
DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA
MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

Ecole Nationale Polytechnique

Electronic Departement
Laboratoire des Dispositifs de Communication et de Conversion

Photovoltaique

Submitted in partial fulfillment of the requirements
for the Master Degree

Design of Full-Parallel Non Binary LDPC
Decoder

BALI Cherif
Supervised by : Mr. M.TAGHI

presented on : 2/07/2017

Jury members :

President Mr. S. AIT CHEIKH Professor ENP
Examiner Mr. D. BERKANI Professor ENP
Supervisor Mr. M.TAGHI Assistant Professor ENP

ENP 2017

Ecole Nationale Polytechnique 10, Avenue HASSEN Badi, 16200 El Harrach, Alger.





DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA
MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

Ecole Nationale Polytechnique

Electronic Departement
Laboratoire des Dispositifs de Communication et de Conversion

Photovoltaique

Submitted in partial fulfillment of the requirements
for the Master Degree

Design of Full-Parallel Non Binary LDPC
Decoder

BALI Cherif
Supervised by : Mr. M.TAGHI

presented on : 2/07/2017

Jury members :

President Mr. S. AIT CHEIKH Professor ENP
Examiner Mr. D. BERKANI Professor ENP
Supervisor Mr. M.TAGHI Assistant Professor ENP

ENP 2017

Ecole Nationale Polytechnique 10, Avenue HASSEN Badi, 16200 El Harrach, Alger.



P�l�

�¯AO�¯� Tm\�� �� d§d`�� ¨� �A�n� Ah��C � �� d� T�A�k�� TSf�n� ¥�Akt�� CAbt�� ��rfJ
TSf�n� ¥�Akt�� CAbt�� ��rfK.  w�AJ d� �� �d� Tb§r� �W��� �y�O� º� � �q�� Ah�± TyklF®��
�ymO� Yl� A�z�C T�¤rV±� £@¡ ¨� ,Ty¶An��� ��rfK�� �� �S�� º� � Ah§d� Ty¶An��� ry� T�A�k��
Ty¶An��� ry� T�A�k�� TSf�n� ¥�Akt�� CAbt�� ��rfJ �f� �� TyFAF±� º�z�°� T�A`� Tyn� ºAK��¤
Tyn� Yl� � Amt�� ©w� ��rfJ �f� ry�w� �� . rb�±� d��A-Y� ±� d��� Ty�EC�w� ��d�tFA�

.©E�wt�� Tyl�

TSf�n� ¥�Akt�� CAbt�� ��rfJ ,T�A�k�� TSf�n� ¥�Akt�� CAbt�� ��rfJ :Ty�Atfm�� �Amlk��
,©E�wt�� Tyl� Tyn� ,��rfK�� �kf� Ty�EC�w� ,�W��� �y�O� , w�AJ d� , Ty¶An��� ry� T�A�k��

.ºAK�� ,�ymO�

Résumé

Les codes de contrôle de parité de faible densité (LDPC) ont été inclus avec succès dans de nom-
breuses standard de communication sans fil, car ils atteignent des performances de correction
d’erreur très proches de la limite de Shannon. Les codes LDPC non binaires ont de meilleures
performances que les codes LDPC binaires. Dans cette thèse, nous sommes concentrés sur la
conception et l’implémentation d’une architecture full-parallel du décodeur NB-LDPC à l’aide
de l’algorithme Min-Max. La conception et l’implémentation des composants du décodeur sont
détaillées.
Mots clés : LDPC, NB-LDPC, Limite de Shannon, Correction d’erreur, Min-Max, Décodeur,
Architecture full-parallel, Conception, Implémentation.

