ws && source devel/setup.bash && roslaunch mavros px4.launch

fcu_url:=serial:///dev/ttyACM0:57600 gcs_url:=udp://@127.0.1.1

this file launches the MAVROS node to connect to the PIXHAWK.

./bb

cd ~/ project_ws && source devel/setup.bash && catkin_make && source devel/setup.bash

&& chmod +x src/pfe_pkg/src/scripts/drone_control.py && rosrun pfe_pfe drone_control.py

This file launches the drone control node.

./cc

cd ~/project_ws && source devel/setup.bash && catkin_make && source devel/setup.bash

&& chmod +x src/pfe_pkg/src/scripts/input_node.py && rosrun pfe_pkg input_node.py

85

To launch these files, we just need to type ./aa (or ./bb ./cc), each in a different terminal

window.

6. Conclusion:

In this chapter we discussed the protocol to power up a drone, set its different components up

and start driving it. We also could see the importance of the onboard computer (Raspberry Pi)

for the reason of its small size, its ability to perform the ROS package’s programs, and

allowing us to access the drone from distance, control it and set autonomous missions. The

only inconvenient that should be highlighted here is the Wi-Fi connection range, because if

we lose the connection, we can’t control the drone.

General Conclusion

87

In this project, we were able to build up an unmanned aerial vehicle UAV prototype for

power lines monitoring. We can either control the drone manually or set the tracking mode

where the camera implemented on the drone will analyze the images captured, classifies them

and send the appropriate direction to the drone’s program to move it accordingly.

We can say that this project can be divided into two major parts:

The first part concerns the autopilot used (PIXHAWK as a hardware and PX4 as a software

installed in the PIXHAWK), where we could see its accuracy and the freedom it gives to the

user to control the drone as needed, without forgetting the MAVLink communication

protocol that provides us with a powerful communication link between the PX4 and other

parts of the system.

The second major part is the Robotics Operating System, this API provided us with a great

flexibility and powerful tools to be able to build up codes depending on the missions and the

services needed by the drone.

Such a combination gives a great advantage to the drone, which is autonomy. The drone can

be set up and put manually above a line then start the tracking mode so that it starts following

the power lines for a certain specified period of time, while of course saving the mission’s

video to be analyzed by power lines inspectors to detect different faults in power lines, and

when the mission’s time is over, the drone will be automatically set to “RETURN TO

LAUNCH” mode, which, as the name suggests, makes the drone go back to its launching

point. All this without needing to be connected to it.

The major inconvenient that this prototype has, is the battery’s duration. Running long period

missions will be impossible with one battery charge, but researches are being carried out now

to build capacitive power wireless transfer, so that when the drone’s battery is low, it simply

approaches the line and charges itself again to keep the mission going.

Implementing such a system will provide engineers and especially power lines inspectors

with such a great tool to perform their job more effectively and avoid the different difficulties

they face nowadays.

88

At the end, we can say that this project allowed us to discover, even a little bit, the world of

robotics and autonomous vehicles, as well as using our skills and courses acquired during our

educational cursus as future engineers.

89

BIBLIOGRAPHY
[1] : Julio Alberto Mendoza-Mendoza, Victor Javier Gonzalez-Villela, Gabriel Sepulveda-

Cervantes, Mauricio Mendez-Martinez, Humberto Sossa-Azuela, “Advanced Robotic

Vehicles Programming: An Ardupilot and Pixhawk Approach”[online], 2020 [visited on

09/06/2020], PDF format. Available on: https://www.Oreailly.com

[2] : Greg Loyse. Raspberry Pi documentation, [visited on 21/06/2020] available on:

https://RaspberryPi.com

[3] : Dronecode, Open source for drones. [visited on 23/04/2020] available on: https://px4.io/

[4] : Documentation ROS Wiki. [visited on 20/05/2020]: https://wiki.ros.org/

[5] : Lentin Joseph, Robot Operating System for Absolute beginners. 2018, pp152-159

[6] : Hernandez Brice, ‘Commande par linéarisation entrée-sortie d’un drone de type

quadcopter à l’aide de la Kinect One’, Mémoire : L’ÉCOLE DE TECHNOLOGIE

SUPÉRIEURE, MONREAL LE 11 OCTOBRE 2017, pp17-24

[7] : Artur Banach. ‘Visual control of the Parrot drone with OpenCV, ROS and Gazebo

