RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique École Nationale Polytechnique

Département d'Électrotechnique Laboratoire de Recherche en Électrotechnique

Mémoire de Master en

Électrotechnique

Régulation de vitesse de la SRM par régulateurs PI et IP

DJAOUT Mouatez

Sous la direction de

Dr: H. SAHRAOUI PR: MO.MAHMOUDI

Soutenu publiquement le 18/06/2017

Membres du Jury

Président Mr. K. BOUGHRARA, Professeur Ecole Nationale Polytechnique Promoteurs Mme. H. SAHRAOUI, Docteur Ecole Nationale Polytechnique Mr. MO. MAHMOUDI, Professeur Ecole Nationale Polytechnique Examinateur Mr. T. ZEBBADJI, Docteur Ecole Nationale Polytechnique

RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique École Nationale Polytechnique

Département d'Électrotechnique Laboratoire de Recherche en Électrotechnique

Mémoire de Master en

Électrotechnique

Régulation de vitesse de la SRM par régulateurs PI et IP

DJAOUT Mouatez

Sous la direction de

Dr: H. SAHRAOUI PR: MO.MAHMOUDI

Soutenu publiquement le 18/06/2017

Membres du Jury

Président Mr. K. BOUGHRARA, Professeur Ecole Nationale Polytechnique Promoteurs Mme. H. SAHRAOUI, Docteur Ecole Nationale Polytechnique Mr. MO. MAHMOUDI, Professeur Ecole Nationale Polytechnique Examinateur Mr. T. ZEBBADJI, Docteur Ecole Nationale Polytechnique

<u>: ملخص</u> يتمثل هذا العمل في نمذجة تحكم مع و بدون وضعية استشعار لمحرك ذو مقاومة مغناطيسية متغيرة ثنائي الدرج SRM 12/8 مع أخذ ظاهرة التشبع المغناطيسي بعين الاعتبار وذلك في بيئة المحاكاة MATLAB/SIMULINK , قد تم اجراء نموذج لتقدير الوضعية بطريقة التدفق .

قمنا بنمذجة محاكاة للتحكم و التعديل في السرعة و ذلك باستخدام معدل من نوع PI و آخر من نوع IP حيث أن النتائج المتحصل عليها قد أثبتت نجاعته و صلابته خاصة وأن هذا النوع من المحركات يتميز بطبيعته الغير خطية

كلمات مفتاحية : المحركات ذات المقاومة المغناطيسية المتغيرة , ماتلاب /سيمولينك, تقدير الوضعية, تحكم بدون وضعية استشعار, المعدل IP, المعدل PI,

Abstract: The aim of this work is a three phases SRM 12/8 modeling and control tacking in to account of saturation effect. The simulation of performances and control of this type of machine is done in MATLAB/SIMULINK environment. The estimation of the rotor position is performed using "flux estimation" method. A speed control has been performed by simulation using proportional integral (PI) and integral proportional (IP) controllers

Key words: SRM, MATLAB/SIMULINK, Modeling, Sensorless, PI regulator, IP regulator

Résumé : Ce travail consiste à la modélisation et la commande sans capteur de la machine à réluctance variables 12/8 en régime saturé en utilisant l'environnement MATLAB/SIMULINK. L'estimation de la position est réalisée à partir de la méthode d'estimation de flux. Une simulation de la régulation de vitesse a été réalisée en utilisant les régulateurs : proportionnel intégrale (PI) et intégrale proportionnel (IP)

<u>Mots clés</u>: SRM, MATLAB/SIMULINK, modélisation, Estimation de position, Commande sans capteur, régulateur PI, régulateur IP,

Dédicace

Je dédie ce travail à ma très chére mère, dont le sacrifice, la tendresse, l'amour, la patience, le soutien, l'aide et l'encouragement sont l'essentiel de ma réussite. Sans elle je ne serai pas à ce stade aujourd'hui.

 $A\ mes\ fr\`eres\ Amine\ et\ Seif.\ A\ ma\ sœur\ Ines\ pour\ leur\ soutien\ continue\ durant\ mon\ parcours.$

A Abdou, Anes, Imad, Boka, Ahemd et Adel.

A Amani, Zineb et Lina.

M.DJAOUT

Remerciements

Nous remercions Dieu le tout puissant de nous avoir donné la force et le courage pour réaliser ce travail.

Les travaux présentés dans ce mémoire ont été effectués au sein du *Laboratoire de Recherche en Électrotechnique* de l'École Nationale Polytechnique.

Ce travail que nous présentons a été effectué sous la direction de Mme *H.SAHRAOUI*, Docteur à l'Ecole Nationale Polytechnique, et Mr *MO.MAHMOUDI*, Professeur à l'École Nationale Polytechnique, qui ont suivi de très près ce travail, pour leur orientation pédagogique dans l'élaboration de ce mémoire.

Nous tenons à remercier Mr *K.Boughrara*, Professeur à l'École Nationale Polytechnique, pour l'honneur qu'il nous fait de présider le jury de notre soutenance.

Que Mr *T.ZEBBADJI*,Docteur à l'Ecole Nationale Polytechnique, soit convaincu de notre sincère reconnaissance pour avoir accepté d'examiner et de critiquer ce mémoire.

Enfin, je tiens à remercier tous les gens qui ont contribué à ma réussite tout au long de mon parcours d'étude.

Table des matières

Lis	e des tableaux	
Lis	e Abréviations	
Lis	e des figures	
Int	oduction Générale 1	2
	Modélisation et simulation de la commande de la SRM avec capteur e position 1 .1 Introduction .2 Modélisation et simulation du système de Commande de la SRM 12/8 .1 1.2.1 Modélisation du moteur SRM .3 Modèle Simulink .1 3.1 Modélisation de capteur de position .4 Simulation du système avec capteur de position .1 1.4.1 Régime permanent	4 5 7 9
	1.4.2 Régime dynamique 2 .5 Conclusion 2	
	imulation de la commande de la SRM sans capteur de position2.1 Introduction.2.2 Modèle du Système de commande de la SRM sans capteur.2.3 Simulation sans capteur de la SRM.2.2.3.1 Régime permanent.2.2.3.2 Régime dynamique.3.4 Conclusion.3	26 26 28 28
	imulation de la régulation de vitesse sans capteur de la SRM par les égulateurs PI et IP 1 Introduction	32 32 34 35 35 36 38
Co	clusion Cánárala	1

Bibliographie	42
Annexe A	44

Liste des tableaux

3.1	Paramètres des régulateurs PI	34
3.2	Paramètres des régulateurs IP	34
1 1	Caractéristique de la SRM utilisée en simulation	44

Liste des figures

1.1	Schema synoptique de la machine associee a son convertisseur et son cap-	1 5
1.0	teur de position	15
1.2	Caractéristiques $\psi(\theta, i)$ et $C(\theta, i)$	15
1.3	Modèle de la machine pour une seule phase.	17
1.4	Modèle de la machine pour les 3 phases	17
1.5	Convertisseur demi-pont asymétrique à 3 phases	18
1.6	Modèle de la MLI pour une seule phase	18
1.7	Modèle de la commande par hystérésis pour 1 phase	19
1.8	Modèle du capteur de position	19
1.9	Modèle global de la SRM associée au capteur de position	20
	Courants des 3 phases, $\Omega = 250tr/min.$	20
	Tensions d'alimentation pour $\Omega = 250tr/min \dots$	20
1.12	Couples des 3 phases, $\Omega = 250 tr/min \dots$	20
	Couple électromagnétique, $\Omega = 250 tr/min$	20
1.14	Courants des 3 phases, $\Omega = 40tr/min$	21
1.15	Couples instantanés, $\Omega = 40tr/min$	21
1.16	Couple électromagnétique pour $\Omega = 40tr/min$	21
	Tension d'alimentation pour $\Omega = 40tr/min \dots$	21
1.18	Courant des 3 phases $\Omega = 40tr/min$ alimentation en hystérésis $\Delta i = 4A$	22
1.19	Couples instantanés, $\Omega = 40tr/min$, $\Delta i = 4A$	22
1.20	Couple électromagnétique, $\Omega = 40tr/min$ avec $\Delta i = 4A$	22
1.21	Tension d'alimentation, $\Omega = 40tr/min$ avec $\Delta i = 4A$	22
	Modèle global en régime dynamique	23
	Courants des 3 phases à vide	23
1.24	Couple électromagnétique total à vide	23
	Couple phase à vide.	24
	Vitesse de rotation à vide	24
	Courants des 3 phases, en charge $C_c = 5N.m.$	24
	Couple électromagnétique, en charge, $C_c = 5N.m.$	
	Vitesse, en charge, $C_c = 5N.m.$	24
	Couple de la phase 1, en charge, $C_c = 5N.m.$	24
2.1	Schéma synoptique de la SRM sans capteur	26
2.1	v i i	$\frac{20}{27}$
2.2	Modèle de l'estimateur	28
	Position réelle et estimée	
2.4	Schéma Simulink sans capteur en régime permanent	28
2.5	Alimentation pleine onde, sans capteur, $\Omega = 250tr/mn$	29
2.6	Fonctionnement régulé en courant, sans capteur, $\Omega = 40tr/mn$, $\Delta i = 4A$.	29
2.7	Schéma Simulink de la SRM sans capteur en régime dynamique	30
2.8	Courants des 3 en régime dynamique, sans capteur	30
2.9	Couple électromagnétique en régime dynamique, sans capteur	31
2.10	Vitesse de rotation en Régime dynamique, sans capteur	31

