الجمهورية الجزائرية الديمقراطية الشعببة REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

35/84

ecilica lisa eliza eliza

2ex

ECOLE NATIONALE POLYTECHNIQUE

DEPARTEMENT: Hydraulique

PROJET DE FIN D'ETUDES

SUJET

Alimentation en eau potable et assainissement de la ville de Aomar Wilaya de Bouira

Proposé par : La C.N.E.R.U. de Bouira Etudié par : OUNAS Mustapha HENNI Ameur Dirigé par :
Dr B. UTRYSKO

PROMOTION Juin 1984

REMERCIEMENTS

- A Monsieur B. UTRYSKO: Maitre de Conférence à l'E.N.P. Nous ne saurons le citer sans évoquer sa compréhension et l'étendue de ses connaissances aisement. Nous le remerçions pour n'avoir pas ménagé ses efforts afin de nous venir en aide à chaque moment et en chaque endroit.
- A Monsieur G.LAPRAY: Maitre de Conférence à l'E.N.P.

 Nous avons l'honneur d'être ses élèves, de profiter de son savoir, de son expérience et d'admirer sa largeur d'esprit et de compréhension, qu'il veuille recevoir ici l'expression de notre profond respect.
- A Monsieur A.KETTAB : Docteur Ingénieur (Chef de Département)

 Nous tenons à le remercier par son accueil chaleureux, sa

 disponibilité permanente, son aide qui nous a facilité ce

 travail.

Nos remerciements vont également à tous nos Professeurs ← et Assistants qui ont contribué à notre formation.

Nous remercions également Monsieur F.HAMADOU qui a bien voulu accepter de dactylographier ce modeste travail.

Notre respect aux membres du jury qui nous feront l'homeur d'apprécier notre travail.

OUNAS Mustapha

HENNI Ameur

EDICACE

- Au terme de toutes ces années de travail, je dédie ce modeste travail en signe de respect et de reconnaissance à:
 - * Mon père pour son sacrifice consenti à mon égard;
 - * Ma mère pour son soutien moral durant toute ma formation;
 - * Mon frère, sa femme et sa fille;
 - * Mes amis (es)
 - * Tous ceux qui ont contribué de prés ou de loin à ma formation.

OUNAS Mustapha.

Je dédie ce travail à la mémoire :

- * de mon père
- * à ma mère
- * à mes amis (es)
- * à tous ceux qui ont contribué de prés ou de loin à ma formation.

HENNI Ameur

Etudiant : **OUNAS** .M HENNI .A

UTRYSKO .B Promoteur:

Résumé

Sujet: Notre projet consiste en l'Alimentation en eau potable et en l'Assainissement de la ville d'Aomar - Wilaya de BOUIRA -

Nous avons projetéd d'installer deux réservoirs semi-entérrés d'une capacité de 350 m3 chacun

partir de trois forages débitant 231/s.Nous Le pompage se fera à avons dimensionné les differents collecteurs qui assurent l'evacuation des eaux usées et pluviales vers les Oueds .

SUMMARY

TOPIC: Our project consists of the draining and the supplying the town of Aomar (W.of BOUIRA) with drinking water . We planned to install 02 watertanks of 350 m3 capacity, main just underground . The pumping out of water will be done from 03 boreholes that yield 23 l/s. We have also studied the measures of the drain manifold bringing sewer and raining water to the rivers .

cailo

الموضوع: الحتوى مشروبنا ملى دراسة تموين مي العربالبويرة بالمبال المالحة للشرب ومرفى المياله القذرية، وقد شرمنا في ا يجار مغزنين للميام الصابحة للشرب مجمعها 350 مرق . تشرعسبنا العتنوات التى تصرف العبالة العدى والعام المعلم بني الوديسان

. TABLE DES MATIERES

PREMIERE PARTIE:	Page
	11
ALIMENTATION EN EAU POTABLE	
CHAPITRE -I-	
1. INTRODUCTION	1
1.2. Présentation	1
1.3. Situation Topographique	1.
1.4. Situation Climatique	1
2. DEMOGRAPHIE	2
2.1. Evolution de la population	2-3
2.2. Besoin en eau	3
2.3. Besoin domestique	3-4
2.4. Besoin Scolaire	5
2.5. Besoin sanitaire	5
2.6. Equipement Socio-Culturel	6
2.7. Equipement Commerce et Sarvice	6
3. ETUDE DES PROBLEMES POSES PAR LA VARIATION DU DEB	17 .7.
3.1. Consommation d'eau dans les différentes zônes	3-9
3.2. Etude préliminaire	10
CHAPITRE -II-	
1. ADDUCTION	11
1.1. Choix du tracé	11
1.2. Calcul du diamètre	11
2. METHODE DE CALCUL D'ADDUCTION PAR REFOULEMENT	11-12
2.1. Calcul des pertes de charge	12-13
2.2. Calcul de la hauteur manométrique totale (HmT)	13-14
2.3. Puissance absorbée	14-20
2.4. Etude économique	20-25

CHAPITRE -III-	Page
1. CHOIX DES POMPES	26
1.1. Choix des pompes (du forage au réservoir de la zône basse).	26
1.2. De la Station de pompage jusqu à la Z.M. et à la Z.H.	26
1.3. Caractéristiques des pompes	26-27
2. CALCUL DES PERTES DE CHARGE	27
2.1. Hauteur manométrique totale	27
2.2. Station de pompage> R (Zône Haute)	28
2.3. Station de pompage> R (Zône Moyenne)	28-35
CHAPITRE -IV-	
$\frac{1}{2}$	8 17 19
1. RESERVOIRS	. 36
1.1. Généralités	36
1.2. Rôle du réservoir	36
1.3. Réservoirs éxistants	36-37
1.4. Emplacement des réservoirs	37
1.5. Variantes proposées	37-40
1.6. Capacité des réservoirs	41
1.7. Méthode de calcul	41-46
2. DETERMINATION DE LA COTE D' RADIER	46-47
2.1. Dimensionnement des réservoirs projetés	47-48
2.2. Equipement des réservoirs	49-52

CHAPITRE -V-	Page
1. DISTRIBUTION	53
1.1. Présentation	53
1.2. Situation du problème	53-54
2. CALCUL DU RESEAU DE DISTRIBUTION	55
2.1. Réseau maillé	55
2.2. Principe de la méthode	55-57
2.3. Débit soutirés	57-58
2.4. Calcul des débits soutirés aux noeuds	58-59
3. DIMENSIONNEMENT DE LA CONDUITE D'AMENEE	59
3.1. Présentation	59-60
3.2. Calcul du diamètre de la conduite	60
3.3. Calcul de la perte de charge	60-85
CHAPITRE -VI-	
1. BRISE CHARGE	86
1.1. Description du brise-charge et leur utilité	86
1.2. Dimensionnement du brise-charge	86-87
2. CALCUL DES PERTES DE CHARGE	88
2.1. Calcul de la brise charge	89-91

....

CHAPITREVII-	Page
1. PROTECTION DES CONDUITES CONTRE LE COUP DE BELIER	92
1.1. Introduction	92
2. ETUDE DU RESERVOIR D'AIR (ARRET-BRUSQUE DE LA POMPE)	92-93
2.1. Calcul du réservoir d'air	93
2.2. Arrêt brusque de la pompe	93-105
CHAPITRE -VIII-	
1. PROTECTION DES CANALISATIONS CONTRE LA CORROSION	106
1.1. Protection externe	106
1.2. Protection Cathodique	106-107
1.3. Protection par anodes réactives	107
1.4. Protection par soutirage de courant	107-108
1.5. Protection interne	108
2. POSF DES CONDUITES	109
2.1. Pose des conduites en tranchée	109-110
DEUXIEME PARTIE:	
CHAPITRE -I-	
I. INTRODUCTION	111
2. SITUATION EXISTANTE	111
3. TOPOGRAPHIE	111
A CHOIX DIL SYSTEME	112

. . / . .

CHAPITRE -II-	Page
I. DEBITS DES LEAUX USEES	113
1.1. Valeur de consommation	113-114
2. CALCUL HYDRAULIQUE DES RESEAUX	114
2.1. Réseau séparatif	114-115
2.2. Réseau unitaire	115-116
3. VERIFICATION DES SECTIONS EXISTANTES	116
3.1. Vitesse d'autocurage	117
3.2. Dimensionnement du déversoir d'orage projeté	117-119
4. OUVRAGES	119-121

TABLE DES FIGURES

	Page
-Caractéristique des pompes:	32-34
-Caracteristique des pompes:	3 <i>5</i>
-Installation de pompage avec pompe immergée:	39-40
-Schéma d'adduction (variante proposée):	
-Courbe de volume du réservoir:	4.4 4
-Réservoir semi-enterré:	.4.8
-Equipement du réservoir :	51-52
-Schéma de distribution:	. 54
-Réseau ramifié:	82
-Réseau maillé:	83-84
-Epure de coup de belier:	102 - 10
-Schéma d'adduction planche N° :	
-Profil en long Planche N° :	
-Equipement hydraulique Planche N° :	
-Profil en long d'un tronçon de réseau de distribu-	
tion Planche N° :	
-Réseau d'assainissement éxistant et projeté PL N°.	
Keseda e assae	
TABLE DES TABLEAUX	
-Besoin en eau :	4-9
-Calcul des pertes de charge:	19-24
-Etude économique:	20-25
-Débit soutirés:	68-70
-Pression au sol:	71-74
-Réseau maillé:	75-81
-lablead de calcul du coup de belier:	104
-Réseau séparatif (collecteurs I,II,III,IV):	1.2.2
-Réseau unitaire:	123
-Vérification des sections existentes:	1.2.4
-Verification des sections existences	AUDITO FOR VERY

SYMBOLES ET UNITES

		y = = -
s	:	Air d'une surface m ²
С	:	Coefficient de la formule de CHEZY C
D	:	Diamètre d'une section circulaire m
Do	:	D/A paramètre.dimentionnel de D sans dimension
f	:	Coefficient de frottement sans dimension
Α	:	Longueur fluido-dynamique m
fr	:	Valeur constante du coefficient de frottement en régime turb.rug. sans dimension , 2
g	:	Accélération de la pesanteur m/s²
h	:	Hauteur
DH	:	Perte de charge m
J	:	Gradient de la perte de charge sans dimension
Lε	:	Longueur équivalente au p. d. c. singulière m
lε	:	Longueur équivalente au p. d. c. totale
L	:	Longueur
Р	:	Périmètre mouillé m
Q	:	Débit du volume m3/s
IR	:	Nombre de Reynolds sans dimension
V	:	Vitesse moyenne débitaire m/s
٧	:	Volume m3
٤	:	Rugosité absolue de la conduite m
X	:	Facteur transition sans dimension
J.	:	Viscosité cinématique m2/s
P	:	Masse volumique Kg/m ⁻³
e	:	Epaisseur de la conduite m
а	:	Célérité de l'onde. m/s

ALIMENTATION EN EAU POTABLE

CHAPITRE - I -

1. INTRODUCTION :

L'objet de notre étude consiste l'alimentation en eau potable et l'assainissement de la ville d'Aomar dans la Wilaya de BOUIRA. Notre étude proposée par la C.N.E.R.U. de BOUIRA comportera une adduction, distribution et assainissement.