Simulator’. [12/06/2016], pp06-10

[8] : TensorFlow website.[visited on 25/06/2020]: https://www.tensorflow.org/

[9] : Tom Hope, Yehezkel S.Resheff and Itay Lieder, ‘Learning TensorFlow: A guide to

building deep learning systems’, pp06-07 and pp136-137

[10] : Drone nodes-Explore. [visited on 26/06/2020]: https://dronenodes.com/

[11] : Drone trest. [visited on 26/06/2020]: https://www.dronetrest.com

[12] : Oscar Liang. sharing knowledge and ideas. [visited 25/06/2020]: https://oscarliang.com/

[13] : Raspberry Pi - Wikipedia [visited on 26/06/2020]:

https://en.wikipedia.org/wiki/Raspberry_Pi

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://dronenodes.com/
https://dronenodes.com/
https://dronenodes.com/
https://www.dronetrest.com/t/lipo-batteries-a-guide-to-using-and-looking-after-your-batteries/1278
https://www.dronetrest.com/t/lipo-batteries-a-guide-to-using-and-looking-after-your-batteries/1278
https://oscarliang.com/
https://oscarliang.com/
https://en.wikipedia.org/wiki/Raspberry_Pi
https://en.wikipedia.org/wiki/Raspberry_Pi

90

APPENDIX

APPENDIX A : drone control node full source code

import rospy, mavros, time, os

import math

from geometry_msgs.msg import PoseStamped, Twist

from geographic_msgs.msg import GeoPointStamped

from mavros_msgs.msg import State, Altitude

from mavros_msgs.srv import CommandBool, SetMode

from std_msgs.msg import Float64, String

from tf.transformations import *

from sensor_msgs.msg import LaserScan, Imu

import keyboard

import pyperclip

callback method for state sub

current_state = State()

offb_set_mode = SetMode

def state_cb(state):

 global current_state

 current_state = state

#callback method for position subscriber

def position_cb(get_pose):

 global altitude

 altitude = get_pose.pose.position.z

 global x_pos

 x_pos = get_pose.pose.position.x

 global y_pos

 y_pos = get_pose.pose.position.y

 global current_yaw

 qx=get_pose.pose.orientation.x

 qy=get_pose.pose.orientation.y

 qz=get_pose.pose.orientation.z

 qw=get_pose.pose.orientation.w

 current_yaw = math.atan2(2.0*(qw*qz + qx*qy), 1.0 - 2.0*(qy**2 + qz**2))

#callback method for altitude subscriber

def alt_cb(data):

 global rel_alt

 rel_alt = data.relative

#callback method for imu data (accelerometer)

def imu_cb(data):

 global x_accel

 x_accel = data.linear_acceleration.x

91

 global y_accel

 y_accel = data.linear_acceleration.y

 global z_accel

 z_accel = data.linear_acceleration.z

#callback method for user input subscriber

def input_cb(user_input):

 global input_str

 input_str = user_input.data

#callback method for rplidar subscriber

def rplidar_cb(data):

 global range_min

 range_min = data.range_min

 global range_max

 range_max = data.range_max

 global ranges

 ranges = data.ranges

mavros.set_namespace()

########## Define Publishers

local_pos_pub = rospy.Publisher(mavros.get_topic('setpoint_position', 'local'), PoseStamped,

queue_size=10)

body_vel_pub = rospy.Publisher(mavros.get_topic('setpoint_velocity', 'cmd_vel_unstamped'),

Twist, queue_size=10)

set_geo_pub = rospy.Publisher(mavros.get_topic('global_position', 'set_gp_origin'),

GeoPointStamped, queue_size=10)

########## Define Subscribers

state_sub = rospy.Subscriber(mavros.get_topic('state'), State, state_cb)

local_pos_sub = rospy.Subscriber(mavros.get_topic('local_position', 'pose'), PoseStamped,

position_cb)

alt_sub = rospy.Subscriber(mavros.get_topic('altitude'), Altitude, alt_cb)

imu_sub = rospy.Subscriber(mavros.get_topic('imu', 'data'), Imu, imu_cb)

input_sub = rospy.Subscriber('UserInput', String, input_cb)

laser_sub = rospy.Subscriber('scan', LaserScan, rplidar_cb)