Abstract

Low Density Parity-Check (LDPC) codes have been successfully included in numerous wire-
less communication standards, since they achieve error correction performance very close to
the Shannon limit. Non-Binary LDPC codes has better performance than the binary LDPC
codes, In this thesis, we focused on the design and implementation of efficient architecture of
the NB-LDPC decoder basic blocks using the Min-Max algorithm. In order to provide flexible
decoder. then proposing a full-parallel design for a hight thoughput communications,the design
and implementation of the decoder components are detailed.
Keywords : LDPC, NB-LDPC, Shannon limit, error correction, Min-Max, Decoder, Full-
parallel Architecture, Design, Implementation.
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General Introduction

The reliable transmission of information over noisy channels is one of the basic requirements
of wireless communication systems. Since these systems demand for high-speed information
exchange between transmitter and receiver nodes, the channel impairments become more
harmful, which reduce the reliability of the received information. To overcome this situation
and provide more reliable communications, efficient channel coding techniques are required.
Due to this requirement, these systems rely heavily on error correction codes to detect and
correct transmission errors.

Non-Binary LDPC (NB-LDPC) codes are an extensions of binary LDPC codes. These
codes perform better than the binary LDPC codes in case of codes with low and medium code-
word length. Despite the error-correcting performance advantages, NB-LDPC codes suffer
from high decoding complexity. During the last decade, significant progress has been made in
the development of low-complexity NB- LDPC decoding algorithms and the implementation
of these algorithms in flexible dedicated very-large-scale integration (VLSI) circuits. The
graphical representation of the NB-LDPC codes can be used in the implementation of these
algorithms whose effectiveness has been shown on graph models such as the Belief Propaga-
tion algorithm generally noted BP. This algorithm guarantee optimal decoding performances
but it has not great interest for a hardware implementation. Consequently, other algorithms
based on approximations of the BP algorithm have been developed with the aim of ensur-
ing a reasonable performance/complexity compromise, like the Min-Max algorithm which
can be implemented by a more efficient architecture then the others with small performance
degradation.

The objective of our project is to design a NB-LDPC decoder based on Min-Max algo-
rithm and a full-parallel architecture. In particular, we provide concepts and solutions that
enable flexible implementation and a compromise between decoding speed and implementa-
tion complexity, which are the basic requirements of modern communication standards.
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Chapter 1

LDPC Code

Low-density parity-check (LDPC) code is a channel code and one of the robust linear block
codes. The name comes from the characteristic of their parity-check matrix which contains
only a few non-zero elements in comparison to the amount of zeros, They were first proposed
in the 1962 PhD thesis of Gallager at MIT. But they remained largely neglected for over
35 years, because of the computational power to exploit iterative decoding schemes was not
available until recently.

Today, design techniques for LDPC codes exist which enable the construction of codes
which approach the Shannon’s capacity limit [1].

This chapter give a brief presentation of LDPC codes, including the Fundamentals and
mathematical basics. we will introduce the deferent types of representation for these codes,
their proprieties and classes. We will also present the decoding operation with some basic
decoding algorithms .

1.1 Parity check code

Parity checking is the most basic form of error detection in communications. The simplest
coding scheme is the single parity-check code. This code involves the addition of a single
extra bit, called a parity-check bit, to the binary message, the value of this bit depends on
the bits in the message. In an even-parity code the additional bit added to each message
ensures an even number of 1s in every codeword.

Example (1) : Denote a code C consists of codeword of length n = 6, and the vectors c =
[c1 c2 c3 c4 c5 c6 ] , where each ci is either 0 or 1 and every codeword satisfies the constraint:

c1 ⊕ c2 ⊕ c3 ⊕ c4 ⊕ c5 ⊕ c6 = 0⊕ 0⊕ 1⊕ 0⊕ 0⊕ 1 = 0 (1.1)

Equation (1.1) is called a parity-check equation. which is an equation linking n binary
data to each other by the exclusive or, denoted ⊕ operator. It is satisfied if the total number
of 1s in the equation is even or null.