1.2. Présentation :

La Commune d'Aomar se trouve au nord ouest de BOUIRA sur la route d'Alger, au carrefour de la R.N. 5 et R.N. 25 et sur la voie ferrée ALGER-CONSTANTINE. Elle fait partie de la Daira de LAKHDARIA.

Aomar est composée de deux parties, prés de la RN 5 Aomar Gare et au nord Aomar Centre. Le terrain a des pentes fortes, la Commune d'Aomar est située dans les coordonnées de LAMBERTS

X = 595,500 à 597,000

Y = 355,000 à 357,000

1.3. Situation Topographique:

Le relief de la ville à caractère montagneux il présente de grandes différences d'altitude.

1.4. Situation Climatique:

Le climat de la région est caractérisé par un été sec et par un hiver relativement humide.

2. DEMOGRAPHIE :

2.1. Evolution de la population :

L'accroissement des besoins en eau d'une agglomération est généralement lié à sa croissance démographique , à son industrialisation et à l'élévation du niveau de vie de sa population.

D'aprés les renseignements recueillis auprés de la C.N.E.R.U. de BOUIRA, la population de la ville d'Aomar se présente actuellement comme le présente le tableau ci-dessous.

HORIZON	1977	1984
- Aomar Gare - Aomar Centre	1662 1138	2253 1359
Total	2800	3612

L'objet de notre étude est de satisfaire en eau potable la ville d'Aomar qui est actuellement en extension d'ici 2010 soit une échéance de 26 ans.

Le taux d'accroissement démographique de cette région a été estimé par les services de E.S.N.P. à 3,14 %. L'estimation de la population future (an 2010) est donnée par la formule des intérêts composés.

$$P_N = P_o (1 + \mathfrak{T})^n$$

où

. ï .

P_N = Population futur pour l'horizon considéré

Po = Population actuelle.

n = Nombre d'années séparant l'année de base et l'horizon considéré.

5 = Taux d'accroissement démographique.

Les calculs de l'évolution de la population pour les différents horizons sont présentés dans le tableau N°2.

2.2. Besoin en eau :

2.3. Besoin domestique:

Pour un avant projet, on peut tenir compte des valeurs de bases données forfaitairement.

D'aprés le cours FEN 203 (calcul technico-économique des réseaux), une ville qui a une population < 20000 habitants peut prendre une dotation comprise entre 100 à 200 l/j/hab.

Vue le niveau de vie, les habitudes sanitaires des gens, l'hygiène et son évolution future nous estimons la dotation comme suite (voir tableau N°3) les besoins en eau seront évalués suivant deux horizons 1994 et 2010.

Conclusion

· / ·

En tenant compte des facteurs tels que la majoration saisonnière et les fuites dans les réseaux, le débit total nécessaire pour l'alimentation de la ville d'Aomar pour l'horizon 2010 est de 3881,86 m3/j.

TABLEAU Nº2

Secteur	1984	1989	1394	2010
Aomar-Gare	2253	2630	3069	503 3
- Aomar Centre	1359	1586	1851	3036
total	3612	4.216	4921	8069

TABLEAU N°3

Secteur	Annee	Population	dolation Ulillas	Consomma -tron m³/8
	1984	2253	120	270,360
Jomar - Gare.	1989	2630	<i>II</i>	315.60
Nomar- Vare.	1994	30 69	150	4.60,35
	2010	5033	"	754,95
Nomar-Centre.	1984	1359	120	163,00
	1989	1586	11	190,32
	1994	1851	"	222,12
	2010	3036	150	455,40

2.4. Besoin Scolaire :

Secteur	nature de l'établissem -ent	nombre d'éleires	dolotión L/j/elik	consomma_ -tion m3/j
Aomar	E. primaire	600	15	9,00
Gare	Creche	40	15	0,60
140				9,60

2.5. Besoin Sanitaire :

Execteur	hature de l'itablissem	Superficié m²	dotation L/j/m²	Consomma. -tion m³/i
-	C. de Sante	\$ 4500	3	13,50
Aomar Centre	moternite'	1000	4	4,00
	Po Gelinique	2000	4	8,00
a	Phorma cie	200	3	0,60
			Œ	26,10

- EQUIPEMENT SOCIO-CULTUREL

. Nature de l'établissement	Superficie (m²)	clotation (-lijimi)	Consomm-ation [1928];
-mosquee.		-	10
-salle de cinémen	1200	2	2,4
- maison de jeune	1000	2	2,0
-salle polyvalente.	2000	3	6,0
# #		٤	20,40

EQUIPEMENT COMMERCE ET SERVICE

EWOIFERENT COMMERCE ET GENTES			
nature de l'établissement	Superficie (m²)	dotation (EI) (m²)	Consomm. -0404 (194)
_ warche	2500	3	7.50
_ Hammam	1500	4	6,00
- Pompe d'essence	500	4	2,00
-Abbotoir	300	3	0,90
-CAPC.S	1000	.3	3,00
- of. gare feroviere	1500	3	4,50
. gare rourière	1200	3	3.60
			oc.e.

3. ETUDE DES PROBLEMES POSES PAR LA VARIATION DU DEBIT .

Les problèmes posés par les variations du débit ont trait aux pointes journalières, mensuelles et saisonnières.

Le coefficient K1 de l'irrégularité de la consommation journalière est égale à :

Pour le débit maximal à transiter dans la conduite d'adduction ainsi que le dimensionnement du réservoir, il convient donc d'affecter le débit moyen d'un coefficient K'; le débit maximal à transiter sera donc définie par l'expression suivante:

avec K'= 1,1 - 1,3 selon les normes russes.

Donc dans notre étude nous prendrons K'=1,2

Qmm = Consommation moyenne du jour, du mois de pointe de l'année.

Qm = Consommation moyenne de toute l'année.

Le coefficient K''' de l'irrégularité de la consommation horaire est égal à

Par définition le coefficient de pointe est le produit de ces deux coefficient définis ci-dessus.

$$K_p = K' \cdot K''$$

Dans notre étude ces coefficients seront égal à :

K" = 2 qui tient compte des variations horaires du débit;
K' = 1,2 qui tient compte des variations joutnalières du débit.

Le coefficient de pointe est alors égale à

$$K_p = Z*1,2 = 2,4$$

3.1 Consommation d'eau dans les différentes zônes .

Tous les résultats de consommation seront résumés dans le tableau ci-joint.

La consommation journalière moyenne est égale au nombre d'habitant par la dotation ajoutée aux besoins publics.

La consommation journalière maximale est égale à la consommation journalière moyenne par le coefficient K'.

La consommation de pointe horaire est égale à la consommation journalière moyenne multipliée par. Kp

Nous ralculons dans les mêmes tableaux la majoration de 25 % qui tiendra compte des fuites probables dans le réseau de distribution pour l'horizon envisagé 2010.

Horizon 1994

Eype of besons	Qm m³/s	majoration	Qmr m³/s	Qmm Us	Qmm m³j	Qmax . m³/8
domestique	682,47	170,615	853,088	11,848	1023,705	2047,411
Scolaire	9,60	2,400	12,000	0,167	14,400	28,800
Sanitaire	26,10	6,525	32,625	0,453	39,150	78,300
equip. Socio. cultar	20,40	5,100	25,500	0,354	30,600	61,200
equip . conmerce	27,50	6,875	34,375	0477	41,250	82,500
total	766,070	191,518	957,588	13, 300	1149,105	2298,211

Horizon 2010

-						
Elpe de besons	Qm m3/3	majoration 25%	Qmtotal m³/8	Qmm L/s	Qmm m³/s	Qmax m3/j
domestrique.	1210,35	302,59	1 512,94	21,013	1815,63	3631,06
Scolaire	9,60	2,400	12,00	0,167	14,400	28,800
Sanitaire	26,10	6,525	32,625	0,453	39, 150	78,300
Cymp Socio.cultur.	20,40	5,%0	25,500	0,354	30,600	61,2.00
eguip- co miserce.	27,50	6,875	34.375	0.477	41,250	82,500
total.	1253,95	323,49	1617,44	22,464	1940,030	3531,86

3.2 Etude préliminaire :

Le forage existant fourni un débit de 8l/s qui sont destinés à alimenter la ville d'Aomar en comparaison avec les ressources disponibles actuellement qui sont de 691 m3/j; on constate qu'il y a un déficit de 5l/s en 1994 et 15l/s d'environ pour l'horizon 2010.

Pour remédier à cela la réalisation d'un deuxième forage s'impose.

Dans cette étude nous Proposons de projeter deux autres forages à côté de l'ancien .

Ces trois forages fourniront un débit total égal à 23l/s environ.

CHAPITRE - II -

1. ADDUCTION :

1.1. Choix du tracé :

Nous devons choisir un profil en long idéal .

Eviter les contre pentes susceptibles de créer des contournements d'air et des cavitations par suite d'arrêt inopiné.

1.2. Calcul du diamètre,

En vue de déterminer le diamètre économique, nous devons faire une étude dite technico-économique qui conduit à une optimisation entre :

- Les frais d'amortissement des canalisations à installer;
- Les frais d'explojtation des différentes pompes utilisées .

2. METHODE DE CALCUL D'ADDUCTION PAR REFOULEMENT :

La formule de Bonnin nous donne un diamètre approximatif

$$D = \sqrt{2}$$

D = en(m)

Q = Débit à transiter en m3/s

V = Vitesse Moyenne d'écoulement (m/s

ີ = Viscosité cinimatique égale à 10⁻⁶ dans notre étude.

D'aprés l'équation de continuité, on détermine la vitesse d'écoulement de l'eau dans la conduite.

$$Q = V.S \implies V = \frac{V.Q}{\prod D^2}$$

La nature du régime d'écoulement, est en fonction du nombre de Reynolds et la rugosilé absolue qui est égale à 4.10⁻⁴ dans notre étude.

Ayant déterminé ces deux paramètres, on détermine le régime d'écoulement, tout en se refèrant au diagramme de MOODY.

En régime turbulent rugueux, le coefficient de frottement est donné par la formule de NIKUREIDZE

Fn =
$$\left[1,14-0,86 \text{ en } \frac{\mathcal{E}}{Dh}\right]^{-2}$$

 \mathcal{E} =Rugosité absolue

D_h=Diamètre hydraulique

En régime transitoire le coefficient de frottement est donné par la formule de COLEBROOK

Fe =
$$\left[-0.86 \text{ en } \left(\frac{\mathcal{E}}{3.70 \text{ h}} + \frac{2.51}{\text{IR V}_{\text{Fn}}}\right)\right]^{-2}$$

2.1. Calcul des pertes de charge:

Pour la détermination des pertes de charge totales occasionnées dans la conduite de refoulement, nous avons utilisé les formules suivantes:

- Les pertes de charge, sont déterminées par la méthode de DARCY-WEISBACH .

$$DH = \frac{F.L.V^2}{2g.D_h}$$

- Les portes de charge singulières exprimées par une longueur équivalente (Ley) occasionnant une perte de charge lors du passage d'un débit Q de sorte que

$$DH_{S} = \frac{F \text{ Ley. } V^{2}}{2g \cdot P_{D}}$$

Ley = Longueur équivalente

F = Coefficien' de frottement

D == Diamètre de la conduite

V = Vitesse moyenne d'écoulement.