3.1	Structure du régulateur PI	32
3.2	Structure du régulateur IP	33
3.3	Schéma Simulink de régulation de la vitesse, régulateur PI	33
3.4	Schéma Simulink de régulation de la vitesse, régulateur IP	33
3.5	Démarrage à vide, régulateur PI, $\Omega = 200tr/min$	34
3.6	Démarrage à vide, régulateur IP, $\Omega = 200 tr/min \dots$	34
3.7	Réponse de vitesse, à vide $\Omega = 200 tr/min.$	35
3.8	Réponse de vitesse en charge, $\Omega = 200tr/min$	35
3.9	Réponse du couple électromagnétique en charge, $\Omega = 200tr/min, C_c =$	
	5N.m	36
3.10	Réponse des courants en charge, $\Omega=200tr/min$, $C_c=5N.m$	36
3.11	Réponse de la vitesse en présence des défauts à vide, $\Omega=200tr/min$	36
3.12	Réponse des courants en présence des défauts à vide, $\Omega=250tr/min.$	37
3.13	Réponse du couple total en présence des défauts à vide, $\Omega=200tr/min$	37
3.14	Réponse de la vitesse en présence des défauts en charge, $\Omega = 200tr/min$,	
	$C_c = 5N.m$	38
3.15	Réponse du couple total en présence des défauts en charge, $\Omega = 200tr/min$,	
	$C_c = 5N.m$	38
3.16	Réponse des courants en présence des défauts en charge, $\Omega = 200tr/min$,	
	$C_c = 5N.m$	39

Liste des abréviations

SRM: Switched Reluctance Machine.

 ψ_j : Flux de phase.

 θ : Position du rotor.

 i_j : Courant de phase.

C : Couple de phase.

 W_c : Co-énergie.

 V_j : Tension de phase.

 R_s : Résistance de phase.

J : Moment d'inertie.

 Ω : Vitesse de rotation.

*C*_{em} : Couple électromagnétique total.

 f_r : Coefficient de frottement visqueux.

 C_r : Couple résistant.

MLI: Modulation de largeur d'impulsion.

r : Taux de modulation.

m: Indice de modulation.

 θ_{on} : Angle d'amorçage de la phase.

 θ_{off} : Angle de d'extinction de la phase.

 Δi : Bande de hachage par hystérésis.

 I_{ref} : Courant de référence.

f.c.e.m : Force contre électromotrice.

 C_c : Couple de charge.

 ${\cal P}{\cal I}$: Proportionnel Intégral.

 ${\it IP}$: Intégral Proportionnel.

 Ω_{ref} : Vitesse de référence.

 ${\cal K}_p$: Action proportion nelle.

 K_i : Action intégrale.

Introduction Générale

La SRM occupe de plus en plus une place dans le domaine des entrainements à vitesse variable tel que l'électroménager et la traction électrique[1, 2, 3, 4, 5, 6] ainsi que dans le domaine de la production d'énergie tel que la génératrice éolienne[1, 2]. En effet, cette machine, devenue concurrente aux machines classiques habituellement utilisées, est caractérisée particulièrement par une architecture simple, un coût réduit et sa possibilité de fonctionner dans de larges gammes de vitesses. De plus, la SRM est connue pour sa robustesse et sa tolérance aux défauts[7, 8, 9, 10].

Cependant, les ondulations du couple et la complexité de sa commande dues à son caractère fortement non linéaire font que la machine est plus connue dans le domaine de la recherche que dans le domaine industriel. En effet, beaucoup de travaux de recherches sur la minimisation des ondulations de couple[1, 3, 10, 9] et sur l'application de nouvelles techniques de commande font l'objet de cette machine.

Avec le développement des microcontrôleurs et l'application des nouvelles techniques de commande, la commande de la SRM devient de moins en moins complexe. En effet, la commande de la SRM qui nécessite une connaissance précise de la position du rotor et qui est assurée par un capteur mécanique peut être remplacé aisément par un estimateur et nous évite ainsi les inconvénients du capteur.

Dans ce travail, nous nous sommes intéressés à la commande de la SRM 12/8 sans capteur en utilisant un estimateur de position basé sur la méthode d'estimation de flux. Ce travail a donc été structuré en cinq chapitres.

Le premier chapitre est consacré à l'étude de la modélisation et de la simulation du système de commande de la SRM 12/8 avec capteur de position. Un modèle tenant compte des non linéarités de la SRM dues à la double saillance et à la saturation est élaboré. Ce modèle est basé sur la connaissance des caractéristiques électromagnétiques de la machine. La simulation du fonctionnement de la machine pour une alimentation tension et une alimentation régulée en courant nous permet d'étudier les performances de la SRM pour les faibles et grandes vitesses en régime permanent et dynamique.

Dans le deuxième chapitre, le capteur de position est remplacé par un estimateur. Celui-ci est basé sur la méthode de l'estimation de flux qui utilise la caractéristique du flux en fonction de la position et du courant. Cette technique permet d'obtenir l'information sur la position du rotor en effectuant le calcul de flux de chaque phase à partir de mesures directes de la tension et du courant. La position est, alors, déduite de la table du flux, position et courant. Afin d'étudier les performances du système sans capteur, une simulation du fonctionnement en régime permanent dynamique est réalisée dans les mêmes conditions que pour la commande avec capteur.

Le troisième chapitre est consacré à la régulation de vitesse de la machine en utilisant les régulateurs classiques PI et IP appliqués souvent dans les systèmes linéaires. Une fois, les coefficients des régulateurs choisis, et afin de tester leurs performances plusieurs tests de robustesses et de tolérances aux défauts ainsi que des tests de variation de charge sont effectués. Ces performances sont comparées afin de choisir le régulateur à adopter dans cette régulation.

Chapitre 1

Modélisation et simulation de la commande de la SRM avec capteur de position

1.1 Introduction

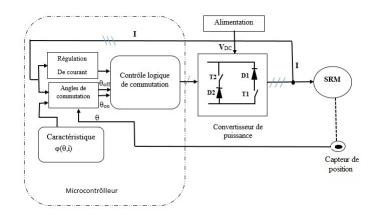
Les SRM sont des machines à champs pulsé, fortement non linéaire dont le fonctionnement nécessite une présence du capteur de position dans la chaine de mesure. Ce dernier présente un rôle primordial dans le sens où il délivre les impulsions qui permettent le calcul des angles de conduction et l'ordre d'alimentation des phases.

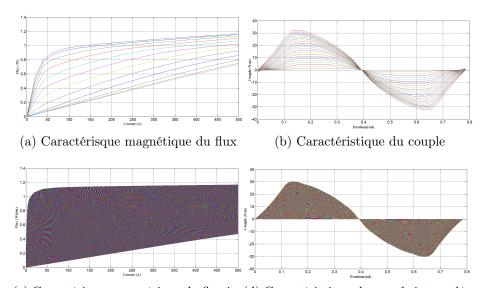
la modélisation de la SRM nécessite la connaissance des caractéristiques magnétiques de flux en fonction de la position et du courant afin de tenir compte des effets de la double saillance et de la saturation. Ces caractéristiques peuvent être déterminées soit expérimentalement ou par calcul Numérique.

Dans ce chapitre, nous proposons un modèle de la SRM 12/8, en utilisant les caractéristiques du flux et du couple en fonction de la position et du courant. L'environnement Matlab/Simulink est utilisé pour modéliser les différents éléments du système de commande et nous permet d'évaluer ses performances en régime permanent et dynamique pour les faibles et grandes vitesses de fonctionnement de la machine.

1.2 Modélisation et simulation du système de Commande de la SRM 12/8

La commande de la SRM est assurée par un microcontrôleur qui génère les signaux de commandes pour l'alimentation successive des phases à travers un convertisseur de puissance de type demi-pont asymétrique. Ces signaux de commande dépendent des signaux envoyés par le capteur de position et de la stratégie de commande adoptée. Un schéma synoptique du système de commande avec capteur est présenté sur la figure 1.1




FIGURE 1.1: Schéma synoptique de la machine associée à son convertisseur et son capteur de position

1.2.1 Modélisation du moteur SRM

Le modèle de la machine constitue l'ensemble du modèle électromagnétique et le modèle mécanique afin de tenir compte du fonctionnement du régime permanent et dynamique.