########## Define Services

arming_client = rospy.ServiceProxy(mavros.get_topic('cmd', 'arming'), CommandBool)

set_mode_client = rospy.ServiceProxy(mavros.get_topic('set_mode'), SetMode)

targetHeight = 1.0 # Fly 1 meter high

geo_pos = GeoPointStamped()

geo_pos.position.latitude = 0

geo_pos.position.longitude = 0

geo_pos.position.altitude = 0

92

initial_pose = PoseStamped()

initial_pose.pose.position.x = 0

initial_pose.pose.position.y = 0

initial_pose.pose.position.z = 0

input_str = "ready" # Initialize input command

os.system('clear') # Clear screen

print('Connecting...')

def position_control():

 rospy.init_node('offb_python_node', anonymous=True)

 prev_state = current_state

 freq = 20

 rate = rospy.Rate(freq) # MUST be more then 2Hz

 recent_angles = [0]

 recent_displacements = [0]

 global angle

 angle = 0

 global displacement

 displacement = 0

 global xvel

 xvel = 0

 global yvel

 yvel = 0

 global zvel

 zvel = 0

 global x_pos

 x_pos = 0

 global y_pos

 y_pos = 0

 global current_yaw

 current_yaw = 0

 global range_min

 range_min = 0

 cnt = 0

 global Height

 Height = 0

 zyaw = 0

 last_direction = "U"

 pose = PoseStamped()

 pose.pose.position.x = x_pos

 pose.pose.position.y = y_pos

 pose.pose.position.z = targetHeight

93

 # send a few setpoints before starting

 for i in range(100):

 local_pos_pub.publish(pose)

 rate.sleep()

 # wait for FCU connection

 while not current_state.connected:

 rate.sleep()

 last_request = rospy.get_rostime()

 while not rospy.is_shutdown():

 now = rospy.get_rostime()

 if current_state.mode != "OFFBOARD" and (now - last_request > rospy.Duration(5.)):

 set_mode_client(base_mode=0, custom_mode="OFFBOARD")

 last_request = now

 else:

 if not current_state.armed and (now - last_request > rospy.Duration(5.)):

 arming_client(True)

 last_request = now

 # older versions of PX4 always return success==True, so better to check Status instead

 if prev_state.armed != current_state.armed:

 rospy.loginfo("Vehicle armed: %r" % current_state.armed)

 if prev_state.mode != current_state.mode:

 rospy.loginfo("Current mode: %s" % current_state.mode)

 offboard_started_time = rospy.get_rostime()

 prev_state = current_state

 now = rospy.get_rostime()

 os.system('clear')

 ############# READY MODE

 if input_str == "ready":

 print("Ready for mode")

 reset_pos = True

 first_run = True

 rate.sleep()

94

 ############# SAFETY BUTTON MODE

 if input_str == "sb":

 print("Safety Button mode")

 reset_pos = True

 first_run = True

 rate.sleep()

 ############# TAKEOFF MODE

 if input_str == "to":

 print("Takeoff")

 if reset_pos:

 pose = PoseStamped()

 pose.pose.position.x = x_pos

 pose.pose.position.y = y_pos

 pose.pose.position.z = targetHeight

 set_geo_pub.publish(geo_pos)

 if current_state.mode != "OFFBOARD" and (now - last_request >

rospy.Duration(5.)):

 arming_client(True)

 set_mode_client(base_mode=0, custom_mode="OFFBOARD")

 last_request = now

 local_pos_pub.publish(pose)

 reset_pos = False

 rate.sleep()

 ###

 elif input_str == "f":

 print("Moving forward")

 pose = PoseStamped()

 pose.pose.position.x = x_pos + 1

 pose.pose.position.y = y_pos

 pose.pose.position.z = altitude

 set_geo_pub.publish(geo_pos)

95

 if current_state.mode != "OFFBOARD" and (now - last_request >

rospy.Duration(5.)):

 arming_client(True)

 set_mode_client(base_mode=0, custom_mode="OFFBOARD")

 last_request = now

 local_pos_pub.publish(pose)

 rate.sleep()

 elif input_str == 'b':

 print("Moving back")

 pose = PoseStamped()

 pose.pose.position.x = x_pos -1

 pose.pose.position.y = y_pos

 pose.pose.position.z = altitude

 set_geo_pub.publish(geo_pos)

 if current_state.mode != "OFFBOARD" and (now - last_request >

rospy.Duration(5.)):

 arming_client(True)

 set_mode_client(base_mode=0, custom_mode="OFFBOARD")

 last_request = now

 local_pos_pub.publish(pose)

 rate.sleep()