. / .

- Les pertes de charge dûes aux frottements, sont exprimées par la formule :

L_{\sigma} = Longueur géométrique

- Les pertes de charge totales sont exprimées par :

$$DHT = DHs + DHF$$

Nous avons estimé la longueur équivalente à 15% de la longueur géométrique.

Donc LeT = 1,15 La

D'aprés l'équation de continuité on a : $Q = V.A \Longrightarrow V = \frac{Q}{A}$

 $Q = D\acute{e}bit (m3/s)$

A = Section de la conduite (m2)

Par conséquent :

$$DH_T = 1,15. \frac{F.L_{\phi}.Q^2}{2q.A^2}$$

Le coefficient de frottement est calculé à l'aide de la formule de COLEBROOK.

$$F_c = \left[-0.86 \text{ em } \left(\frac{\mathcal{E}}{3.7 \text{ D}} + \frac{2.51}{|R|}\right)\right]^{-2}$$

2.2. Calcul de la hauteur manométrique totale (HmT) :

$$HmT = Hg + DH_T$$

Hg = Hauteur géométrique de refoulement: Hg= C_{TP} - H_{ND}

DHT= Perte de charge totale

CTP= rôte du trop plein

HND= Hauteur du niveau dynamique.

. / .

Aprés avoir déterminé la HmT, nous nous référons au catalogue des pompes, qui nous donne la HmT pratique et le rendement de la pompe correspondant :

* 2.3. Puissance absorbée

$$P = g.Q.HmT$$

$$\pi$$

 η = Rendement de la pompe ; on prend: η = 0,75

* Calcut de l'énergie (E)

E = P.24.365

. / .

Ayant l'énergie, nous pouvons avoir le prix total de l'énergie par an

* Frais d'amortissement de la conduite :

L'annuité est déterminée d'après la formule suivante :

$$A = \frac{i}{(1+i^{2})^{n}-1} + ii$$

i = Taux d'arnuité = 8% (adopté en ALGERIE)

n : Nombre d'année d'amortissement = 50 ans Le diamètre économique est celui qui conserve à la plus faible somme des frais d'amortissement et ceux d'exploitation.

$$A = \frac{0.08}{(1+0.08)50-1} + 0.08 = 0.0817429 \text{ DA}$$

E : Puissance consommée en (KWh) Le coût "e" du KWh est 0,40 DA La dépense sera Dep = 0,40 * E

Calcul de l'adduction du du forage au réservoir de la zône basse.

-Dans notre cas on envisage un refoulement de 24h/24h.

Pour la détermination du gradient de P.d.c. nous allons procéder par deux méthodes:

- Théorie de la longueur fluido-dynamique de (G.LAPRAY)
- Méthode classique.

REMARQUE:

Le diamètre de la conduite d'amenée sera calculé en prenant une vitesse raisonnable comprise dans la gamme $\left[0,4\div1,4\right]$ (m/s)

La va'eur minimale 0,4 est la valeur qui ne favorise pas les dépôts solides dans la conduite et la valeur max 1,4 m/s est celle ne donnant pas un coup de bélier important.

Méthode classique:

En première approximation nous calculons "F" à l'aide de la tormule de NUKURADZE, ce dernier est remplacé dans le deuxième membre de la relation de COLEBROOK.

On calcul le terme du premier membre qui lui aussi sera remplacé dans le second membre et ainsi de suite jusqu'à ce qu'on trouve deux membres consécutifs à peu prés égaux.

Tout d'abord on procède au calcul en utilisant la formule de BONNIN pour avoir un diamètre approxiamtif:

$$D = \sqrt{Q} = \sqrt{0.023} = 0.1516 \text{ m}$$

Four une meilleure optimisation, on considère les diamètres pormalisés [150 - 200 - 250]

./.

Calcul des pertes de charge par la théorie de la longueur fluido-dynamique de (G.LAPRAY).

La méthode simplifiée de (M.G.LAPRAY) va nous permettre de calculer les pertes de charge. Dans le diagramme de MOODY, nous avons remarqué que le régime d'écoulement est transitoir, cela nous ramène à écrire :

$$\left\{ \begin{array}{l} \mathbf{E}_{\mathbf{R}} \\ \mathbf{R}_{\mathbf{e}} = \mathbf{V}\mathbf{D} \end{array} \right\} \implies \text{d'aprés le diagramme de MOODY.}$$

de l'abaque 8 a on tire
$$\frac{Q}{VJr}$$

$$d'ou\ Jr = \left(\frac{Q}{QVJ}\right)^2 \text{ Comme les écoulements sont transi-}$$

toirs on procède alors à la correction de "J" d'aprés l'abaque 170, on détermine le coefficient de transition.

Nous récapitulons les valeurs déterminées par cette méthode dans le tableau ci-aprés.

to to	\$ 5 S		0.19	S	mental control	
IIIIII	THE REAL PROPERTY.					
	對對性性				网络群曲曲曲	
					利用期間	
	批批的					
		里里上野蛇蛇				13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15
		非自我你说 是				
		即且終即挖紅				日祖祖祖祖出
		計目的注的相關				
		門門原建				
		開建制材設制				
		是				
1		张村村 和				
			发出中国			
			計量計劃			是都須里雖是
,						
TE STE		经担职证证	且里認級的			经经验自己证据
1			目目游说的			
			1116位初			
01			11 11 11 11 11 11			
			世纪经红			
	144		世代的			
			州井井 			
H. Ja			11 11 12 13 17			
				品用用品		
			次群門由計	主目相目以到		
8			库工用工程	是是是		
74 5						
1				的是被阻止		
8				世族指統計計		
3				が批析		
				4年4月11日11日	建用用机制	
					铁路湖北部川	
					排開的統領試	
					排制機構制	
		脚脚掛排				
					已挽已能制計	
i lailiti						

Détermination du gradient J de la perte de charge en régime de transition

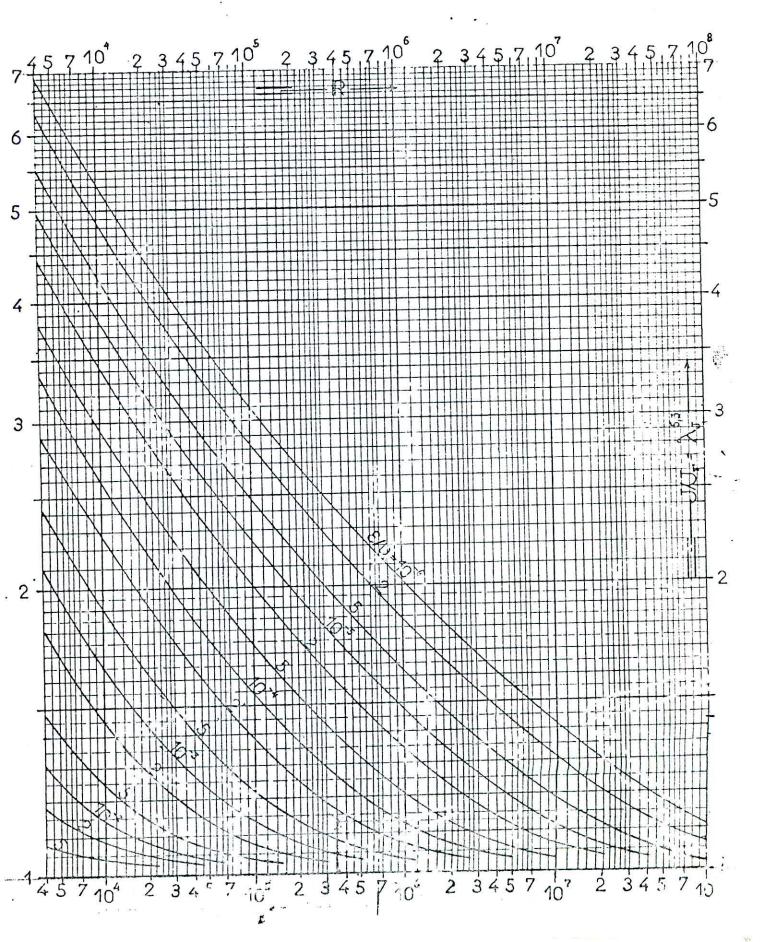


Tableau de calcul des pertes de charge (Méthode de G.LAPRAY).

ф mm	\mathcal{E}	E/D	Do	$\Lambda_{=} \frac{D}{D_{o}}$	Re = <u>VD</u>
150	4. 10 ⁻⁴	2,66 . 10 ⁻³	1,539	0,097	1,95 . 10 ⁵
200	11	2,00 . 10-3	u u	0,13	1.46. 10 ⁵
250	//	1,6 . 10 ⁻³	"	0,16	117 . 10 ⁵

· (mm)	Ar (m)	·.E	Q/15.	<i>5</i> -
150	0,097	4. 10 ⁻⁴	0,19	0,014 6 5 3 7
200	0,13	<i>i</i> /	2,99	0,0000 592
250	0,18	,,	5,35	0,0000185

Pinm)	IR= VD	6/0	$\lambda_{z_3}^z$	J
150	1,95 . 105	2,7 .10 ⁻³	104	0,0152398
200	1,46 . 10°	2,10-3	57,50	0,003404
250	1,17 . 105	1,3 .10"5	54,86	0,0010094

	\$ 150 (mm)	\$ 200 (mm)	\$ 250 (mm)
fr = (1,14-0,86 ln E/D)-2	0,0257055	0,0237815	0,022434
Fe = [-0,86 ln (E + Z,51)]-2	0,0265991	0,0251276	0,0224956
1era approximation	0,0265864	0,0250958	0,022,432
2 eu approximation	0,0265866	0,025065	0,02242341
3eur approximation	0,0265866	0,025065	0,0224240
4em approximation	0,0265866	0,025065	0,0224240
$\mathcal{J} = \frac{f_c}{D} \cdot \frac{V^2}{29}$	0,0152672	0,003404	0,0010099

2.4 Etude économique :

\$(mm)	V (m/n)	Re .105	Fu	Fc	ブ	BHT.	Hmt
150	1,30	1,95	0,0257055	202659	0,0152672	87,79	222,79
200	o 73	1.46	0,0237815	0,02512	0,003404	19,57	154,57
250	0,47	1,77	0,022434	0,02242	0,0010033	5,80	140,80

(Frais d'exploitation).

\$ (mm)	P= gQHmt	P.24.365	prix de l'inergie 0,40 le (kwh)
150	67,0Z	570352	234838,08
200	46,50	407340	762936
250	42,35	370986	748394,40

(Frais d'amortissement).

\$(mm)	prix de la concluste (me)	Longueur	Prix total de La Cond. (DA)	Annui té
150	184,93	5000	924650	75583,572
200	229,56	"	1147800	93824,501
250	267,22	".	13366100	109216,69

(Bilan).

(p(inm)	150	200	250
Amortissement	755 83, 572	93824,50	109216,69
exploitation	234838,08	162936	147553,44
bilan	310421,65	256760,5	257611,03

Le bénéfice va donc au diamètre 200 mm.