While the inversion of a single bit due to channel noise can easily be detected with a single-
parity check code, this code is not sufficiently powerful to indicate which bit, or perhaps bits,
were inverted. Moreover, since any even number of bit inversions produces a vector satisfying
the constraint (1.1), patterns of even numbers of errors go undetected by this simple code.

Detecting more than a single bit error calls for increased redundancy in the form of addi-
tional parity bits. These more sophisticated codes contain multiple parity-check equations,
every one of which must be satisfied by every codeword in the code.
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Example (2): Denote the vector c = [c1 c2 c3 c4 c5 c6] that satisfy the three parity-check
equations:

c1 ⊕ c2 ⊕ c4 = 0

c1 ⊕ c2 ⊕ c3 ⊕ c6 = 0

c2 ⊕ c3 ⊕ c5 = 0

(1.2)

Checking the vector ĉ = [1 1 0 0 0 0] we see that :

1⊕ 1⊕ 0 = 0

1⊕ 1⊕ 0⊕ 0 = 0

1⊕ 0⊕ 0 = 1 ×
(1.3)

so ĉ is not a valid codeword for this code because the parity-check equations did not satisfy .
The Codeword constraints are making an equations system in order to simplify the working
in these constraints are often written in matrix form, and so the constraints (2.2) become :

1 1 0 1 0 0
1 1 1 0 0 1
0 1 1 0 1 0


︸ ︷︷ ︸

H


c1
c2
c3
c4
c5
c6

 =

0
0
0

 (1.4)

The matrix H is called a parity-check matrix. Each row of H corresponds to a parity-
check equation and each column of H corresponds to a bit in the codeword. The (j, i)th
entry of H is 1 if the ith codeword bit is included in the jth parity-check equation. Thus
for a binary code with m parity-check constraints and length-n codewords the parity-check
matrix is an m× n binary matrix.

In matrix form a vector ĉ = [c1 c2 c3 c4 c5 c6] is a valid codeword for the code with
parity-check matrix H if and only if it satisfies the matrix equation :

HĉT = 0m (1.5)

More than one parity-check matrix can describe a particular code; two parity check matrices
for the same code do not even have to have the same number of rows, but they must satisfy
(2.3) for every codeword in the code.

1.2 Representation of LDPC Codes

There are two ways to represent the LDPC code. As a linear block code, it can be described
via matrices. The second way is via a graphical description.

1.2.1 Matrix Representation

The generator matrix G: This matrix describes the mapping from source words x to
codewords c in the encoding part by the equation c = GTx .

10



It is common to consider G in systematic form G = [Ik|P ] so that the first k transmitted
symbols are the source symbols.The notation [A|B] indicates the concatenation of matrix
A with matrix B; Ik represents the k × k identity matrix. The remaining symbols are the
parity-checks.

G = [I3|P ] =

1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1


H = [P T |I3] =

1 0 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1

 (1.6)

Parity Check Matrix : The LDPC code is also described by a parity check matrix H of
dimension m × n , This matrix can be seen as a linear system of m parity check equations.
The words c of the code defined by H simultaneously satisfy the m parity check equations.
If the corresponding generator matrix is written in systematic form as above, then H has the
form [−P T |Im]. Note that for codes over finite fields GF (2p).

1.2.2 Graphical Representation

LDPC codes are usually defined in terms of a sparse bipartite graph, the so-called Tanner
graph (Tanner, 1981)[2], in which we can represent the parity check matrix, in this graph
branches link two different classes of nodes to each other:

• The first class of nodes called variable nodes (bit nodes), correspond to the bits of the
codewords (vj, j = 1, ..., n), and therefore to the columns of H.

• The second class of nodes, called parity check nodes, correspond to the parity check
equations (ci, i = 1, ...,m), and therefore to the rows of H.

Figure 1.1: An example of H matrix and the corresponding Tanner graph

Thus, to each branch linking a variable node vj to a parity check node ci corresponds the 1
that is situated at the intersection of the j− th column and the i− th row of the parity check
matrix.