Le caractère fortement non linéaire de la SRM, produit par la double saillance de sa structure ainsi que la saturation au régime nominal, nécessite une connaissance précise des caractéristiques magnétiques de la machine.

La modélisation de la SRM est alors réalisée en utilisant les caractéristiques du flux $\psi(\theta, i)$, et du couple en fonction de la position et du courant $C(\theta, i)$ prises de la bibliographie (Voir Annexe 1)[7, 5] et représentées sur les figures 1.2a et 1.2b. Ces caractéristiques sont interpolées afin de construire des tables $\psi(\theta, i)$, et $C(\theta, i)$ nécessaires pour élaborer le modèle numérique, leurs interpolations sont représentés sur les figures 1.2c et 1.2d. ainsi que leur interpolation.

(c) Caractérisque magnétique du flux in-(d) Caractéristique du couple interpolée terpolée

FIGURE 1.2: Caractéristiques $\psi(\theta, i)$ et $C(\theta, i)$

L'ensemble des caractéristiques du flux est limité par les deux courbes obtenues à la position d'opposition et la position de conjonction.

La position d'opposition est caractérisée par une variation linéaire du flux, Lorsque le rotor s'approche de sa position de conjonction, la variation n'est plus linéaire.

Le modéle étant non linééaire, pour le simplifier, on adopte les hypothèses simplificatrices suivantes : [11, 3]

- -L'effet de la mutuelle entre phases, l'hystérésis et l'effet de bord sont négligés.
- -Les paramètres de chaque phase sont identiques.
- -Les courants induits dans le circuit magnétique sont négligés.
- -La résistance des enroulements est constante.
- -Les interrupteurs du convertisseur sont parfaits.
- -La tension est parfaitement continue.

L'équation donnant la tension aux bornes de chaque phase excitée est exprimée par :

$$V_j = R_s i_j + \frac{d\psi_j}{dt} \tag{1.1}$$

Expression où:

 R_s : La résistance du bobinage de chaque phase du moteur .

 ψ_i : Flux magnétique total par phase.

 $\mathbf{i}_{\mathbf{j}}$: Courant passant à la jème phase.

Le flux $\psi(\theta, i_i)$ est donné par :

$$\frac{d\psi_j(\theta, i_j)}{dt} = \frac{d\psi_j(\theta, i_j)}{di_j} \frac{di_j}{dt} + \frac{d\psi_j(\theta, i_j)}{d\theta} \frac{d\theta}{dt}$$
(1.2)

Avec:

$$\frac{d\theta}{dt} = \Omega \tag{1.3}$$

On trouve donc:

$$V_j = R_s i_j + \frac{d\psi_j}{i_j} \frac{di_j}{dt} + e \tag{1.4}$$

e étant la f.c.é.m du moteur :

$$e = \Omega \frac{d\psi_j}{d\theta} \tag{1.5}$$

Le couple produit par chaque phase est exprimé par le relation suivante :

$$C_{em} = \frac{dW_c(\theta, i)}{d\theta} = \frac{d}{d\theta} \int_0^{I_0} \psi(\theta, i) \, di$$
 (1.6)

W_c étant la co-énergie magnétique.

L'équation mécanique de la SRM s'exprime par :

$$J\frac{d\Omega}{dt} = C_{em} + f_r\Omega + C_c \tag{1.7}$$

J: Moment d'inertie du rotor.

 Ω : Vitesse angulaire.

 $C_{\rm em}$: Couple électromagnétique totale.

f_r: Coefficient de frottement visqueux.

 C_c : Couple de charge.

1.3 Modèle Simulink

le modèle Simulink du système de commande est réalisé sous forme de blocs, où chaque bloc représente le modèle d'un élément du système

Bloc machine

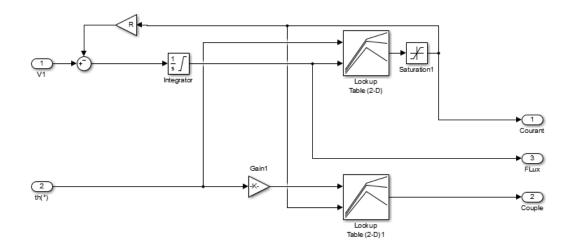


FIGURE 1.3: Modèle de la machine pour une seule phase.

Ce bloc permet d'extraire les courants, les couples, à partir des Tables de flux et et de couple.

Le modèle Simulink pour les trois phases est représenté sur la figure 1.4.

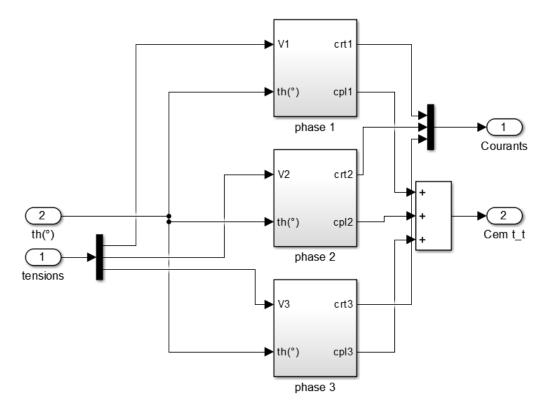


FIGURE 1.4: Modèle de la machine pour les 3 phases.

Bloc convertisseur

La SRM 12/8 a 3 phases est alimentée par un convertisseur à demi-pont asymétrique de structure donnée sur la figure 1.5. Ce convertisseur est prévu pour une alimentation en tension, pleine onde ou une alimentation en Courant.

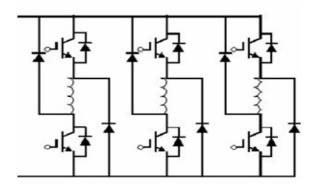


FIGURE 1.5: Convertisseur demi-pont asymétrique à 3 phases.

L'alimentation en courant est une alimentation ou le courant peut-être régulé par deux techniques de régulations connues. Deux techniques de régulation de courant peuvent être associées à ce convertisseur : la technique MLI, et la technique à hystérésis.

Technique MLI

Les signaux d'attaque des transistors sont obtenus par la comparaison de la porteuse qui est un signal triangulaire et la modulante qui représente l'erreur entre le courant de phase et celui de référence.

La porteuse est de fréquence f=1kHz et d'amplitude r=2A. Les angles de commandes : $\theta_{on}=0,\ \theta_{off}=15$.

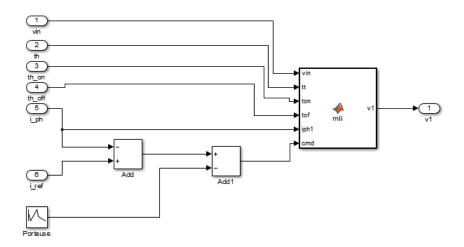


FIGURE 1.6: Modèle de la MLI pour une seule phase.

Technique à hystérésis

Cette technique consiste à limiter le courant dans une bande Δi autour d'une valeur de référence I_{ref} . les deux interrupteurs sont commandés pour la régulation de courant et pour l'excitation et la désexcitation de la phase.

Le courant de référence est égal à $I_{ref} = 100A$. La bande $\Delta i = 4A$

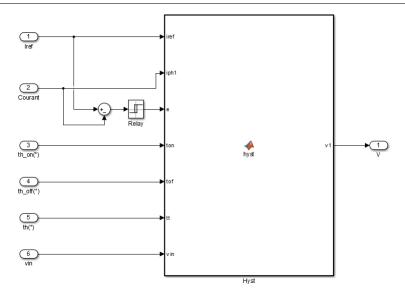


FIGURE 1.7: Modèle de la commande par hystérésis pour 1 phase.

1.3.1 Modélisation de capteur de position

Ce bloc permet de calculer la position à partir de la vitesse. il est représenté par le modèle simulink de la figure 1.8.

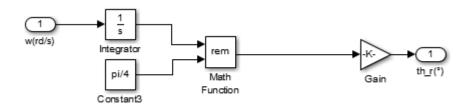


FIGURE 1.8: Modèle du capteur de position.

1.4 Simulation du système avec capteur de position

Les différents modèles Simulink présentés sont programmés séparément en utilisant l'environnement Matlab. Tous les programmes sont associés à un programme d'initialisation où tous les paramètres de la machine et de commande sont introduits. Le programme global nous permet d'effectuer les différentes simulations.

La simulation de la commande de la SRM est effectuée, en régime permanent et dynamique, afin d'analyser ses performances à faibles et grandes vitesses.

1.4.1 Régime permanent

La simulation est effectuée pour les grandes et faibles vitesses correspondant respectivement à l'alimentation pleine onde et l'alimentation régulée en courant.

La figure 1.9 représente le modèle Simulink de la SRM associée au capteur de position.