Adduction $Sp_1 \longrightarrow \mathbb{R}$ (Zone Haute)

$$Q = 3,84 \text{ l/s} = 0,00384 \text{ m}^3/\text{s}$$

$$L = 1000 \text{ m}^3$$

	The second second	- DECEMBER OF THE PERSON OF TH	THE RESERVE THE PROPERTY OF THE PARTY OF THE
	\$ 100	\$ 125	\$150
FN = (1,14-0,86 Cn E/D.)-2	0,0288401	0,0270484	0,025705
Fc = [-086 ln (= + 2,51]-2	0,0311934	0,0303254	0,0296003
100e approximation	0,0311137	0,0301665	0,029614
2000 approximation	0,0311162	0,0301737	0,029613
Zeur approximation	0,0311161	0,0301734	0,029613
1em approximation	0,0311161	0,0301734	0,029 613
$\mathcal{J} = \frac{f_0^2}{D} \cdot \frac{V^2}{23}$	0,0028078	0,0011823	0,000487

\$(mm)	V(m/s)	IRe.	Fr	Fc	5	BHT	Hmr
100	0,49	4,9.104	0,02088401	0,0311161	0,0038078	4,38	108,38
125	0,31	387.10 ⁴	0,0270484	0,0301734	0,0011823	1,36	105,36
150	0,22	3,3 . 10 ⁴	0,025705	0,029613	0,000417	0,56	104,56

Frais d'amortissement.

\$\phi(mm)	Prix ole la. Conduit (DA/me)	Longueur	Prix total de la concluite	Annui ke
100	147,31	1000	147310	12041,547
125	166,12	"	166120	13579,13
.150	184,93	″	184930	15116,7145

Frais d'exploitation.

φ (mm)	P. gQHmr	P. 24. 365	frix ole l'energu
100	5, 4 4	47654,4	19061,76
125	5,29	46340,40	18536,16
150	5,25	4 5 9 9 0	18336

Bilan.

ф(mm)	100	125	150
F. amortissement	12041,547	13579,13	15116,714
F. exploitation	19061,76	18536,16	18396
bilan	31703,307	32115,29	33512,76

Adduction Sp2 \longrightarrow R (Zone Moyenne)

Q = 8,80 l/s

L = 600 m

Hg = 60,50

 $\mathbf{D} = \mathbf{Va} = \sqrt{0.0088} = 0.94 \,\mathrm{mm} \approx 100 \,\mathrm{mm}$

p(mm)	V (m/s)	Re	Fw	Fc	ブ	BHT	HmI
100	1,12	1,12.705	0,0288401	0,057544	0,0367300	25,38	85,88
125	0,72	9. 104	0,027048	0,059831	0,0126595	8,73	69, 23
150	0,49	7,35.104	0,0257055	0,062362	0,0050877	3,51	64,01

(Frais d'amortissement).

ф(mm)	Prix de la .C. (pr/ml)	Lon gueun	Prixtotal de la Conduite	Annuite
100	147,3	600	88380	7224,4375
125	166,72	<i>u</i>	95672	8147,478
150	184,93	"	110958	9070,0287

(Frais d'exploitation).

ф(mm)	Page Hons	P.2a. 365=6	Prix de l'energie
100	9,89	86636,40	34654,56
125	7,97	69817,20	27926,88
150	7,37	64561,20	25824,48

(Bilan).

a se	Ø 100	Ø125	\$150
F. amortissement	7224,437	8147,478	9070,0287
F. d'exploitation	34654,56	27926,88	25824,48
bilan	41878,997	36074,358	34894,50

Le bénéfice va au diamètre 150 mm.

CHAPITRE -III-

1. CHOIX DES POMPES .

Le choix d'une pompe se fait en fonction du débit à refouler "Q" et de la hauteur d'élévation HMT.

1.1. Choix des pompes (du forage au réservoir de la zône basse):

Etant donné que nous avons deux débits à refouler pour l'an 2010, soit le débit 8 l/s déjà existant et le débit 15 l/s que nous avons calculé nous envisageons donc de choisir pour chaque cas de débit trois pompes qui travailleront en même temps . Par voie de conséquence nous choisirons 03 pompes identiques qui refouleront $\frac{Q_T}{2}$ chacune.

1.2. De la station de pompage jusqu'à la Z.M. et à la Z.H.:

- Nous choisirons deux pompes différentes qui permettront d'élever les deux débits :
- La première pompe refoulera l'eau vers le réservoir projeté de la zône moyenne;
- La deuxième pompe refoulera l'eau vers le chateau d'eau déjà existant.

1.3. Caractéristiques des pompes :

Les pompes sont munies à l'amont sur la conduite d'aspiration d'un robinet - vanne etàl'aval sur la conduite de refoulement d'un clapet anti-retour et d'un robinet-vanne.

Connaissant les hauteurs manométriques et les débits, nous pouvons procéder aux choix des pompes.

Formules utilisées :

$$J = \frac{f}{D} \cdot \frac{V^2}{2g}$$
; $f_N = (1,14-0,86 \text{ en } \frac{e}{D})^{-2}$

$$V = \frac{4Q}{\prod D^2}$$
; $J = \frac{f}{D} \cdot \frac{16Q^2}{\prod^2 D^4} \cdot \frac{1}{2g}$;

$$J = \frac{8}{\prod^2 q} \cdot \frac{f q^2}{D^5}$$

$$\frac{J}{Q^2} = J_Q = 0.0827111 \frac{f}{D^5}$$
; DH = PQ^2

$$r = J_Q$$
. Le ; Le = 1,15 · L_o .

- 2. CALCUL DES PERTES DE CHARGE :

D(mm)	Ol/s	(m)	f	JQ	L (m)	Le(m)	r	rQ ² (n)
200	7,67	0,0004	0,0237815	6,1468563	5000	5750	35344,42	2,079
200	23	**	- 47 H	u -	"	"	"	18,70

2,1. Hauteur manométrique totale :

D(mm)	Q l/s	Hg (m)	P.d.c. (m)	H M T (m)
200	23	135	18,70	153,70

D(m m)	Q L/s	(m)	f	JQ	L 6i)	L (m)	٣	rq ² (m)
100	3,84	0,0004	0,028840	238,54	1000	1150	274321	4,04

2.2.1. Hauteur manométrique totale :

D (mm)	Q l/s	Hg (m)	P.d.c. (m)	H.M.T. (m)
100	3,84	104	4,04	108,04

2.3. Station de pompage R (Zône - Moyenne):

D (mm)	Q L/s	(m)	_ f	JQ	L (m)	L (m)	٣	r Q ² (m)
150	8,80	0,0004	0,025705	27,997	600	690	19317,93	1,49

2.3.1. Hauteur manométrique totals :

D (mm)	Q l/s	Hg(m)	P.d.c. (m)	H.M.T. (m)
150	8,80	60	1,49	61,49

- Four le diamètre Ø 200 mm nous avons choisi trois pompes immergées identiques JUMONT-SCHNEIDER du type 6030 S,19 étages, N = 2900 tr:mn; ¶ = 70 % choisi dans le catalogue en fonction du débit; pour tracer les courbes, on a divisé le débit total par trois et à l'aide de ce débit et la H.M.T. on a tracé la courbe caractéristique d'une seule pompe purs on lui a additionné les mêmes caractéristiques pour obtenir la courbe caractéristique des trois (03) pompes (voir figure N°1).

- Choix de la pompe :
 - . JUMONT -SCHNEIDER
 - . AXE HORIZONTAL
 - . TYPE 80 P.P.L (2 ETAGES)
 - . $\eta = 70 \%$, N = 2200 tr/mm.
- Point de fonctionnement:

Le point de fonctionnement est donné par l'intersection (P') de la caractéristique de la pompe et celle de la conduite DH = F(Q).

Pour cette conduite, le point P' correspond à un débit de 32,50m3/h, et de hauteur 61,50m, est le point de fonctionnement. En vue de rapprocher ces débits, plusieurs solutions sont possibles.

1ère variante:

Accepter la caractéristique de la conduite t'elle qu'elle est le débit relevé sera supérieur à celui désiré et la durée de pompage sera diminuée.

Q = 31,68 m3/h

 $V = Q.T = 31,68 \times 24 = 760,32 \text{ m}$

Le temps de remplissage se réduit à :

$$T = \frac{730,32}{32,50} = 23,39 = 23 \text{ heures / jour environ}$$

Dans ces conditions la puissance absorbée est de :

$$P = \frac{9,81 \times 0,0090278 \times 61,49}{0,70} = 7,779 \text{ KW}$$

2ème variante:

./.

Cette solution consiste au rognage de l'impulseur de façon à rapprocher le point P' du point P. Il est à noter que le rognage n'est possible que s'il reste inférieur à 20 % .

En appliquant les relations :

$$\frac{Q}{q} = \frac{H}{h} = \frac{D^2}{d}$$
 (1)

En posant d = m·D ou m : coefficient de rognage on pourra écrire l'expression (1) en introduisant le coefficient de rognage.

$$\frac{Q}{q} = \frac{H}{h} = \frac{1}{m^2}$$

avec

$$q = 31,68 \text{ m}3/\text{h} \text{ et h} = 61,49$$

$$Q = 32,50 \text{ m3/h} \text{ et h} = 61,50$$

$$m = \frac{1}{4} = \frac{31,68}{32,50} = 0,97$$
 le pour centage de rognage sera 1-0,97= 3%

avec un temps de pompage de 24h/24 et un rendement η = 70% la puissance sera

$$P = \frac{9,81 \times 0,0090278 \times 61,50}{0,70} = 7,780 \text{ KW}$$

Conclusion:

Dans les deux cas, on remarque que les différences sont insignifiantes par rapport aux normes pratiques donc on adoptera les pompes tels qu'elles sont sans y apporter aucune correction.

- Choix de la pompe :
 - . JUMONT SCHNEIDER
 - . AXE HORIZONTAL
 - . TYPE 65-F.P.E. (6 ETAGES)
 - N = 2200 Tr/mn
 - $\eta = 64 \%$
- Point de fonctionnement :

Le point de fonctionnement désiré est P de debit 13,82 m3/h H = 108, le point P' donne un débit 15,05m3/h et H = 109.