11



1.3 Classifications of LDPC codes

There are two type of classification for the LDPC codes the first one depends to the regularity
of the code which divided into two groups, the regular code and the irregular codes . The
second classification based on the representation of data over the Galois Field which we will
discuss it in the next chapter, there are also two groups of codes in this classification the
Binary codes and the Non-Binary codes .

1.3.1 Regular and Irregular LDPC Codes

Regular Codes : Regular codes were the first to be introduced when R. Gallager introduced
the LDPC codes in 1962 . The regularity of these codes is specified by the constant number
of ”1” in the rows and columns of the matrix H It’s mean that wr and wc are constant and
connected by the following relation:

wr = wc.n/m (1.7)

The regular LDPC codes are then described by (n,wr, wc) which n representing the length of
the code word, wr the weight of the lines and wc the weight of the columns. It is clear that
wr (respectively wc) are very small numbers in comparison of n (respectively m ) so that H
is sparse ( low density ).

As the ratio R have a relation with n and m we can rewrite it with other way in function
of wr and wc .

R = 1− wc/wr (1.8)

Irregular codes : Which on case the distribution of the non-zero elements is not uniform.
The study shows that the irregular LDPC codes have better performance than the regular
codes . In the other hand the irregular codes have more implementation complexity than the
regular codes .

1.3.2 Binary and Non Binary LDPC Codes

The binary LDPC code is described by a binary-valued m× n parity-check matrix H in
GF (2), where the GF is abbreviation of Galois Field. This code may be generalized to finite
fields GF (q) , where q is a prime number, The elements of GF (q) will be called symbols and
we use the term bits when referring to the binary representation of symbols (when q = 2).
For a code over GF (q), each received symbol can be any of the q elements in GF (q) .

The Non binary LDPC codes over GF (q) can be seen as the generalization of binary
LDPC codes over GF (2) vector space projected over a finite field GF (q) , where q = 2m

(m ∈ Z+). In this case, each symbol can be represented by a m− bit binary tuple[3].
In the parity check matrix H, of a NB-LDPC code over GF (q), the nonzero entries are

elements of GF (q). Also each information and codeword symbol is an element of GF (q).
An example of galois field is the GF(8) represented in the Table 2.1. The basic operaions

over the Galois Field are the addition and the multiplication, these operations are different
from the usual addition and multiplication operaions, and it depends on the chosen GF
representation, in what follow we will be using the power representation because of its low
complexity hardware implementation.

12



power binary integer
0 000 0
1 100 1
α 010 2
α2 001 4
α3 110 3
α4 011 6
α5 111 7
α6 101 5

Table 1.1: GF (8) power representation

The addition and the multiplication operations over GF (2m) are illustrated on the fol-
lowing equations:

x+ y = x XOR y (1.9)

αi.αj = α(i+j)mod(2m−1) (1.10)

Figure 1.2: Non-binary parity-check matrix

The matrix products of the parity equations are performed using the addition and multi-
plication operations of the Galois Field GF (2m). It is then preferable to add to the bipartite
graph the new family of nodes called the permutation nodes which serve to model the mul-
tiplication of the symbols of the code word by the non-zero elements of the parity matrix
hij . Figure 1.3 illustrates the bipartite graph for equation 2 in Figure 1.2 by adding the
permutation nodes that correspond to the elements h11,h13 and h14 .

Figure 1.3: Graphical representation of non-binary parity-equation

13



Chapter 2

LDPC Decoding

Actually there is more than one such decoding algorithm. There exists a class of algorithms
that are all iterative procedures where, at each round of the algorithm, messages are passed
from variable nodes to check nodes, and from check nodes back to variable nodes. Therefore,
these algorithms are called message passing decoding algorithms [4].