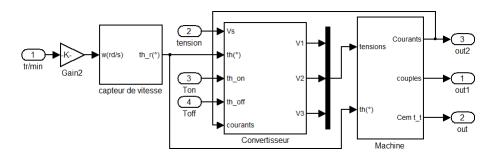
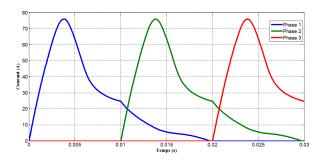



FIGURE 1.9: Modèle global de la SRM associée au capteur de position

-Grandes vitesses ($\Omega = 250tr/min$)

La simulation est effectuée pour une tension nominale de la machine et pour une vitesse supérieure à la vitesse de base. les résultats de simulation sont présentés ci-dessous.

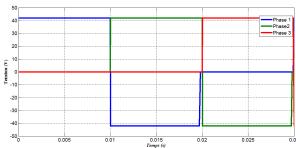
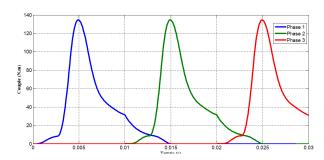



FIGURE 1.10: Courants des 3 phases, $\Omega = 250tr/min$.

FIGURE 1.11: Tensions d'alimentation pour $\Omega = 250 tr/min$

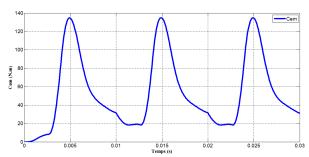


FIGURE 1.12: Couples des 3 phases, $\Omega = 250 tr/min$

FIGURE 1.13: Couple électromagnétique, $\Omega = 250 tr/min$

Les formes des courants obtenus sont conformes au fonctionnement en pleine onde où la vitesse dépasse la vitesse de base. Ce qui entraine une augmentation de la f.c.é.m de la machine et empêche le courant d'atteindre sa valeur nominale. De plus, ces courants génèrent un couple électromagnétique avec un taux d'ondulation élevé(voir figure 1.13).

-Faibles vitesses ($\Omega = 40 tr/min$)

La simulation à faible vitesse peut être réalisée par une alimentation régulée en courant pour les techniques MLI et hystérésis.

-Alimentation en MLI

Les résultats de simulation sont présentés dans les figure 1.14,1.15,1.16,1.17.

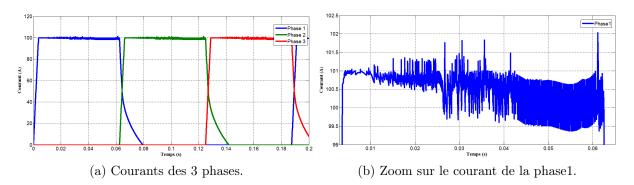


FIGURE 1.14: Courants des 3 phases, $\Omega = 40tr/min$.

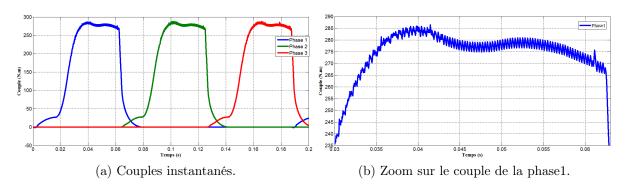


FIGURE 1.15: Couples instantanés, $\Omega = 40tr/min$.

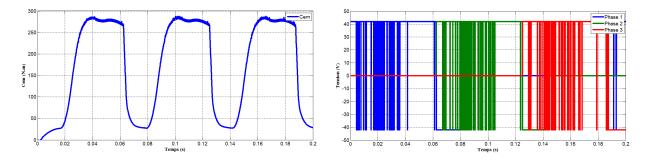


FIGURE 1.16: Couple électromagnétique pour $\Omega = 40tr/min$

FIGURE 1.17: Tension d'alimentation pour $\Omega = 40tr/min$

Alimentation en hystérésis.

La simulation est effectuée en introduisant une régulation de courant par hystérésis autour du courant de référence avec une bande de $\Delta i=4A$. les résultats de simulations sont présentés sur les figures 1.18 à 1.21

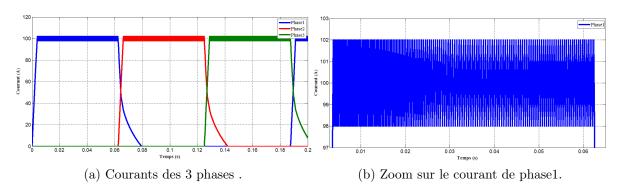


FIGURE 1.18: Courant des 3 phases $\Omega = 40tr/min$ alimentation en hystérésis $\Delta i = 4A$.

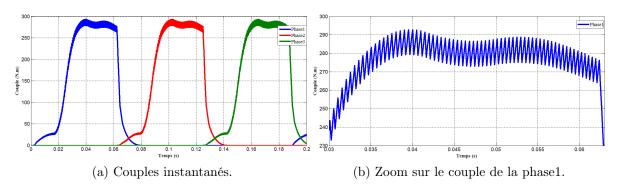


FIGURE 1.19: Couples instantanés, $\Omega = 40tr/min$, $\Delta i = 4A$.

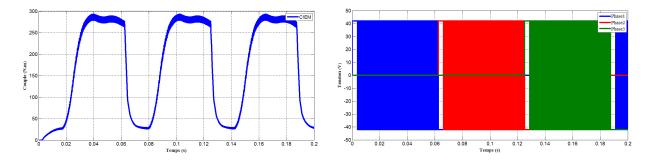


FIGURE 1.20: Couple électromagnétique, $\Omega = 40tr/min$ avec $\Delta i = 4A$

FIGURE 1.21: Tension d'alimentation, $\Omega = 40tr/min$ avec $\Delta i = 4A$

Dans ce cas, le courant s'établit dans la phase et reste presque constant durant la période de conduction, ce qui génère un couple presque constant. Dans le cas de la régulation par hystérésis, le courant présente des variations uniformes dans sa bande de régulation ce qui génère un couple plus important avec le moins d'ondulation que pour la régulation par MLI.

1.4.2 Régime dynamique

La figure 1.22 montre le schéma Simulink de la machine au régime dynamique :

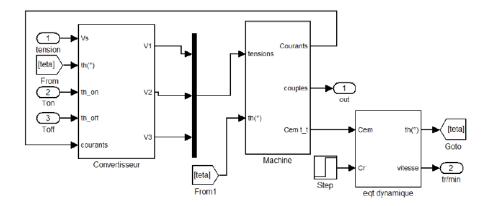


FIGURE 1.22: Modèle global en régime dynamique

Les performances de la machine en régime dynamique sont évaluées en effectuant la simulation de deux tests : le test de démarrage à vide et le test de démarrage à vide suivi d'une application d'un couple de charge. Les résultats de simulation sont présentés sur figures 1.23, 1.24, 1.25 et 1.26

Démarrage à vide

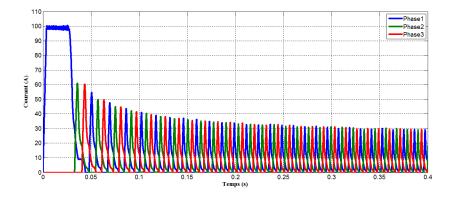


FIGURE 1.23: Courants des 3 phases à vide.

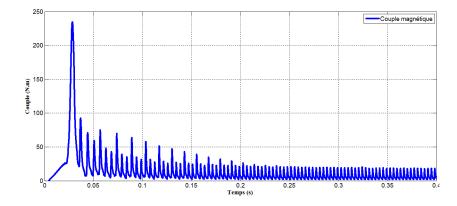
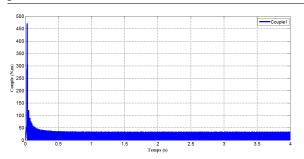



FIGURE 1.24: Couple électromagnétique total à vide

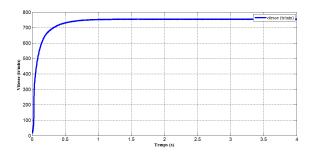


FIGURE 1.25: Couple phase à vide.

FIGURE 1.26: Vitesse de rotation à vide.

Démarrage à vide suivi d'une application de charge

A t = 1.5s, on applique un couple résistant de valeur $C_c = 5N.m$

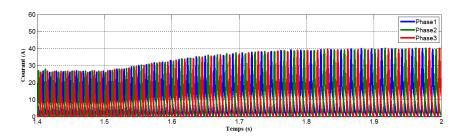


FIGURE 1.27: Courants des 3 phases, en charge $C_c = 5N.m.$

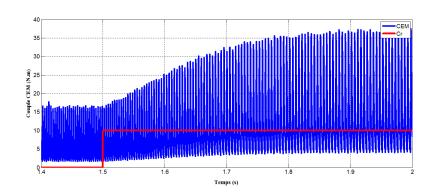
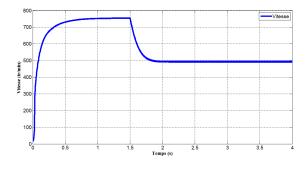



FIGURE 1.28: Couple électromagnétique, en charge, $C_c = 5N.m.$

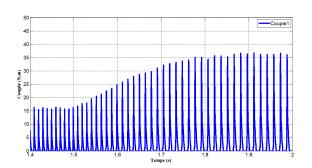


FIGURE 1.29: Vitesse, en charge, $C_c = 5N.m.$

FIGURE 1.30: Couple de la phase 1, en charge, $C_c = 5N.m.$

A vide, le moteur démarre rapidement pour atteindre sa vitesse finale. Le couple au démarrage est important. Ce qui entraine un fort appel de courant qui atteint les 100A

qui correspond au courant nominal de la machine. Lorsque la vitesse atteint sa valeur constante, le courant s'annule et le couple aussi. Ce qui correspond au fonctionnement à vide.