1ère variante:

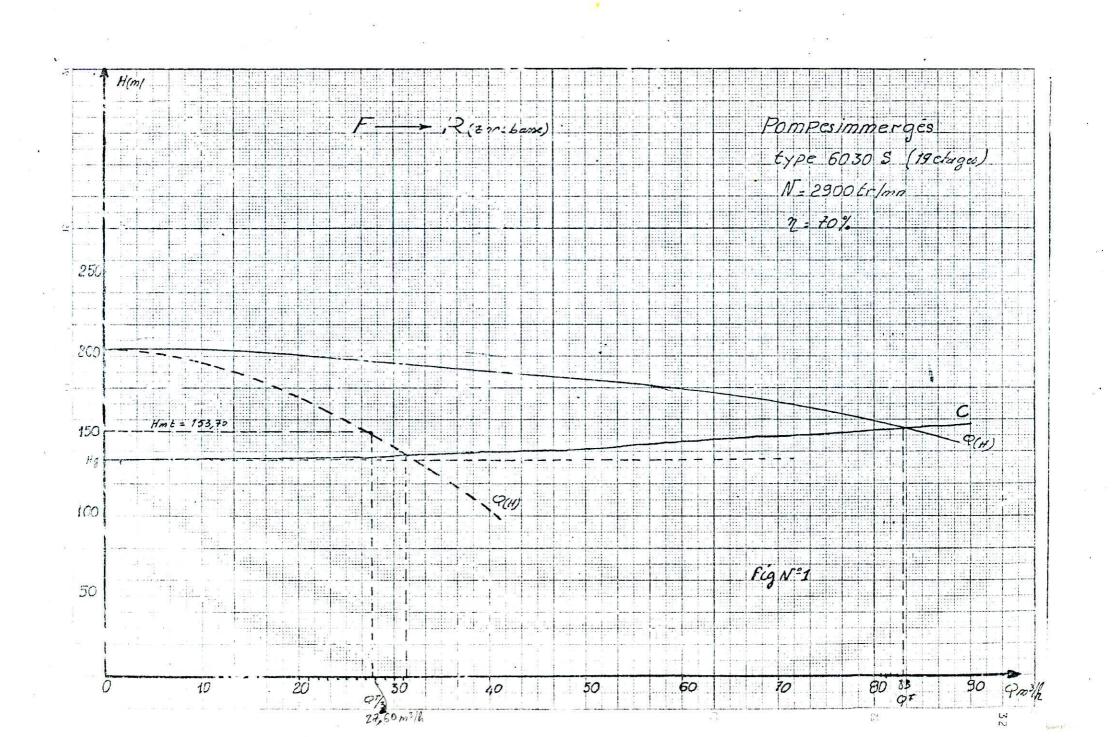
$$Q = 13,82 \text{ m}3/\text{h}$$

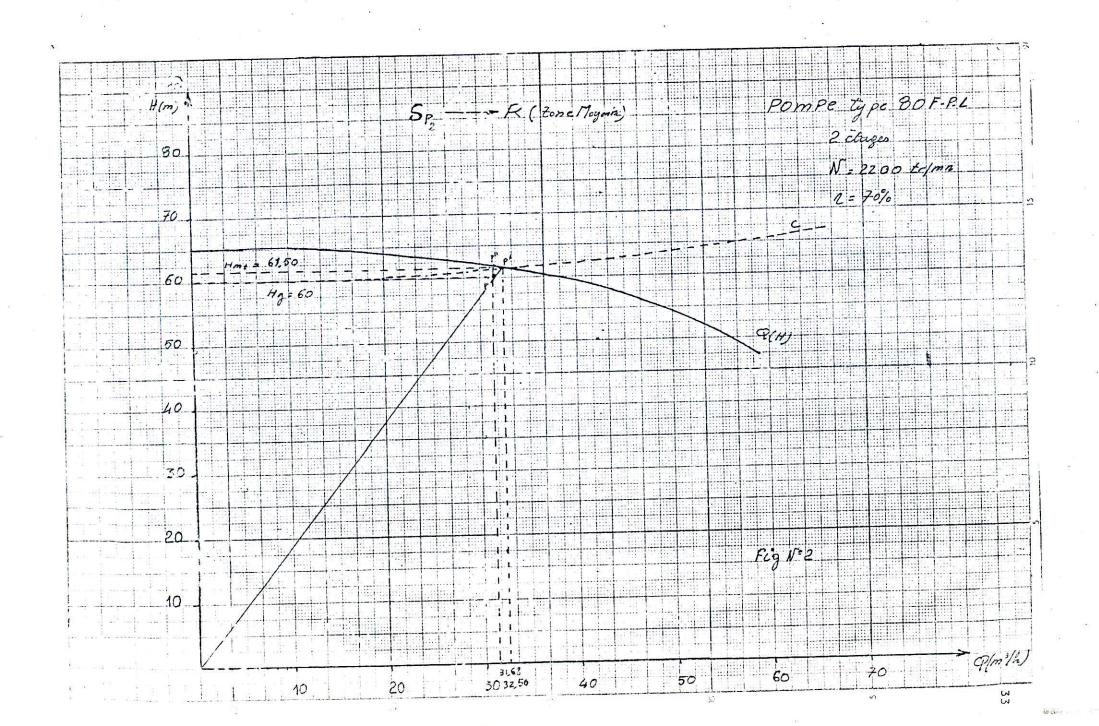
$$V = Q.T = 13,82 \times 24 = 331,68 \text{ m}$$

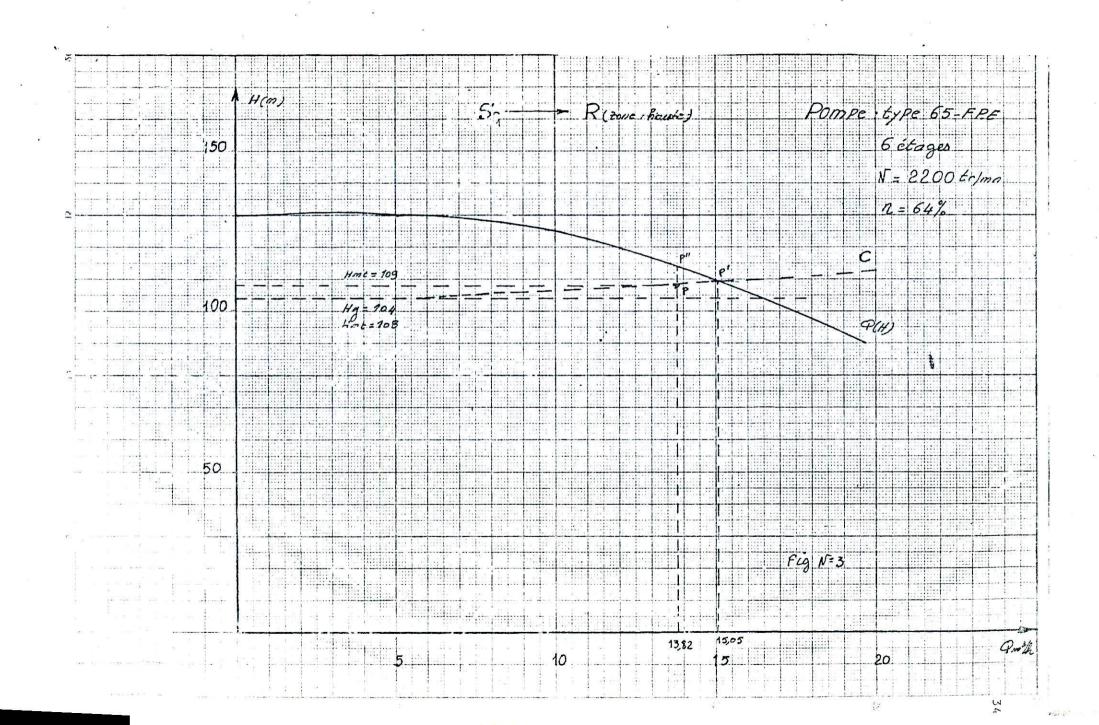
$$P = \frac{9,81 \times 0,004180 \times 108}{0,64} = 6,92 \text{ KW}$$

2ème variante:

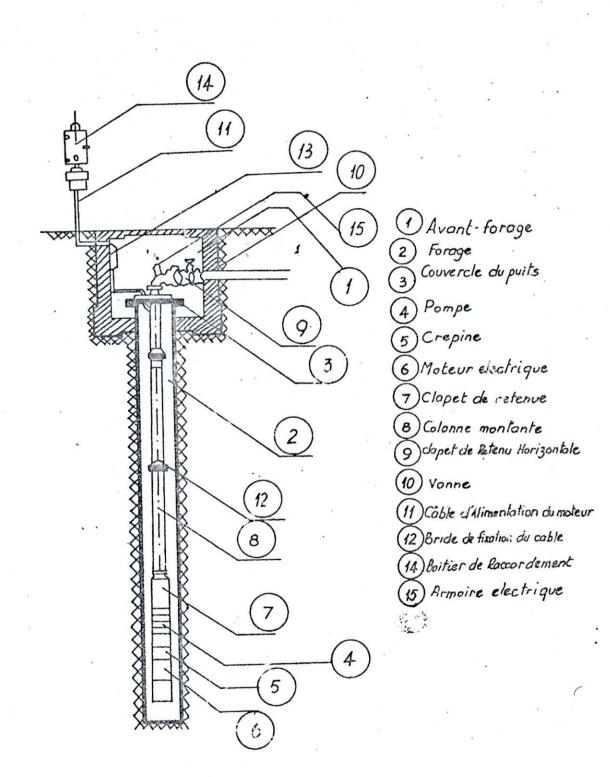
$$q = 13,82 \text{ et H} = 108$$


$$Q = 15,05 \text{ et H} = 109$$


$$m = \frac{13,82}{15,02} = 0,92$$


$$P = 9.81 \times 0.004180 \times 109 = 6.98 \text{ KW}$$

Conclusion:


La différence entre la puissance par diminution de temps est légèrement inférieure à celle du rognage, on optera pour la 1ère variante, nous avons un gain de temps de 02 heures.

Installation de Pompage avec pompe immergée dans un forage.

CHAPITRE-IV-

1. RESERVOIRS :

1.1. Généralités :

Afin d'éviter des pressions excessives sur la partie basse de l'agglomération, vue la différence de niveau importante, il est nécessaire de prévoir une distribution étagée. Ainsi le réseau sera divisé en trois (03) parties appelées zône basse, zône moyenne et zône haute déservies respectivement par les réservoirs existants e: ceux projetés.

1.2. Rôle du réservoir :

Le réservoir est indispensable pour pouvoir emmagasiner l'eau et la distribuer aux heures de pointe.

En outre les réservoirs auront pour rôles:

- d'assurer la sécurité;
- de régulariser l'apport d'eau;
- de satisfaire le besoin en eau de l'agglomération pour une certaine durée qui peut allée jusqu'à une journée (dans le cas d'accidents de la conduite d'adduction, panne électrique etc...);
- d'assurer une pression suffisante dans le réseau à ce propos on utilise des fois le reservoir comme brise-charge;
- de lutter efficacement contre un incendie.

1.3. Peservoirs éxistants :

Selon le P.U.D., Aomar haut et Aomar bas s'alimentent à partir d'un forage exploité avec un débit de 81/s qui est refoulé vers une bache de reprise à l'entrée Ouest d'Aomar puis véhiculé en gravitaire vers le réservoir de 250 m3 éxistant au niveau du marché. D'ici l'eau est refoulée vers le chateau d'eau de 250m5 qui se situe à Aomar haut. Egalement le réservoir de 150m3 situe à la côte de 300 m devrait être raccordé à ce système de l'adduction.

*N.B.: D'après les renseignements recueilli auprès de la CNERU et de la SONADE de Bouira, le reservoir R150m3 et le reservoir 250m3 situés au niveau du marché étant très anciens (1958), ils ne seront pas pris en considération pour les besoins de la future agglomération d'Aomar.

1.4. Emplacement des réservoirs :

La présence d'un relief accidenté nous incitera d'opter dans certaines localités pour l'établissement des réservoirs semienterrés qui seront incontestablement plus économiques que les réservoirs surélevés.

L'éloignement, le relief chahutéet le mode de pompage entrepris 24h/24 exigent l'implantation d'un reservoir au niveau de la zône moyenne cela nous permettra d'éviter des pressions inadmissibles.