Figure 2.1: One complete iteration message passing example

The basic steps of the message passing algorithm are :

1. Initialization:

The incoming messages received from the channel at the variable nodes are directly
passed along the edges to the neighbouring check nodes because there are no incoming
messages (extrinsic) from the check nodes in the first iteration.

2. Updating the check nodes (CNs):

The check nodes perform local decoding operations to compute outgoing messages
(extrinsic) depending on the incoming messages received from the neighbouring variable
nodes. Thereafter, these new outgoing messages are sent back along the edges to the
neighbouring variable nodes.

3. Updating the variable node (VNs):

14



The variable nodes will perform the local decoding operations in the same way to
compute the outgoing messages from the incoming messages received from both the
channel and the neighbouring check nodes.

4. Tentative Decoding :

After a complete iteration ( updating of the CNs and VNs ) the last operation is the
calculation of hard decision messages and checking the codeword validity by using the
syndrome .

In this way, the iterations will continue to update the extrinsic messages unless the valid
codeword is found or some stopping criterion is fulfilled ( achieving the limit number
of iterations )

One important message-passing algorithm is the belief propagation algorithm which
was presented by Robert Gallager in his PhD thesis. This algorithm has developed
several times under different names. The most common ones are sum-product algo-
rithm (SPA)[5], min-sum[6], extended min-sum (EMS) algorithms and the min-max
algorithm[7], these algorithms will be presented in the next chapters .

2.1 The Min-Max Algorithm

The logarithmic likelihood ratio (LLR) can take negative values. However, it would be simpler
to deal only with positive values. Therefore, there was a proposition to define the LLRs as
follows:

LLR(β) = − ln
p(c = β|r)

max
θ∈GF (2m)

{p(c = θ|r)}
β ∈ GF (2m) (2.1)

Where r = (r0, r1, ...rM−1) is the observation of the channel and c = (c0, c1, ...cM−1) is the
transmitted symbol. In this definition, the normalization is done by the probability of the
most reliable symbol. It follows that the LLR of this symbol is always zero and the LLRs of
the other symbols are positive.

GF 0 α0 α1 α2 α3 α4 α5 α6

Ps 0.1 0.85 10−3 10−7 10−10 0.05 10−10 10−10

-ln(Ps) 2.3 0.2 6.9 16.1 23.0 3.0 23.0 23.0
LLRs 2.1 0 6.7 15.9 22.8 2.8 22.8 22.8

Table 2.1: Exapmle of LLRs values of GF(8)

Min-Max algorithm is an approximation of the MS algorithm, a modifications have been
done in which makes it possible to simplify the processing at the CNs by replacing the sum
in equation 4.13 by the operator max [8].

We can resume the steps of the Min-Max algorithm by :

• Initialization: Mvjci [β] = Ij[β]
Iterations :

15



• Check node processing

Mcivj [β] ≈ min∑
s 6=j

his 6=0

θs=β
{max
s 6=j
his 6=0

M̃vsci [θs]} (2.2)

• Variable node processing

M ′
vjci

[β] = Ij[β] +
∑
s 6=j
his 6=0

M̃csvj [β] β ∈ GF (q) (2.3)

Mvjci [β] = M ′
vjci

[β]− min
β∈GF (q)

(M ′
vjci

[β]) (2.4)

• A posteriori information computation

APPj[β] = Ij[β] +
∑
hs,j 6=0

M̃csvj(β) β ∈ GF (q) (2.5)

After each iteration, hard decision for the ith symbol can be made as:

ĉj = argmax
β∈GF (q)

{APPj[β]} j = 0, 1, ...N − 1

The iterations can be carried out until H[ĉ0, ĉ1, ĉ2, ...]
T = 0 or the maximum iteration number

has been reached.
To simplify The CN operations it can be implemented efficiently by forward-backward

scheme.This scheme consists in constructing the outgoing messages by a set of elementary
operations allowing not to repeat the same calculations and to reduce the latency of process-
ing.