L'application de la charge entraine une augmentation du couple électromagnétique fournit par la machine et des courants de phase. par ailleurs, la vitesse diminue et se stabilise à une vitesse plus faible.

1.5 Conclusion

Dans ce chapitre, une modélisation du système de commande de la SRM avec capteur de position est proposée.

un modele Simulink global du système est élaboré à partir des modèles de la SRM en tenant compte des caractéristiques magnétiques non linéaires de la machine, du convertisseur associé à son alimentation et sa commande et du capteur de position.

Un programme Matlab développé à partir du modèle global , nous a permis d'étudier les performances en régime permanent et dynamique de la SRM -avec capteur pour les faibles et grandes vitesses du fonctionnement.

les résultats de simulation obtenus concordent avec ceux obtenus par d'autres auteurs. Et cette simulation nous a permis de mieux comprendre le fonctionnement de la SRM.

Chapitre 2

Simulation de la commande de la SRM sans capteur de position

2.1 Introduction

Les capteurs de position utilisés généralement dans la commande des machines tel que les codeurs incrémentaux ou absolus peuvent être encombrant, et requièrent un montage souvent délicat pour assurer l'alignement des axes et le calage de la machine. Et dans le cas des SRM, les ondulations de couple importantes introduisent des vibrations du rotor qui peuvent réduire la fiabilité du capteur. Pour cela, il est intéressant de les remplacer par des estimateurs [4, 5, 12].

Plusieurs méthodes ont été développées pour estimer la position du rotor : on distingue les méthodes où l'information est basée sur l'estimation du flux qui est calculée à partir des mesures instantanées des tensions et des courants.[13, 14], et les méthodes basées sur une injection sur une des phases d'un signal de fréquence élevé. [4, 5, 13]

Dans ce chapitre, la première méthode est adoptée où l'estimation de la position passe par l'estimation du flux à partir des mesures de courant et de la tension de phase

2.2 Modèle du Système de commande de la SRM sans capteur

La figure 2.1 présente le schéma synoptique du système de commande de la SRM en remplaçant le capteur par l'estimateur de flux

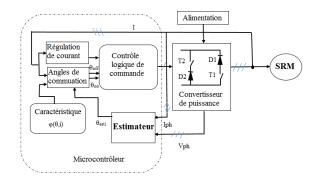


FIGURE 2.1: Schéma synoptique de la SRM sans capteur

La méthode de l'estimation de flux est basée sur le calcul du flux à partir de la tension et du courant mesurés. Cette méthode est choisie car le modèle de la SRM adopté est basé sur les caractéristiques de flux[4, 12, 13, 15].

Elle nécessite plusieurs capteurs autres que le capteur de position, une mémoire pour sauvegarder la caractéristique de la machine ce qui est déjà prévu par la commande. De plus, cette technique exige une bonne identification de la résistance de chaque phase[10, 16].

La tension aux bornes de chaque phase, en négligeant la mutuelle s'écrit sous forme :

$$V_j = Ri_j + \frac{d\psi_j(\theta, i)}{dt} \tag{2.1}$$

Où:

 V_j : La tension appliquée à la j^{me} phase.

R: La résistance de chaque phase.

i: Le courant traversant la j^{me} phase.

 $\psi_j(\theta,i)$: Le flux de la j^{me} phase.

Le flux est alors:

$$\psi_j(\theta, i) = \int_0^t (V_j - Ri_j) \, \mathrm{d}t + \psi_j(0)$$
 (2.2)

Où:

 $\psi_i(0)$: la valeur initiale du flux.

Ainsi la position du rotor est déterminé a partir de la table $\psi(\theta, i)$.

Le capteur de position est remplacé par le bloc d'estimateur présenté sur la figure 2 .2.

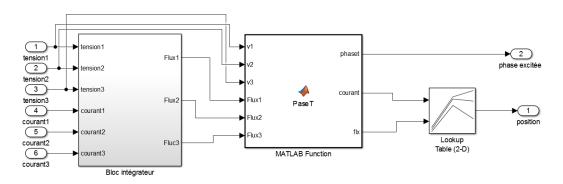


FIGURE 2.2: Modèle de l'estimateur

L'estimateur élaboré, est composé de 3 blocs :

 $Bloc\ intégrateur$: dans lequel un calcul d'intégrale est fait à partir des tensions et courants de phase pour déterminer le flux.

PhaseT: C'est une fonction Matlab qui délivre, à partir des flux obtenus et les tensions d'alimentation de la machine, le courant et le flux de la phase excitée.

Look-up table : représente une table qui utilise le flux et le courant obtenus par la fonction Phaset, afin de déterminer la position.

Les résultats de simulation de la position réelle et estimée sont présentés sur la figure 2.3.

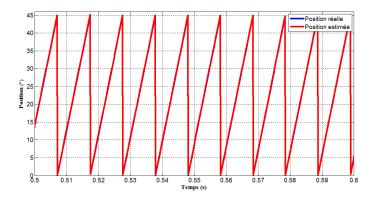


FIGURE 2.3: Position réelle et estimée

La position réelle et estimée obtenues sont superposables. En effet, L'erreur maximale absolue est de 0.4°. Ce qui correspond à une erreur relative ne dépassant pas les 1%.

Ces résultats montrent la précision de l'estimateur élaboré et confirme le bon choix de la méthode d'estimation.

2.3 Simulation sans capteur de la SRM

En vue d'analyser le fonctionnement sans capteur de la machine et de le comparer à celui avec capteur, une simulation a été effectuée en régime permanent et dynamique. Cette simulation est réalisée dans les conditions similaires que celle avec capteur pour les grandes et faibles vitesses correspondant respectivement à l'alimentation en pleine onde et l'alimentation régulée en courant.

2.3.1 Régime permanent

La figure 2.4 représente le schéma bloc de SRM au régime permanent pour le fonctionnement sans capteur. Le capteur physique a été remplacé par l'estimateur qui comprend l'élément temps. Ce dernier tient compte de la variation du temps.

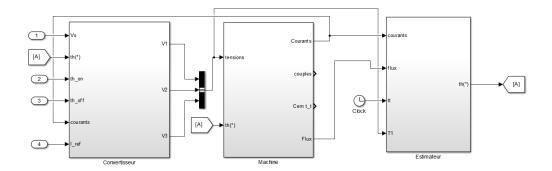


FIGURE 2.4: Schéma Simulink sans capteur en régime permanent

-Grandes vitesses

Les résultats de simulation à grande vitesse pour une séquence de conduction sont représentés sur la figure 2.5

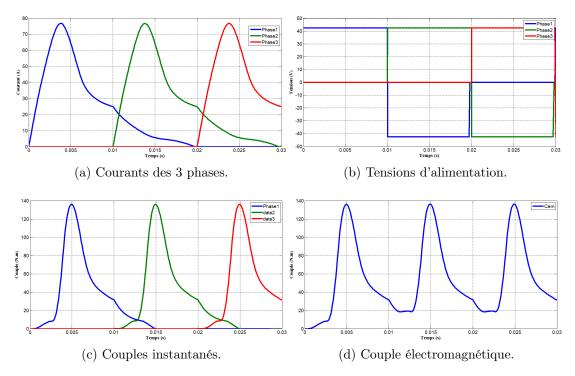


FIGURE 2.5: Alimentation pleine onde, sans capteur, $\Omega = 250 tr/mn$

-Faibles vitesses

La simulation a été effectuée uniquement pour une régulation de courant par hystérésis et les résultats de simulation sont représentées sur la figure 2.6.