Les reservoirs seront implantés à des altitudes suffisament hautes compte tenu du relief afin d'assurer une pression minimale de service dans le réseau de distribution.

1.5. Variantes proposées :

./.

En tenant compte des impératifs indiqués ci-dessus nous proposons deux variantes pour l'aménagement de l'adduction .

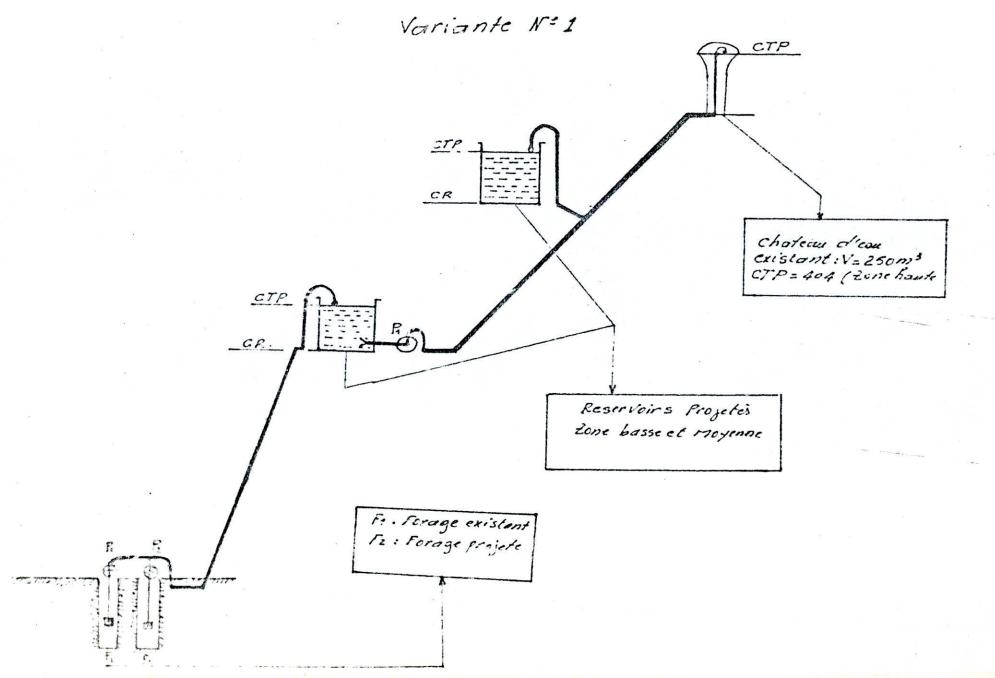
Etant donné que les réservoirs de la zône basse et moyenne sont très anciens sauf le chaleau d'eau de la zône haute, nous proposons deux variantes et dont nos calculs seront basés seulement sur une des variantes choisies.

Variante 1 :

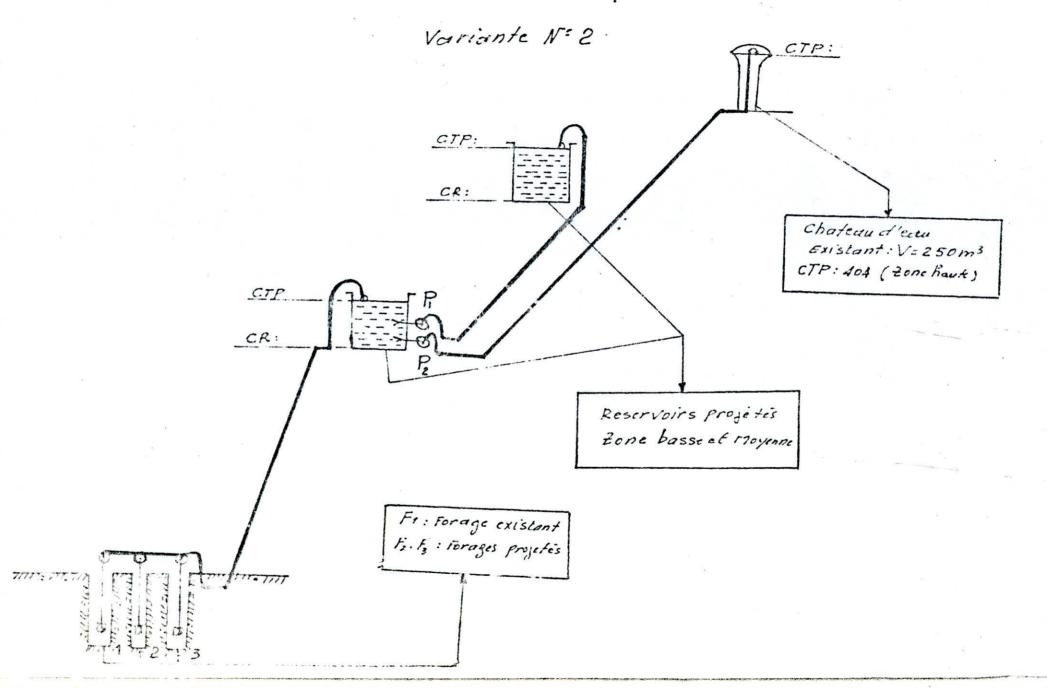
-Réaliser un deuxième forage tout prés de l'ancien en fournissant un débit de 15 l/s et en l'équipant d'une pompe. L'eau est refoulée vers le réservoir projeté de la zône basse située à la côte 300 m, puis avec une station de reprise qu'on va réaliser près de ce réservoir, refouler l'eau vers le réservoir projeté de la zône moyenne et celui de la zône haute chateau d'eau déjà existant.

Variante 2:

-Réaliser des forages tout prés de l'ancien en fournissant chacun un débit de 7,5 l/s environ et en équipant chacun d'une pompe.


L'eau est refoulée vers le réservoir projeté de la zône basse à la côte 300 m, puis avec deux stations de reprise qu'on va réaliser prés de ce réservoir, on refoule l'eau vers le réservoir projeté de la zône moyenne et vers le chateau d'eau éxistant à la côte 400m.

Conclusion:


-1.

Dans notre étude nos calculs se baseront sur la deuxième variante car nous pensons qu'on réalisant deux autres forages nous aurons plus de chance que nos forages projetés donneront un débit égal à or 7,67 l/s et puis l'énergie fourni par les deux pompes serais plus économique que ceux fournipar une seule pompe.

Schema d'adduction

schema d'adduction

4

1.6. Capacité des réservoirs :

Le calcul du volume du réservoir se fait à partir du débit rentrant et du débit soutiré du réservoir pendant les différentes heures de la journée, ces réservoirs nous permettront de stocker de l'eau pendant les heures de faibles consommations et de la restituer pendant les heures de pointe.

Il devra comporter une réserve d'incendie disponible à tout moment; correspondant à une durée d'extinction d'un sinistre évalué à 2 heures dont la réserve minimale à prévoir est de 120m3 d'eau.

L'alimentation du réservoir et la consommation sont continues donc nous envisageons d'entreprendre un pompage de 24 h/24.

1.7. Méthode de calcul :

Si on appelle "a" la valeur du débit moyen horaire de distribution :

a = C ou C: est la consomnation journalière.

Selon (A.DUPONT Tome II) pour une ville de moyenne importance la répartition de la consommation sur 24 heures se fait comme suit :

٠	0	h	à	5	h	0,125 a
	5	h	à	7	h	1,5 a
	7	h	à	11	h	2 a
•	11	h	à	16	h	1,1 a
	16	h	à	18	h	1,75 a
						0,781 a
	22	h	à	24	h	0,125 a

D'aprés cette répartition et selon le graphe de cette répartition on abouti à un volume de régulation.

$$V_R = ((DV^{\dagger}_{max} + DV_{max}) = 7.a$$

a = débit moyen horaire de distribution en (m3/h)

$$a = \frac{Qmm}{24} (m3/h)$$

Qmm = Consommation moyenne du jour, du mois de pointe de l'année.

*- Capacité du réservoir de la zône haute:

$$a = \frac{C}{24} = \frac{Qmm}{24} = \frac{330,24}{24} = 13,76 \text{ m}3/\text{h}$$

$$V_R = 7a = 7x13,76 = 96,32 \text{ m}3$$

 $V_T = V_R + V_I = 96,32 + 120 = 216,32 \text{ m}3.$

On prend un volume normalisé de 250 m3 car ce dernier est égal au volume du chateau d'eau déjà éxistant. D'aprés les renseignements recueillis, le chateau d'eau est encore en bon état donc nous proposons de le garder car son volume suffira pour alimenter la zône haute.

*- (apacité du réservoir de la zône moyenne:

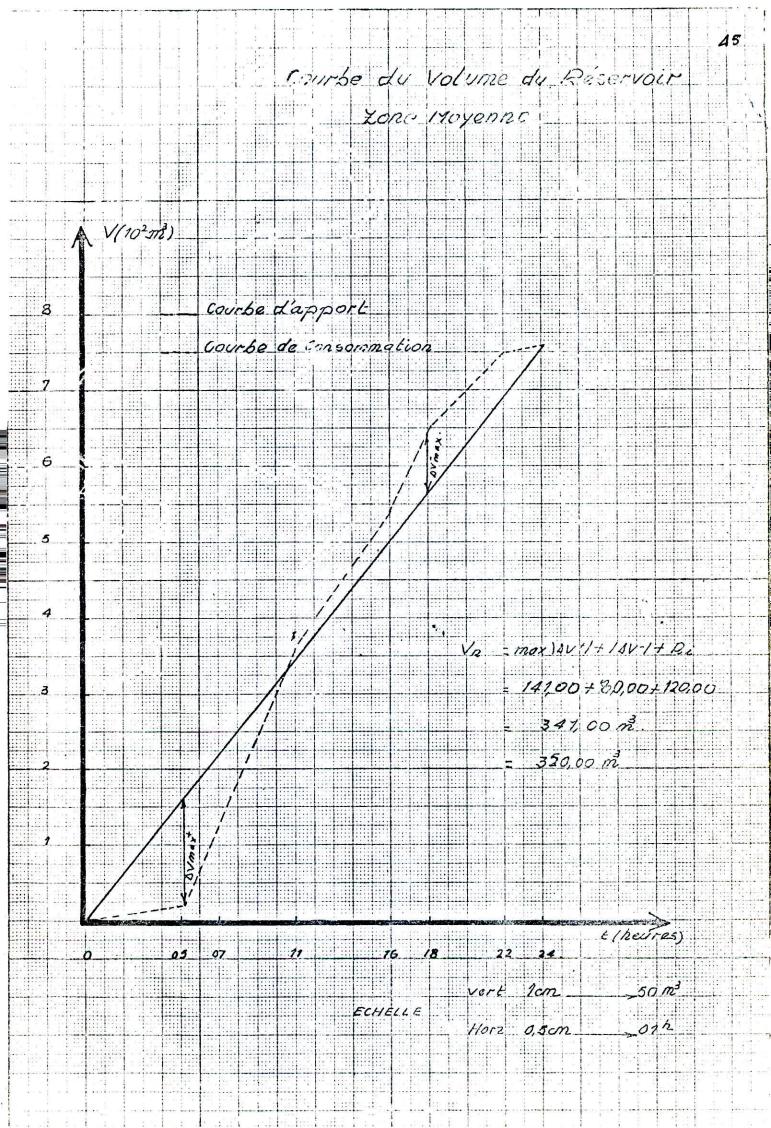
$$a = \frac{c}{24} = \frac{Qmm}{24} = \frac{758,64}{24} = 31,61 \text{ m}3/\text{h}$$

$$V_R = 7.a = 7x31,61 = 221,27 m3$$

 $V_T = V_R + V_I = 221,27 + 120 = 341,27 m3.$

*- Méthode graphique:

Le calcul du volume du réservoir a été obtenu suivant les courbes de consommation et d'apport. La courbe de consommation a été tracés suivant le débit horaire qui correspond à chaque tranche horaire (voir graphe). (Page).


$$v_T = V_R + V_I = Max | V+ {}^{\dagger} + Max | V- | + V_I$$

= 141 + 80 + 120 = 341 m3.