16



Chapter 3

NB-LDPC Decoder Architecture

In this chapter, we will present a design of the full-parallel decoder on hardware based on the
Min-max algorithm for NB-LDPC codes. We will start from the decoder system level view
of the basic blocks, then we will discuss the layred and non-layred decoder architecture and
compare between them.

3.1 System level architecture

3.1.1 Check Node architecture

Computing the c-to-v messages in a straight-forward manner requires a complexity ofO(qwr−1),
where wr is the number of variable nodes connected to a check node. This manner requires
complicated computations on GF (q) elements, and it is not suitable for efficient hardware
implementation.

Alternatively, the forward-backward scheme can be applied to the check node process-
ing to avoid computing output message directly. This scheme consists in constructing the
outgoing messages by a set of elementary operations, making it possible not to repeat the
same computations and to reduce the processing latency. These elementary operations are
performed by Elementary Check Node (ECN). Each ECN receives two sorted messages M1

and M2 and generates a sorted message Mo. The message Mo is constructed by selecting the
q most reliable symbols from all the possible combinations ( as explained in min-max CN
updating operation ).

Figure 3.1 illustrates the Forward-Backward architecture of CN with degree wr = 4.
For clarity, the incoming CN messages are denoted by Mvjc and the outgoing messages are
denoted by Mcvj , j = 1, ..., 4.

Elementary Check Node architecture

The EVN compute an outgoing message vector from two incoming message vectors. The
message vector consists of two parts: LLRs and corresponding GF (q) elements. Denote the
LLR vectors by LA = [LA(0), LA(1), ..., LA(q − 1)] and LB = [LB(0), LB(1), ..., LB(q − 1)],
and the corresponding finite field element vectors by GFA = [GFA(0), GFA(1), ..., GFA(q−1)]
and GFB = [GFB(0), GFB(1), ..., GFB(q−1)], also denote the output LLR and corresponding
finite field element vectors by LO and GFO. The entries in the output LLR vector for the Min-
max decoding are the q minimum values of max(LA(i), LB(j)) with different GFA(i)+GFB(j)

17



Figure 3.1: Forward-Backward Check-node architecture

for any combination of i and j less than q.
The traditional solution of computing the outgoing message consists on comparing q2

pairs of messages from the two input vectors to find the ones with larger LLRs, then find
the q minimums among them. Taking care of all these operations in parallel is hardware-
demanding, also performing them serially make a latency problem. But the ECN developed
in our project uses two incoming messages stored in the order of increasing LLR and generate
sorted outgoing message of the most reliable messages, by using an efficient algorithm to find
the q most reliable LLRs in minimum clock cycles using serial computation to reduce the
hardware area.

Figure 3.2: ECN architecture and its control FSM graph

3.1.2 Variable Node architecture

The VNs are divided into two categories according to whether all q messages are kept for
each vector or not. In our project we will design a VN with degree wc = 2, that means two
extrinsic messages and one intrinsic message are the incoming messages of the VN. In our
architecture all q messages are kept in each vector.

The architecture of a VN is given in Figure 3.3. It contains several Elementary Blocks
that can make it capable to operates on three basic functions :

• Updating the VN: This operation is done by the EVN block, The EVN receives two
incoming message from the CNs and generate an new outgoing message to the normal-
ization block .

18



• Normalization : This operation is done by the Norm block, It subtracts the smallest
LLR in the input vector from each LLR in the vector so that the smallest LLR in each
vector is brought back to zero.

• Decision: This operation is done by the Decision block. Firstly it calculates the APP
by the sum of all VN input message vectors, then determine the estimated symbol ĉ by
taking the GF element corresponding to the minimum LLR value.

Figure 3.3: Variable Node Architecture

Elementary Variable Node architecture

The goal of an EVN is to compute the outgoing message vector stored in the order of in-
creasing LLR by adding the LLRs of the two incoming message vectors corresponding to the
same GF (q) element. Figure 3.4 illustrate the EVN architecture, two RAMs are used to
storage the incoming message vectors, adder to add the LLR values, parallel GF elements
comparators to help in finding the GF element address, sorter for the output vector and
control unit to generate the control signals.