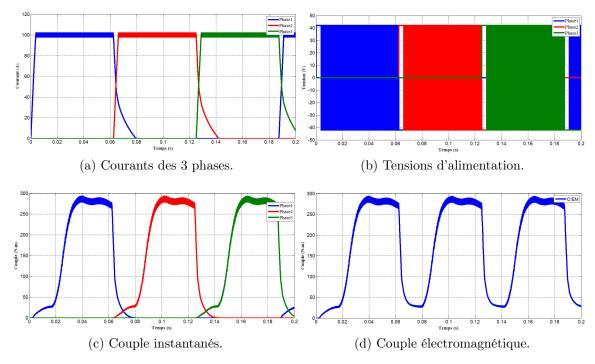


FIGURE 2.6: Fonctionnement régulé en courant, sans capteur, $\Omega = 40tr/mn$, $\Delta i = 4A$

Les résultats de simulation "sans capteur" concordent avec ceux obtenus "avec capteur". L'erreur relative de la position estimée n'influe pas sur les résultats obtenus, en

effet, l'écart ne dépasse pas les 1% pour chaque grandeur.

2.3.2 Régime dynamique

Le fonctionnement de la SRM sans capteur en régime dynamique nécessite l'initialisation de l'estimateur. Le démarrage de la machine se fait, alors avec capteur de position et à l'instant t=0.57s, un basculement vers l'estimateur est effectué. La figure 2.7 décrit le schéma bloc de la commande sans capteur de la SRM en régime dynamique.

FIGURE 2.7: Schéma Simulink de la SRM sans capteur en régime dynamique

Ce schéma bloc est similaire à celui donné pour le système avec capteur en ajoutant l'élément Switch, qui assure le basculement de la position réelle vers la position estimée, obtenue de l'estimateur établie précédemment, le convertisseur est commandé à partir du signal de sortie de l'interrupteur. .

Un démarrage à vide suivie d'une application de couple de charge $C_c = 10N.m$ à t = 1.5s a été effectué. Les résultats de simulation sont présentés sur les figures 2.8, 2.9 et 2.10.

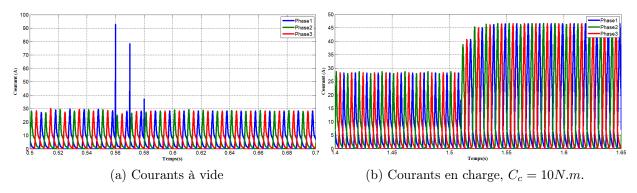


FIGURE 2.8: Courants des 3 en régime dynamique, sans capteur

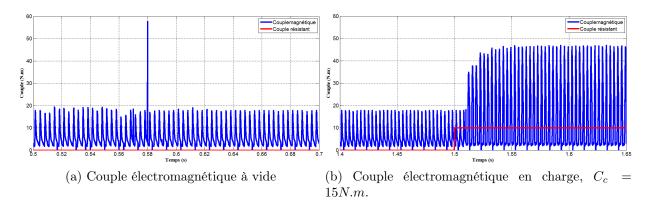


FIGURE 2.9: Couple électromagnétique en régime dynamique, sans capteur

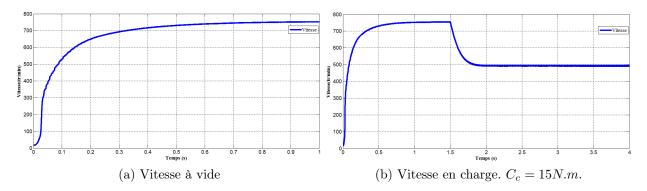


FIGURE 2.10: Vitesse de rotation en Régime dynamique, sans capteur

Les figures 2.8 et 2.9 montrent que le basculement d'un fonctionnement avec capteur au fonctionnement sans capteur ne modifie pas les caractéristiques dynamiques de la SRM. Néanmoins, on constate une apparition de quelques piques de courant au moment du basculement, ce qui génère un pique de couple au niveau du couple électromagnétique qui n'a pas d'influence sur les performances de la machine.

La figure 2.10 représente la vitesse estimée, lors d'un démarrage à vide ainsi qu'après application d'une charge. Ce résultat est similaire à celui obtenue avec capteur de position.

2.4 Conclusion

Dans ce chapitre, un estimateur de position du rotor a été élaboré afin de remplacer le capteur de position. La méthode de l'estimation du flux a été adoptée. Une comparaison de la position estimée et de la position donnée par le capteur a montré que l'estimateur donne pratiquement la même position avec une erreur relative ne dépassant pas le 1%.

Une simulation du système de commande avec l'estimateur a conduit à des résultats analogues à ceux obtenus pour la simulation avec capteur et ce, pour les régimes permanent et dynamique à faibles et grandes vitesses de fonctionnement.

Ce résultat nous a montré la possibilité de remplacer le capteur de position par cet estimateur et de réduire ainsi les inconvénients dus à la présence du capteur.

Chapitre 3

Simulation de la régulation de vitesse sans capteur de la SRM par les régulateurs PI et IP

3.1 Introduction

La régulation de vitesse est nécessaire dans les systèmes d'entrainement à vitesse variable, en effet, la machine doit continuer à fonctionner à la vitesse exigée pour les variations de charge. La commande en vitesse de la SRM par une méthode conventionnelle ne peut être efficace qu'autour d'un point de fonctionnement a cause du caractère non linéaire de cette machine.[17].

Les régulations classiques PI (Proportionnel Intégral) et IP (Intégral Proportionnel) sont utilisés fréquemment dans les systèmes linéaires pour la commande en vitesse des machines. Dans ce chapitre, les régulateurs PI et IP sont appliqués pour la commande sans capteur. Des tests de variation de charge et de tolérances aux défauts sont effectués. Une comparaison des performances des deux régulateurs est ainsi réalisée, ce qui nous permet d'effectuer un choix adéquat pour ce système de commande.

3.2 Modèle des régulateurs PI et IP

Régulateur PI: Ce régulateur combine l'action intégrale et l'action proportionnelle qui sont mises en parallèle. L'entrée du régulateur est l'erreur entre la vitesse dynamique (estimée) et la vitesse de référence. La structure de ce régulateur est représentée sur la figure 3.1.

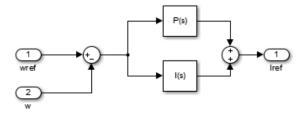


FIGURE 3.1: Structure du régulateur PI

Régulateur IP : Le correcteur Intégral proportionnel IP est essentiellement différent du correcteur PI par le fait qu'il ne présente pas de zéro dans la fonction de transfert

en boucle fermée, ainsi sa sortie ne représentera pas de discontinuité lors de l'application d'une consigne de type échelon. L'action proportionnelle et intégrale sont mises en série[18].La structure du régulateur IP est représentée sur La figure 3.2

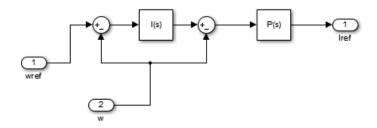


FIGURE 3.2: Structure du régulateur IP

Les structures de régulation de vitesse en utilisant les régulateurs PI et IP sont représentées, sous formes des modèles Simulink suivants, sur les Figures 3.3 et 3.4 respectivement

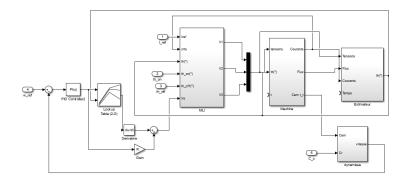


FIGURE 3.3: Schéma Simulink de régulation de la vitesse, régulateur PI

La régulation de vitesse se fait par le biais du bloc de régulation PI . L'entrée du régulateur est l'erreur entre la vitesse de rotation et la vitesse de consigne. La sortie de ce premier est le courant de référence, qui va être traduit en tension de référence en utilisant un look-up table et une opération mathématique

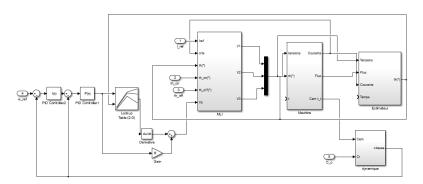


FIGURE 3.4: Schéma Simulink de régulation de la vitesse, régulateur IP

La régulation de vitesse, dans ce cas, est assurée par le bloc de régulation IP. L'entrée de l'action intégrale est l'erreur entre la vitesse de consigne et la vitesse dynamique, sa sortie est comparée avec la vitesse dynamique. Elle sert comme entrée pour l'action proportionnelle qui délivre le courant de référence en utilisant un look-up table et une opération mathématique.

Détermination des paramètres des régulateurs PI 3.3 et IP

La méthode de détermination des gains des régulateurs consiste à effectuer une série de simulation de la réponse de vitesse à vide et pour une vitesse de référence constante $\Omega_{ref} = 200 tr/min$, pour différentes combinaisons de K_p et K_i , en fixant l'un, tout en variant l'autre[19, 20, 21]. Les tableaux 3.1, 3.2 et la figure 3.4 résument les résultats des simulations et les valeurs optées pour cette étude.

	1	2	3
K_p	1	1	1
K_i	3	5.8	7
T_i	0.33	0.17	0.14
(a) Variation do K.			

	1	2	3
K_p	0.6	1.2	1.8
K_i	5.8	5.8	5.8
T_i	0.10	0.2	0.31
(1) 37 1 72			

(a) Variation de K_i

(b) Variation de K_p

Table 3.1: Paramètres des régulateurs PI

	1	2	3
K_p	1	1	1
K_i	7	25	14
T_i	0.14	0.04	0.07
(a) Variation do K.			