CALCUL DU VOLUME DU RESERVOIRS

					8		2	a		7					1,750					
				Γ	1,5 a	-	*					7,10							s.	
Track Posts					((4)							1,100		\dashv		0,	781a			
		0,125	a				1	4,						-					0,1259	†
	1	2 3	4	5	6	7	8.	9	10	21	12	13 14	.15	16	, 17 /	8 19	20 2	21 22	2 23 2	4. Heures.
				54		74				112				160	18a		V.	22a	· · ·	4 a m3/h
		3,125.	5	0,6232		3,6260	3,6250	L + 20	. 4	11,625a.	11,625	a+1,10.	5	421	17,1250.2 8	20,6250	2+0,7810	23,7490	4	Destribution selonle Diagramme.
				1,3750		3,3754				0,626				1,125	2,625		•	1,749	0	D'efférence

V= Max (va-val) + / Min (va-val) / = 4,375+/-2,625/ = 72.

(NVCO2.m3)			0			
		Court	e du	Volume L) Réservoi	/
9			Zo	ne Bosse		
				ا را الم		
8 1				1		
7			(in the			
6			<i>i X</i>			
5						
					+ /Av-/ + Ri	
4 1			<i>\'</i>			
				= /50+100+		
.3	///			= 370 m		
	/ /					
2	/ //					
	-/					
41.110.4	/ 					
1						
/						
0 05	.07 //	\	6 18	22 24.	t (Reures)	
					n 50 m	<u> </u>
			ECHELLE	vert 10		
				HOMZ 0,50		

On prend un volume normalisé de 350 m3.

← Capacité du réservoir de la zône basse:

$$a = \frac{c}{24} = \frac{Qmm}{24} = \frac{847,69}{24} = 35,32 \text{ m}3/h$$

$$V_R = 7.a = 7x35,32 = 247,24 m3$$

$$V_T = V_R + V_I = 247,24 + 120 = 367,24m3.$$

*- Méthode graphique:

$$V_R = Max | DV^{(+)} | + |DV^{(-)} |$$

$$V_R = 150 + 100 = 250 \text{ m}$$

$$V_T = V_R + V_I = 250 + 120 = 370 \text{ m}$$

On prend un volume standard égalà 350 m3.

2. DETERMINATION DE LA COTE DU RADIER :

L'emplacement du réservoir projeté doit être choisi pour satisfaire aux abonnés une pression suffisante au moment de la poince. En conséquence, l'altitude du radier doit être située à un niveau supérieur, à la plus haute côte piézométrique éxigée dans le

*-Zone haute:

Etant donné que nous gardons le chateau d'eau déjà existant , nous prendrons donc les mêmes côtes et le même volume.

Volume: 250 m3

côte du TP = 404 m

Lite du radier = 400 m.

réseau de distribution.

*-Zône moyenne :

Dans notre étude le point le plus défavorable est à la côte 334m et comme il est prévu jusqu'à des immeubles de deux (02) niveaux de (R+2) dans les différents endroits de l'agglomération nous envisageons le calcul de la côte du radier comme suit:

- 1 m de perte de charge par niveau 3 x 1 à 3 m
- 3 m de dénivilation par niveau 3x3 = 9m
- 5 m de perte pour le déclenchement d'un chauffe eau
- 5 m de perte de charge entre le réservoir et le point le plus défavorable à deservir

$$DH_T = 9+3+5+5 = 22 \text{ m}$$

$$C_R = 334+22 = 356 \text{ m}$$

Donc notre réservoir se situe à la côte 356 m.

*-Zône basse :

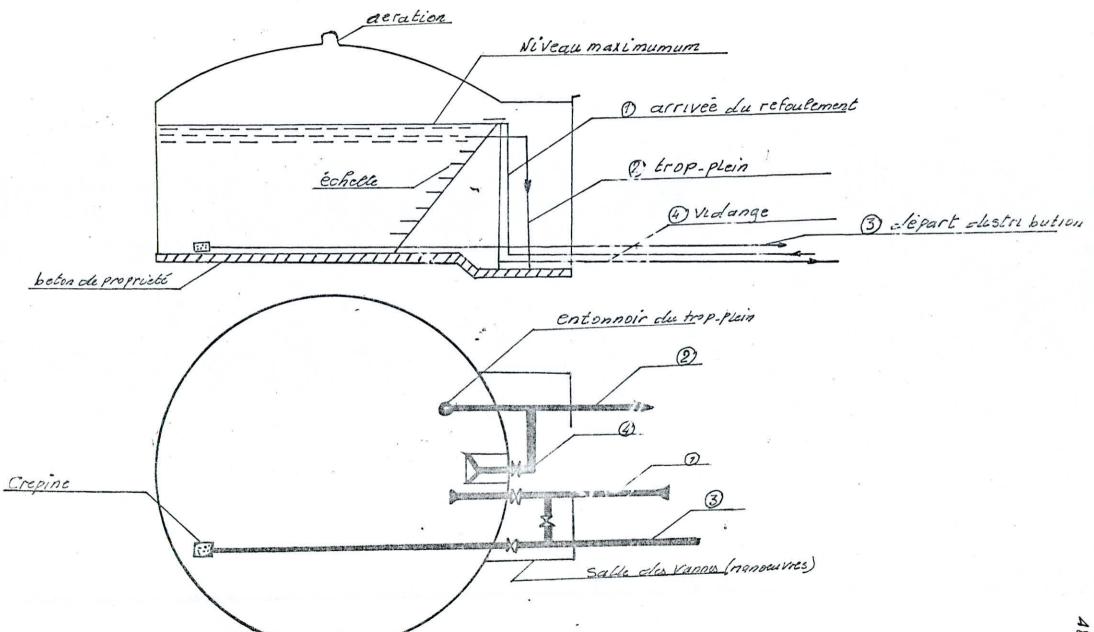
Le réservoir de la zône basse sera placé à la côte 300 m.

2:1. Dimensionnement des réservoirs projetés :

Pour le dimensionnement de nos réservoirs, nous proposons une hauteur de 5m.

La forme cylindrique est adoptée donc, le calcul du diamètre est donné par la formule :

$$V = \frac{11 \cdot D^2}{A}$$
 .H : est la hauteur
D : est le diamètre à chercher


$$D = \sqrt{\frac{4.V}{\Pi.H}}$$

#- Zônes moyenne et basse :

$$D = \sqrt{\frac{4 \times 350}{3.14 \times 5}} = 9.44 \text{ m}$$

On prendra un diamètre de 10 m.

RESERVOIR CIRCULAIRE SEMI ENTERRE

2.2. Equipement des réservoirs :

- Arrivée de la conduite d'adduction.

L'arrivée de la conduite d'adduction s'effectue par surverse en chute libre pour provoquer une oxygénération de l'eau souterraine des forages, ce qui permet d'avoir pour notre débit constant une altitude constante.

2.2.1. Robinet flotteur.

A l'arrivée de la conduite de refoulement, on prévoit un robinet flotteur qui a pour but d'empècher l'eau de surpasser son niveau maximal et provoquer des innondations; il s'ouvre quand l'eau descent dans son niveau maximal et se ferme quand elle tend à le dépasser.

2.2.2.Départ de la conduite de distribution.

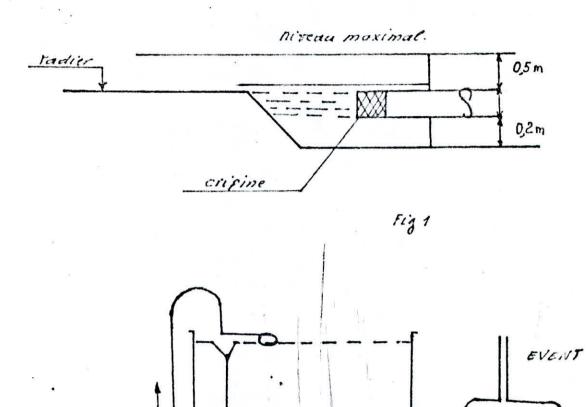
Pour faciliter le brassage de l'eau dans le réservoir le départ de la conduite de distribution sera prévu à l'opposée de l'arrivée un robinet-Vanne sera prévu sur la conduite de distribution pour pouvoir isoler rapidement le réservoir en cas d'accident ou rupt ture de cette dernière.

Le départ de la conduite de distribution s'effectuera à 0,2 m au dessus du radier en vue d'éviter d'introduire dans la distribution de boues ou de sables qui éventuellement pourraient se décanter dans la cuve, on prévoit aussi un minimum de 0,5m au dessus de la génératrice supérieure de la conduite en cas d'une baisse rapide du plan d'eau (voir figure 1).

2.2.3.Trop-plein.

La conduite du trop-plein est destinée à empècher l'eau de dépasser le niveau maximal prévu lorsque le robinet flotteur ne fonctionne plus; la conduite devra évacuer la totalité du débit arrivant au réservoir. Elle comportera au départ un évastement, la canalisation du trop-plein débouchera à un exutoire voisin (voir figure 2).

2.2.4. Vidange.


La conduite de vidange part du fond du réservoir et va se raccorder sur la canalisation du trop-plein; elle est munie d'un robinet - vanne ouvert en cas d'indisponibilité (voir figure 3).

2.2.5. Matérialisation de la réserve d'incendie.

Elle doit être constament renouvellée et prète à l'utilisation en cas de sinistre pour qu'elle ne puisse passer dans le réseau de distribution dans le cas d'un soutirage instentif, il importe que le dispositif le plus souvent adopté est constitué par un siphon qui se désamorce quand le niveau de la réserve est atteint en service normal

- (1) est ouvert
- (2) est fermé

En cas de sinistre $(\overline{2})$ sera cuvert en place un $(\overline{3})$ trosième robinet-vanne normalement ouvert afin de réparer 1 ou 2 en cas de besoin (voir figure 2).

ecu

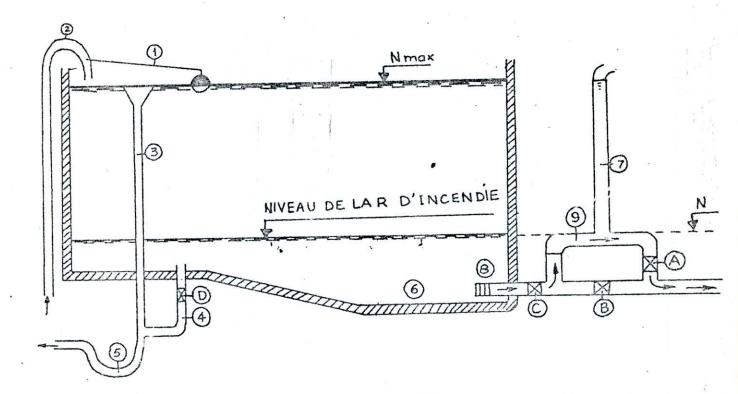

niveau de la

Fig 2

3

Equipement du Reservoir

Un siphon@, qui grace à l'event@ ouvert a l'air libre, se desamorce une fois que le niveau d'eau descend en N.