 elif input_str == 'sr':

 print("Sliding right")

 pose = PoseStamped()

 pose.pose.position.x = x_pos

 pose.pose.position.y = y_pos - 1

 pose.pose.position.z = altitude

 set_geo_pub.publish(geo_pos)

 if current_state.mode != "OFFBOARD" and (now - last_request >

rospy.Duration(5.)):

 arming_client(True)

 set_mode_client(base_mode=0, custom_mode="OFFBOARD")

 last_request = now

 local_pos_pub.publish(pose)

 rate.sleep()

 elif input_str == 'sl':

 print("Sliding left")

 pose = PoseStamped()

 pose.pose.position.x = x_pos

 pose.pose.position.y = y_pos +1

 pose.pose.position.z = altitude

 set_geo_pub.publish(geo_pos)

96

 if current_state.mode != "OFFBOARD" and (now - last_request >

rospy.Duration(5.)):

 arming_client(True)

 set_mode_client(base_mode=0, custom_mode="OFFBOARD")

 last_request = now

 local_pos_pub.publish(pose)

 rate.sleep()

 elif input_str == 'gu':

 print("Going up")

 pose = PoseStamped()

 pose.pose.position.x = x_pos

 pose.pose.position.y = y_pos

 pose.pose.position.z = altitude + 0.5

 set_geo_pub.publish(geo_pos)

 if current_state.mode != "OFFBOARD" and (now - last_request >

rospy.Duration(5.)):

 arming_client(True)

 set_mode_client(base_mode=0, custom_mode="OFFBOARD")

 last_request = now

 local_pos_pub.publish(pose)

 rate.sleep()

 elif input_str == 'gd':

 print("Going down")

 pose = PoseStamped()

 pose.pose.position.x = x_pos

 pose.pose.position.y = y_pos

 pose.pose.position.z = altitude - 0.5

 set_geo_pub.publish(geo_pos)

 if current_state.mode != "OFFBOARD" and (now - last_request >

rospy.Duration(5.)):

 arming_client(True)

 set_mode_client(base_mode=0, custom_mode="OFFBOARD")

 last_request = now

 local_pos_pub.publish(pose)

 rate.sleep()

 ############# LAND MODE

 elif input_str == "l":

 print("Landing")

 reset_pos = True

97

 if current_state.mode != "AUTO.LAND" and (now - last_request >

rospy.Duration(5.)):

 set_mode_client(base_mode=0, custom_mode="AUTO.LAND")

 last_request = now

 rate.sleep()

 ############# RETURN TO LAUNCH MODE

 elif input_str == "return to launch":

 print("Returning to Launch Location")

 #reset_pos = True

 if current_state.mode != "AUTO.RTL" and (now - last_request > rospy.Duration(5.)):

 set_mode_client(base_mode=0, custom_mode="AUTO.RTL")

 last_request = now

 rate.sleep()

 ###

######### DISARM ###

 ###

 elif input_str == "d":

 print("Disarming")

 arming_client(False)

 rate.sleep()

 ##

 ############# HOVER MODE #################################

 ##

 elif input_str == "h":

 print("Hovering")

 twist=Twist()

 xvel = 0

 yvel = 0

 # Maintain Altitude

 zvel = 0

 print(zvel)

98

 twist.linear.x = xvel

 twist.linear.y = yvel

 twist.linear.z = zvel

 twist.angular.x = 0

 twist.angular.y = 0

 twist.angular.z = 0

 height = altitude

 body_vel_pub.publish(twist)

 rate.sleep()

 ##

 ############# LINE FOLLOW MODE ####################################

 ##

 elif input_str == "t":

 print("Following Line\n")

 twist=Twist()

 direction = pyperclip.paste()

 print(pyperclip.paste())

 if direction == "R":

 twist.linear.x, twist.linear.y = mov_xy(xvel+2,yvel,current_yaw)

 twist.angular.z -= 1

 pyperclip.copy("")

 elif direction == "L":

 twist.linear.x, twist.linear.y = mov_xy(xvel+2,yvel,current_yaw)

 twist.angular.z += 1

 pyperclip.copy("")

 elif direction == "N":

 twist.linear.x, twist.linear.y = mov_xy(xvel+3,yvel,current_yaw)

 twist.angular.z = 0

 pyperclip.copy("")

 elif direction == "U":

 twist.linear.x, twist.linear.y = mov_xy(xvel, yvel, current_yaw)

 twist.angular.z = 0

 print("I got U info")

 pyperclip.copy("")

 else:

 # Clipboard is empty or has undefined value so do nothing

 print("I got nothin man")

99

 pass

 zvel = (Height - rel_alt)*2

 twist.linear.z = 0

 print("z: " + str(twist.angular.z))

 body_vel_pub.publish(twist)

 rate.sleep()

def mov_x(spd,yaw):

 return (math.cos(yaw)*spd,math.sin(yaw)*spd)

def mov_y(spd,yaw):

 return (math.sin(yaw)*spd,math.cos(yaw)*spd)

def mov_xy(x,y,yaw):

 x1,y1=mov_x(x,yaw)

 x2,y2=mov_y(y,yaw)

 return (x1+x2,y1+y2)

if __name__ == '__main__':

 try:

 position_control()

 except rospy.ROSInterruptException:

 pass

100

APPENDIX B : User input node source code

#!/usr/bin/env python

import rospy

import os

from std_msgs.msg import String

os.system('clear')

def input_pub():

 pub = rospy.Publisher('UserInput', String, queue_size=2)

 rospy.init_node('UserInputNode', anonymous=True)

 rate = rospy.Rate(10) # 10hz

 input_str = ""

 while not rospy.is_shutdown():

 if input_str == "":

 print("Please enter a mode \n")

 elif input_str == "to" or input_str == "tt" or input_str == "h" or input_str == "t" or

input_str == "l" or input_str == "d" or input_str == "sr" or input_str == "sl" or input_str ==

"f" or input_str == "b" or input_str == "gu" or input_str == "gd":

 print("Current mode: %s \n " % (input_str))

 else:

 print("'%s' is not a valid mode. Please try again \n" % (input_str))

 print("Takeoff Mode --------------------> to ")

 print("Takeoff and Track Mode ----------> tt ")

 print("Hover Mode ----------------------> h ")

 print("Track Mode ----------------------> t ")

 print("Land Mode -----------------------> l ")

 print("Slide right----------------------> sr")

 print("Slide left-----------------------> sl")

 print("Move forward---------------------> f")

 print("Move back------------------------> b")

 print("Go up----------------------------> gu")

 print("Go down--------------------------> gd")

 print("Disarm Mode ---------------------> d \n")

 input_str = raw_input("Mode: ")

 os.system('clear')

 pub.publish(input_str)

 rate.sleep()

if __name__ == '__main__':

 try:

 input_pub()

 except rospy.ROSInterruptException:

 pass

101

APPENDIX C: Image classification source code

import os, sys

from keras.models import load_model

import numpy as np

import cv2

import pyperclip

import time

import signal

from datetime import datetime

from threading import Thread, Event

#sys.stderr = stderr

from tqdm import tqdm

#These are the only things that should need to change

res=32 #The resolution that we want the images to be

freq=25 #The number of frames you want to try to process per second

runtime=3600 #The number of seconds the program will run

#Basic number crunching, initialization, and directory walking to get everything prepared to

launch

default_dir = 'D:\RaspberryPiCode\keras_ws'

for (_,_,files) in os.walk(default_dir):

 break

for file in files:

 if file.endswith('.h5'):

 model=load_model(default_dir+'/'+file)

 i=np.zeros([1, res, res, 1])*255

 model.predict_classes(i)

 print('\n The model was actually loaded \n')

 break

cap=cv2.VideoCapture(0)

cap.set(3,res)

cap.set(4,res)

try:

 ready,img=cap.read()

except:

 pass

translator=np.array(['L','N','R','U'])

pbar=tqdm(total=0, bar_format=' Time: {elapsed} Rate: {rate_fmt} Total: {n} Output:

{desc}', unit=" frame",mininterval=0.001,maxinterval=1.)

w=1/freq/workers

period=1/freq

threads = []

if not cap.isOpened():

 print('\n The VideoCapture object is closed \n')

finish_time=time.time()+runtime

#The function everything is built around

def img_process():

 ready,img=cap.read()

102

 if ready:

 img = cv2.resize(img,(res,res),interpolation = cv2.INTER_AREA)

 img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 img = np.expand_dims(img,axis=0)

 img = np.expand_dims(img,axis=-1)

 p = translator[model.predict_classes(img/255)[0]]

 pyperclip.copy(p)

 pbar.update()

 pbar.set_description_str("%s" % p)

img_process()

pbar.close()

cap.release()