	1	2	3
K_p	14	4	24
K_i	14	14	14
T_i	1	0.28	1.71
(b) Variation do K			

Variation de K_i

Table 3.2: Paramètres des régulateurs IP

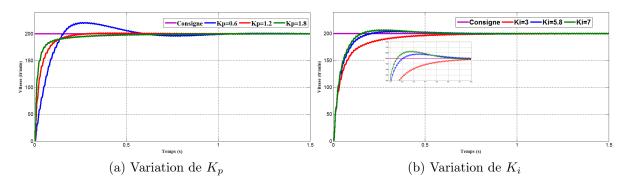


FIGURE 3.5: Démarrage à vide, régulateur PI, $\Omega = 200tr/min$

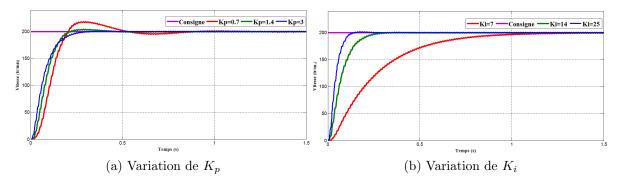


FIGURE 3.6: Démarrage à vide, régulateur IP, $\Omega = 200tr/min$

3.4 Tests à vide

Plus le K_p est grand, plus la réponse du système est meilleure. En effet, le dépassement devient de plus en plus faible. Cependant, une valeur importante de l'action proportionnelle influe sur la rapidité du système (Voir figure 3.5).

Plus le K_i est grand plus le système est rapide. En effet, le temps de réponse devient de plus en plus faible. Néanmoins, une valeur importante de l'action intégrale engendre des dépassements au niveau de la réponse qui peuvent mener à l'instabilité du système.

A cet effet, Les valeurs choisies pour le régulateurs PI sont : $K_p=1.2$ et $K_i=5.8$. Pour le régulateur IP $K_p=4$ et $K_i=14$.

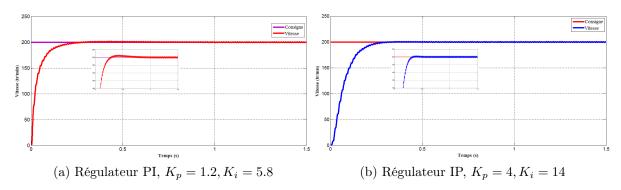


FIGURE 3.7: Réponse de vitesse, à vide $\Omega = 200tr/min$.

Pour les paramètres choisis, la réponse du système dans le cas du régulateur PI est rapide avec un léger dépassement. La réponse du système avec IP est moins rapide.

L'efficacité des deux régulateurs dépend du point de fonctionnement, c'est pourquoi qu'on ne peut rien conclure sur les performances de ces premiers. .

3.5 Application d'une charge

A t = 1.5s, on applique un couple de charge de valeur $C_c = 5N.m$. Les résultats de simulation pour les deux régulateurs sont représentés sur le figure 3.8, 3.9 et 3.10

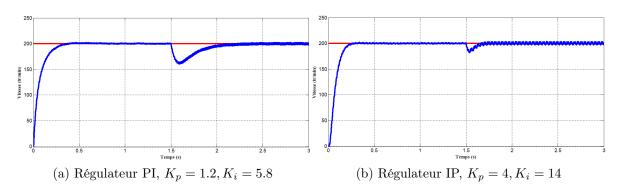


FIGURE 3.8: Réponse de vitesse en charge, $\Omega = 200tr/min$

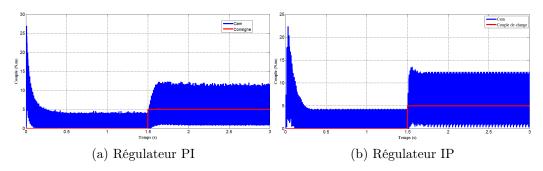


FIGURE 3.9: Réponse du couple électromagnétique en charge, $\Omega = 200tr/min, C_c = 5N.m$

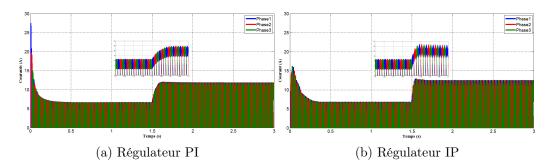


FIGURE 3.10: Réponse des courants en charge, $\Omega = 200tr/min$, $C_c = 5N.m$

L'application de couple de charge engendre une augmentation au niveau du couple électromagnétique et des courants des 3 phases. Nous constatons aussi qu'au moment de la perturbation, le courant ne présente pas de pique, ceci montre qu'il y a une bonne régulation de courant.

Le régulateur IP rejette plus rapidement la perturbation causée par le couple de charge par rapport au régulateur PI mais génère plus d'ondulations au niveau de la vitesse.

3.6 Tests de robustesse

En vue de confirmer la tolérance aux défauts de la SRM, des tests de robustesse sont effectués à vide et en charge pour les deux types de régulateur, en débranchant 2 phases.

Tests à vide

A t = 1.5s, on débranche la phase 2 et à t = 4.5s, on débranche la phase 3, les résultats de simulations sont présentés sur les figures 3.11, 3.12, 3.13.

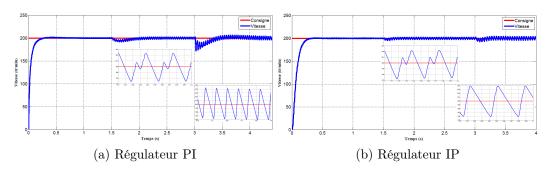


FIGURE 3.11: Réponse de la vitesse en présence des défauts à vide, $\Omega = 200tr/min$

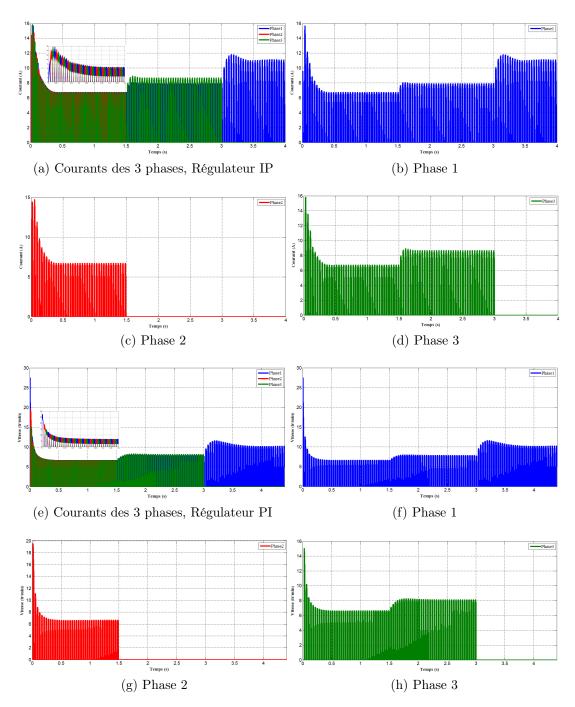


FIGURE 3.12: Réponse des courants en présence des défauts à vide, $\Omega = 250 tr/min$.

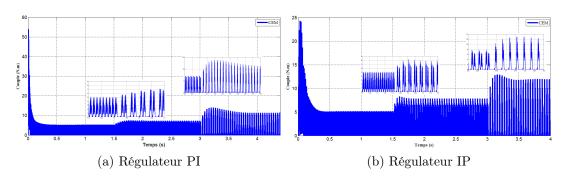


FIGURE 3.13: Réponse du couple total en présence des défauts à vide, $\Omega=200tr/min$

3.6.1 Tests à vide

Le régulateur PI rejette les deux perturbations dues aux défauts des phases, la première est rejetée plus rapidement que la deuxième et génère moins d'ondulation de vitesse.

Dans le cas du régulateur IP, le rejet des perturbations est plus rapide que pour le PI et génère moins d'ondulation de vitesse.

L'évolution des courants est présentée sur la figure 3.13 pour le régulateur IP et PI. Le courant de la phase 1 augmente lorsque le défaut se produit, sans toutefois dépasser des valeurs admissibles, nous constatons que le courant de la phase 3 augmente plus que le courant de la phase 1 au moment de défaut, ce résultat a été confirmé par un travail expérimental présenté dans [22]. Le courant est aussi contrôlé par les régulateurs.

Le couple électromagnétique croit pour compenser les perturbations dues aux défauts des deux phases.