Figure 3.4: Elementary Variable Node Architecture

At first, one entry of the A vector is read out. Since the vectors are not sorted by GF
element, the GF element of the GFA vector entry is compared with all those in the GFB
vector. If there is a match, the addr calculator can give the corresponding GF element
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address, then using the addresses of A and B vectors to read theirs corresponding LLRs and
perform the addition, the LLR addition result and its corresponding GF element are the
entries of the output vector. The adder’s output is connected to a sorter in order to sort and
store the output elements. Using a counter to read out the next A vector entry and repeat
these steps for all the q entries. All previous operations are controlled by the control unit.

3.2 High level architecture

3.2.1 Global Architecture Description

From a high-level perspective, virtually all implementations of message passing LDPC de-
coders found in the open literature are derived from an isomorphic architecture [9] which is
a direct mapping of the tanner graph.

The global architecture of decoder as illustrated in Figure 3.5 consists of different types
of hardware components:

• VN unit (VNU) block and CN unit (CNU) block to compute the update equations.

• Interconnect network representing the edges of the graph and the hij/h
−1
ij multiplication

block.

• Storage devices in order to save the extrinsic and the intrinsic messages.

• LLRs calculator block to calculate the GF (q)’s LLR values and the Syndrome block to
check the codeword validity.

• Control unit which generate control signals in order to synchronize and control the data
flow between the blocks.

Figure 3.5: Top level NB-LDPC Decoder architecture

Based on this prototype architecture, different implementation trade-offs are obtained
through architectural transformations such as resource sharing across VNUs and CNUs and
iterative decomposition of the update equations.
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3.2.2 Layered and Non-Layered architecture

The design can be partitioned into two basic architecture classes : the non-layered (Full-
parallel) and the layered architecture [10]. The last one also can be divided into two strategies
row parallel, and block-parallel. These architecture classes are depicted in Figure 3.6.

Figure 3.6: Layred and Non-layred Decoder architecture

Layered decoding has been widely adopted to reduce the memory requirement and increase
the convergence speed of LDPC decoding.

The row-parallel design is a step towards less parallelism. The main objective is to re-
duce the area while maintaining very high throughput. The principle underlying row-parallel
architectures is illustrated in Figure 3.6(b). Essentially, the parity-check matrix is partitioned
vertically into layers. An iteration now consists of multiple cycles in which the VNUs access
the messages corresponding to the current layer sequentially from a small storage array to
compute the output messages and send them to the CNUs through a programmable routing
network. The complexity and the amount of bits required to control this programmable rout-
ing network heavily depend on the structure of the code and on its partitioning into layers
[10].

The row-parallel architectures provide an area advantage over full-parallel designs. Note
that additional storage to hold the LLR values computed in the previous iteration, while
processing layers of the current iteration, can be avoided for a layered schedule with proper
layer selection. In general, the programmable routing network illustrated in Figure 3.6(b)
required by the row-parallel architecture provides the flexibility to support multiple parity-
check matrices with a single decoder. For this reason, this architecture class has been recently
considered in several flexible QC-LDPC decoders tailored to the emerging high-throughput
wireless standards IEEE 802.11ad and IEEE 802.15.3c [11].

Block-parallel designs rely on further resource sharing and further iterative decomposi-
tion. Figure 3.6(c) outlines the architectural principle, which is usually used in combination
with the layered message-passing schedule. In essence, this architecture class is obtained
by starting from the row-parallel approach and by partitioning the computation of a layer
further into multiple cycles, corresponding to multiple blocks in the parity-check matrix.
This iterative decomposition simplifies the CN processing and allows for resource sharing
also across the VNUs. The block-based processing in conjunction with structured codes sig-
nificantly facilitates reconfigurability. Due to this reason, this architecture class has been
widely employed for flexible decoder implementations.
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Figure 3.7: Explaining the layred process using Taner graph example

3.3 Full-parallel Decoder Architecture

A high-level block-diagram of a non-layered (full-parallel) design is shown in Figure 3.6(a).
The update equations are mapped into individual VNUs and CNUs that exchange messages
through a hard-wired routing network [11]. The parallel processing allows each iteration
to be performed in a fewer number of clock cycles, by updating all VN units then all CN
units. This architecture enables very high throughput since one iteration is performed per
fewer number of clock cycles with simple computations that allow for high operating clock
frequencies. Unfortunately, the complex routing network that connects CNUs and VNUs
turns out to be a major implementation bottleneck for these designs.

Full-parallel architectures have been considered mainly for wire-line communication stan-
dards (e.g. 10GBASE-T). Since the full-parallel architecture represents the direct hardware
mapping of a specific parity-check matrix, this class cannot provide any flexibility. Therefore,
it is generally ill-suited for wireless communication standards that require the support for
different parity-check matrices in order to tune code rate and block length.

Figure 3.8: full-parallel NB-LDPC Decoder architecture

In our proposed architecture either the VNU or the CNU is working, we can propose
another modified architecture which instead of decoding only one codeword ,it estimate
two codewords in parallel using a pipeline. the VNU will take two messages ,first for the
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Figure 3.9: Global Control FSM for full-parallel architecture

first codeword, pass it to the CNU which by its role process it and then store the output
messages in the memory, at the same time (in parallel) the VNU gets the second codeword
correspending messages and pass them to the CNU, At this point ,the VNU and CNU start
exchanging their messages with the memory, this architecture has a double throughput as
advantage but it suffers from the complexity and the hight hardware memory consuming.

Figure 3.10: Full-Parallel two codewords Decoder
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Conclusion

The project started with an understanding of the NB-LDPC codes concepts, and various
variants of the error correcting decoding algorithms were investigated with an eye towards
performance and feasible hardware design. Then we have chosen the Min-Max algorithm
because of its low complexity in comparison with others algorithms. The complexity of the
check node processing is further reduced in the Min-max algorithm with slightly lower coding
gain.

It has been shown that the design of NB-LDPC decoders can be partitioned into two
main architecture. The non-layered architecture achieve very high throughput in excess of
10 Gbps but cannot provide any flexibility in terms of code rate or block length. The layered
architecture which consist of row-parallel class and block-parallel class designs reduce the
area compared to the non-layered architecture with different degrees of resource sharing
and iterative decomposition at the expense of a degradation in throughput. While both
architecture classes offer flexibility, the block-parallel class is especially suitable for QC-
LDPC codes as it naturally fits together with the block structure of these codes.

In our project we have focused on the design and implementation of an efficient architec-
ture for the NB-LDPC decoder basic blocks, since wireless communication systems decoders
must support a wide range of different parity-check matrices,and because of that we provide
flexible decoder which can works with different block lengths and code rates.

We have designed the check node block using the forward backward technique to reduce
the implementation complexity. In order to optimize the latency, we have used a practical
algorithm to design the elementary check node block, that can work for both cases : all q
messages are kept or only the nm << q most reliable elements. We have also designed the
variable node block using elementary blocks for the same reason.

The decoder components were implemented on a Xilinx ISE platform using VHDL lan-
guage and tested using test benches.

It has been shown that the row-parallel architecture class is highly scalable and supports
the full range of throughput requirements found in modern wireless standards. Due to its
favorable properties and spatially its flexibility i.e. be able to implement any given code,
without changing the design of the decoder. Moreover, it can be adopted to reduce the
memory resources.

Finally we proposed a full-parallel architecture for a very hight throughput communica-
tion, which is generally used for wire-line communication since it presents hight hardware
costs.
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