Tests en charge

Les figures 3.14, 3.15 et 3.16 montrent le cas du défaut biphasé (l'application de la charge à t=1.5s, le défaut de la phase 2 à t=1.5s et celui de la phase 3 à t=3.5s)

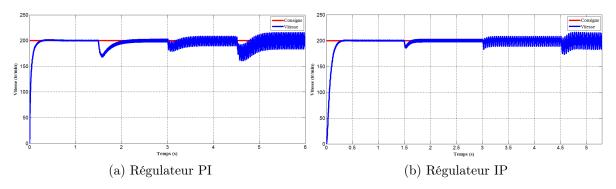


FIGURE 3.14: Réponse de la vitesse en présence des défauts en charge, $\Omega=200tr/min$, $C_c=5N.m$

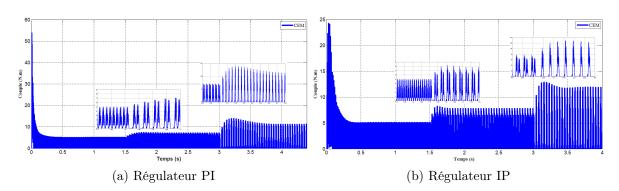


FIGURE 3.15: Réponse du couple total en présence des défauts en charge, $\Omega=200tr/min$, $C_c=5N.m$

FIGURE 3.16: Réponse des courants en présence des défauts en charge, $\Omega=200tr/min$, $C_c=5N.m$

3.6.2 Tests en charge

L'enlèvement des deux phases après l'application du couple de charge conduit à des résultats analogues à ceux obtenues précédemment avec plus d'ondulation, en effet ces ondulations sont plus importantes en charge qu'à vide et dans un défaut biphasé qu'un défaut monophasé. Néanmoins, elles ne dépassent pas les 7% dans le cas du régulateur PI contrairement au régulateur IP, où elles sont beaucoup plus inférieures à 5%.

3.7 Conclusion

Dans ce chapitre, les régulateurs PI et IP sont appliqués dans une commande sans capteur, ceci afin de les tester pour une perturbation de charge et la tolérance aux défauts. Les deux régulateurs répondent correctement à ces tests. Néanmoins le IP s'avère plus performant et plus efficace que le régulateur PI pour les tests de tolérances aux défauts.

Conclusion Générale et Perspectives

L'objectif de ce travail est la modélisation et la simulation d'un système de commande d'une SRM sans capteur de position en vue d'étudier les performances de la SRM et les techniques de commandes appliquées.

En premier lieu, un modèle du système de commande d'une SRM 12/8 en tenant compte des non linéarités liés à la saillance et la saturation est élaboré. Ce qui a permis d'étudier les performances de la SRM en régime permanent et dynamique pour les faibles et grandes vitesses du fonctionnement.

Ensuite, le capteur de position a été remplacé par un estimateur modélisé en utilisant la méthode d'estimation de flux. Une étude des performances de la commande sans capteur a été effectuée, en intégrant l'estimateur de la position. La simulation du modèle avec estimateur révèle que les performances du système sans capteur sont similaires à celles avec capteur. La concordance des résultats a confirmé l'efficacité de la méthode d'estimation adoptée.

Par ailleurs, une régulation de vitesse de la SRM est réalisée en appliquant les techniques de régulation classiques PI et IP et la technique du mode glissant. Ces techniques ont été testées pour des perturbations de charge et les défauts de phase. Les deux régulateurs PI et IP ont bien répondu aux perturbations. Cependant le régulateur IP s'est révélé plus performant que le régulateur PI.

Bibliographie

- [1] H.Sahraoui. « Contribution à la Modélisation et à l'Optimisation d'un Système de Commande d'un Moteur à Reluctance Variable à Double Denture (SRM) ». Thèse de doct. Ecole Nationale Polytechnique, 2007.
- [2] D.PANDA. « Sensorless control of switched reluctance motor drive with self measured flux linkage characteristics ». In: *IEEE-IAS Conf.*
- [3] R. Krishnan. « Switched Reluctance Motor Drives, Modelling, Simulation, Analysis, Design, and Applications, » in: *CRC Press, Boca Raton* (2001).
- [4] Shoujun Song, Lefei GE et Zhihui Zhang. « Accurate Position Estimation of SRM Based on Optimal Interval Selection and Linear Regression Analysis ». In: *IEEE Transactions on Industrial Electronics* 63.6 (2016), p. 3467–3478.
- [5] Jin-Woo Ahn, Sung-Jun Park et Dong-Hee Lee. « Novel encoder for switching angle control of SRM ». In: *IEEE Transactions on Industrial Electronics* 53.3 (2006), p. 848–854.
- [6] Ghafoori FARD et al. « Sensorless speed control of switched reluctance motor drive using the binary observer with online flux-linkage estimation ». In: *Iranian Journal of Electrical and Electronic Engineering* 5.2 (2009), p. 143–150.
- [7] Bernard Multon. « Conception et alimentation électronique des machines à réluctance variable à double saillance ». Thèse de doct. École normale supérieure de Cachan-ENS Cachan, 1994.
- [8] S.H.MERINI F.BPUFATEH. « Commande numérique d'une machine à réluctance variable à double denture ». Mém.de mast. Ecole Nationale Polytechnique, 2015.
- [9] Z BENNARA A ABDEDAIM. « Evaluation des Performances de Commande de la SRM ». Mém.de mast. Ecole Nationale Polytechnique, 2016.
- [10] E.M.B Messini Z. MIRAR. « Modélisation et commande avec et sans capteur d'une SRM, » mém.de mast. Ecole Nationale Polytechnique, 2013.
- [11] J. Faiz et J.W. finch. « Aspects of design optimization for switched reluctance motors ». In: *IEEE Trans. On Energy Conv* (1993).
- [12] Mahesh Krishnamurthy, Chris S Edrington et Babak Fahimi. « Prediction of rotor position at standstill and rotating shaft conditions in switched reluctance machines ». In: *IEEE Transactions on Power Electronics* 21.1 (2006), p. 225–233.
- [13] Ernest Ofori et al. « A pulse-injection-based sensorless position estimation method for a switched reluctance machine over a wide speed range ». In: *IEEE Transactions on Industry Applications* 51.5 (2015), p. 3867–3876.
- [14] Longya XU et Chuanyang WANG. « Accurate rotor position detection and sensorless control of SRM for super-high speed operation ». In: *IEEE Transactions on Power Electronics* 17.5 (2002), p. 757–763.

- [15] Gabriel Gallegos-Lopez, Philip C Kjaer et TJE Miller. « High-grade position estimation for SRM drives using flux linkage/current correction model ». In: *IEEE Transactions on Industry Applications* 35.4 (1999), p. 859–869.
- [16] Babak Fahimi, Ali Emadi et Raymond B Sepe. « Four-quadrant position sensorless control in SRM drives over the entire speed range ». In: *IEEE Transactions on Power Electronics* 20.1 (2005), p. 154–163.
- [17] M.TAKARLI Y.NESSAB. « Modélisation et commande par mode glissement dune MRV utilisée en alterno-démarreur pour véhicule ». Mém.de mast. Ecole Nationale Polytechnique, 2011.
- [18] A LOKRITI, Y ZIDANI et S DOUBABI. « Comparaison Des Performances Des Régulateurs PI Et IP Appliqués Pour La Commande Vectorielle A Flux Rotorique Oriente D'une Machine Asynchrone ». In : 8ème Conférence Internationale de MOdélisation et SIMulation-MOSIM'10. 2010.
- [19] Talha A Taj et al. « MATLAB simulation of a multi-level speed control system of a 6/4 SRM using PI controller ». In: Computer Applications Technology (ICCAT), 2013 International Conference on. IEEE. 2013, p. 1–4.
- [20] R TOUDJI et al. « Performance evaluation into the fault-tolerant operation of SRM with proportional-Integral and integral-proportional speed controllers ». In: (2016).
- [21] Berker Bilgin, Ali Emadi et Mahesh Krishnamurthy. « Design considerations for switched reluctance machines with a higher number of rotor poles ». In: *IEEE Transactions on Industrial Electronics* 59.10 (2012), p. 3745–3756.
- [22] Suying Zhou et Rong Qi. « Performance analysis and simulation of switched reluctance motor control system in case of typical faults ». In: Transportation, Mechanical, and Electrical Engineering (TMEE), 2011 International Conference on. IEEE. 2011, p. 911–914.

Annexe A

Paramètres	Valeurs
Puissance nominale	4.5kW
Vitesse de base	140tr/min
Courant nominal	107A
Tension d'alimentation	42V
Diamètre du rotor	23.116 <i>cm</i>
Diamètreé du statoré	33.023cm
Longueur de la machine	17.337 <i>cm</i>
Entrefer	0.05cm
Nombre de phases	3
Nombre de dents au stator	12
Nombre de dents au rotor	8
Résistance d'une phase	0.024Ω
Inductance minimale	0.3765mH
Inductance maximale	7.12mH
Moment d'inertie	$0.05Kg.m^2$
Coefficient de frottement	0.0764N.m.s/rd

TABLE 1.1: Caractéristique de la SRM utilisée en simulation