En cas de service normal le robinet (A) est ouvert, (B) est fermé. En cas de sinistre, il suffit d'ouvrir (B). Il est toujours bon de pre voir un autre robinet vanne (C) qui permet la reparation de (B) et (A) er. cas rebesoin.

- 1. FLOTTEUR
- 2. ARRIVEE D'ADDUCTION
- 3 TROP. PLEIN
- 4. VIDANGE
- 5 SIPHON TROP PLEIN
- 6 PUISARD
- 7. EVENT
- 8. CREPINE
- 9- SIPHON
- A,B,C,D ROBINETS-VANNE
- SENS DECOULEMENT

CHAPITRE -V-

1. DISTRIBUTION:

1.1. Présentation :

Le réseau de distribution de la Ville d'Aomar est de type maillé pour la Zône Moyenne et Basse, ramifiée pour la Zône Haute.

1.2. Situation du problème :

En raison de la topographie qui trés accidentée, nous avons partagé la ville de Aomar en Zônes et sous zônes; cela nous permettra d'éviter des pressions inadmissibles.

*-Zône haute (représentée par Aomar centre):

En tenant compte de la côte du chateau d'eau éxistant (côte TP=404) elle englobe la côte [390 - 345 m] .

*-Zône moyenne (extension de la ville):

Etant donné que cette partie représente aussi de différents de niveaus important, nous avons pensé de partager cetta zône en sous-zônes qu'on appelera :

- . Sou:-Zône A et Sous-Zône B.
- Sous-Zône Λ : englobera la côte [345‡300 m]
- Sous-Zône B : englobera la côte [300-275 m] .
- *- Zône basse (Aomar gare):

Elle constitue le Chef Lieu entre la côte [275 - 225] .

Elle sera aussi partagée en sous-zônes.

- -Sous Zóne A' (enclobera la côte [275 245 m]
- -Sous Zône d' (englobera la côte [245 225 m]

schéma de distribution Fone Haute. CTP=404 CR=400 Zine Moyenne - distribution CTP B.C 345 5.Z.A 275 5.2.B Zone bane -distribution B.c distribution' distribution 5.2.B

. / .

2. CALCUL DU RESEAU DE DISTRIBUTION :

2.1. Réseau maillé:

2.1.1. Méthode de calcul.

Le calcul est conduit par approximations successives selon la méthode de HAR DY-CROSS. Cette méthode repose sur les deux lois suivantes:

1ère loi : En chaque noeud du réseau, la somme des débits rentrents est égale à la somme des débits sortants.

2ème loi : La somme algébrique des pertes de charge est nulle le long de chaque maille.

2.2. Principe de la méthode:

Ce principe consisté à se fixer dans chaque maille une répartition supposées des débits ainsi qu'un sens d'écoulement de manière à satisfaire la première et à calculer la perte de charge dans chaque tronçon de la maille.

La perte de charge le long d'une conduite est exprimée par la formule de DARCY-WEISBACH.

$$DH = J.L = \frac{fV^2}{2gD} = \frac{8f}{1/2g^{5}}Q^2 = rQ^2$$

Où rest la résistance de la conduite (m⁻⁵. s²)

Le principe d'équilibre de pertes de charge le long de la maille se traduit par : $DH = rQ^2 = 0$ (2) .

Cette égalité n'étant pas vérifiée du premier coup, il est nécessaire de modifier la répartition initialement supposée par un débit correctif.

2.2.1.Détermination du débit correctif DQ :

DQ étant la correction à apporter aux débits initiaux soit:

$$Q_1 = Q_0 + DQ_0$$
 l'équation (2) devient:

DQ étant supposé petit par rapport à Q on peut négliger les infiniment petits d'ordre 2, d'ou

$$DQ_{0} = \frac{Z_{r} Q_{0}^{2}}{2 Z_{r}Q_{0}}; (3)$$

Chaque maille est calculée séparement et la valeur DQ trouvée à l'aide de l'équation (3). La correction est ajoutée algébriquement à chacun des débits Q_o. Les corrections à apporter au débit transite par une conduite commune à deux mailles s'ajoutant algébriquement en changeant le signe de la correction de la maille adjacente à celle considérée.

Les approximations sont poursulvies jusqu'à ce que les valeurs de DQ soient voisines de zéro (DQ<0,4) et les pertes de charges le long de la maille soient inférieur à 0,5m environ.

Le calcul est fait sur TI59

Formules utilisées:

DHS = 0,15 DHL
DHI =
$$\frac{fr}{D} \perp \frac{V^2}{2g}$$
; DH = Hs+HI = 0,15 $\frac{frV^2}{2gD} + \frac{frLV^2}{2gD}$ 1,15 $\frac{fr.LV^2}{2gD}$

DH =
$$\frac{\text{fr LV}^2}{29D}$$
 = $\frac{8 \text{frLe}}{g | \hat{I} | D^5}$ $Q^2 \implies \text{fr} = (1.14 - 0.86 \text{ en } \frac{2}{D})^{-2}$

DH =
$$rQ^2$$
 = 82711170 fr Le $\frac{Q^2}{D^5}$ = rQ^2 .

Valeur de rQ:

$$rQ = \frac{rQ^2}{Q} = rQ.10^{-3}$$

$$2rQ = rQ^2 \times 2000$$

Programme (TI59):

LRN ((RCL01 Lnx*0.86+1 14) X 1 *A*RCL02*RCL03*RCL03 Znd | X | +RCL01 X 5

Sum 04 ST005 Znd pausse Znd pausse and pausse * (2000 \div RCL03) = Sum 06 R/S LRN .

On execute RCLO4 + RCLO6 = X 1000 ---> affiche DQ porté avec le signe contraire.

D (mm)
$$\longrightarrow$$
 STO 01
Le (m) \longrightarrow STO 02
Q (1/3) \longrightarrow STO 03

Appuyer sur A ---> lère valeur affichée DH = rQ² 2ème valeur affichée 2rQ²

2.3. Débits soutires:

D'aprés le plan d'urbanisation, la ville de AOMAR se compose de densités différentes.

Le réseau schématique des canalisations a été tracé en fonction des structures d'habitats, tout en suivant le cheminiement des rues.

./.

Nous avons circonscrit dans le périmètre à urbaniser un certain nombre de contours fermés, constituent de grandes mailles à l'intérieur desquelles peuvent être connectées des conduites secondaires considérées comme des conduites d'un réseau ramifié.

Les mailles projetées renferment au minimum une des zônes suivante

- Zône à haute densité urbaine (hd)
- Zône) faible densité urbaine (fd)

Dans notre étude et selon le PUD on prendra :

- Pour la densité forte 85 hab/ha
- . Pour la densité faible 43 hab/ha.

En ce qui concerne le débit de chaque noeud, on délimite la zône desservie par ce dernier par la méthode des médiatrices. Ayant la densité, le nombre d'habitant et la consommation spécifique correspondante à chaque zône, nous déduisons le débit de chaque noeud qui sera multiplié par le coefficient de pointe.

Aux côtes basses appartient à la zône moyenne nous avons prévu les réducteurs de pression qui règleront les pressions en les limitant.

2.4. Calcul des débits soutirés aux noeuds :

*- Consommation spécifique :

q= Consommation spécifique en L/J/Hab q =
$$\frac{Qm}{N_m}$$
 ou $\frac{Qm}{N_m}$ Consommation moyenne par maille $\frac{N_m}{N_m}$ Nombre d'habitant par maille.

*- Densité:

$$N_m = N_m$$
 Sunface de la maille correspondante $S_m = S_m$

٠/.

*- Population :

P = Population possible

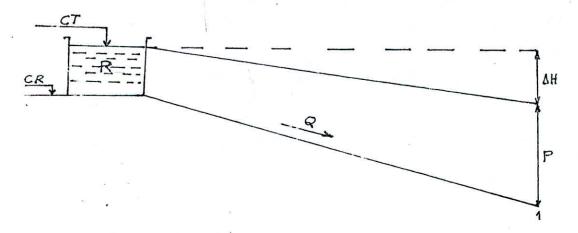
P = S. d ou S = Surface desservie par noeud en (ha)

d = Densité de la population en hab/ha

*- Débit au noeud :

Q = Débit journalier au noeud (l/j)

Qi = Pi. qi ou Pi = Population de la surface desservie par le noeud


Q; 7 Consommation spécifique l/j/hab.

Les données et les calculs de chaque zône sont récapitulés dans les tableaux suivant page N°

3. DIMENSIONNEMENT, DE LA CONDUITE D'AMENEE :

3.1. Présentation :

La conduite en acier reliant le réservoir au point de jonction est posée tout le long d'une route. Elle doit faire transiter la totalité du débit nécessaire:

CR: Côte du radier (m)

CT: Côte du trop-plain (m)

Q : Débit (l/s)

DH: Pertes de charge le long de la conduite

P1: Pression au point (1) m

R : Reservoir.

* Conduite reliant le réservoir au point (1)

⋆-Zône Moyenne :

Données de base

$$- Q = 34,57 l/s$$

$$- L = 20,00 \text{ m}$$

$$- \mathcal{E} = 1 \, \text{mm}$$

On propose une vitesse égale à 1 m/s

3.2. Calcul du diamètre de la conduite :

$$D = \sqrt{\frac{4 Q}{1 | V}} = \sqrt{\frac{4.0,03457}{3,14.1}} = 0,2098 m$$

On opte pour un diamètre normalisé Ø = 200 mm et la nouvelle vitesse sera :

$$V = \frac{4}{11} \frac{Q}{D^2} = \frac{4.0,03457}{3,14.(0,2)^2} = 1,10 \text{ m/s}$$

3.3. Calcul de la perte de charge :

- La méthode simplifiée de la théorie de la longueur fluidodynamique va nous permettre de calculer les pertes de charge entre le réservoir et le point (1). Comme nous savons que pour un profil circulaire:

Do = 1,539 d'ou

$$\Lambda = \frac{D}{Do} = \frac{0,2}{1,539} = 0,13$$

D'aprés la formule

$$Q = \sqrt{\frac{2}{5}}(15,96-8,681 \text{ tn } \frac{\mathcal{E}}{\Lambda}) = (0,13)^{2,5}(15,96-8,681 \text{ tn } \frac{10^{-3}}{0,13}) = 0,3547$$

$$\frac{Q}{VJ} = 0,3547 \implies J = \frac{Q^2}{(0,3547)^2} = \frac{(0,03447)^2}{(0,3547)^2} = 0,009499$$

* Vérification par la méthode classique :

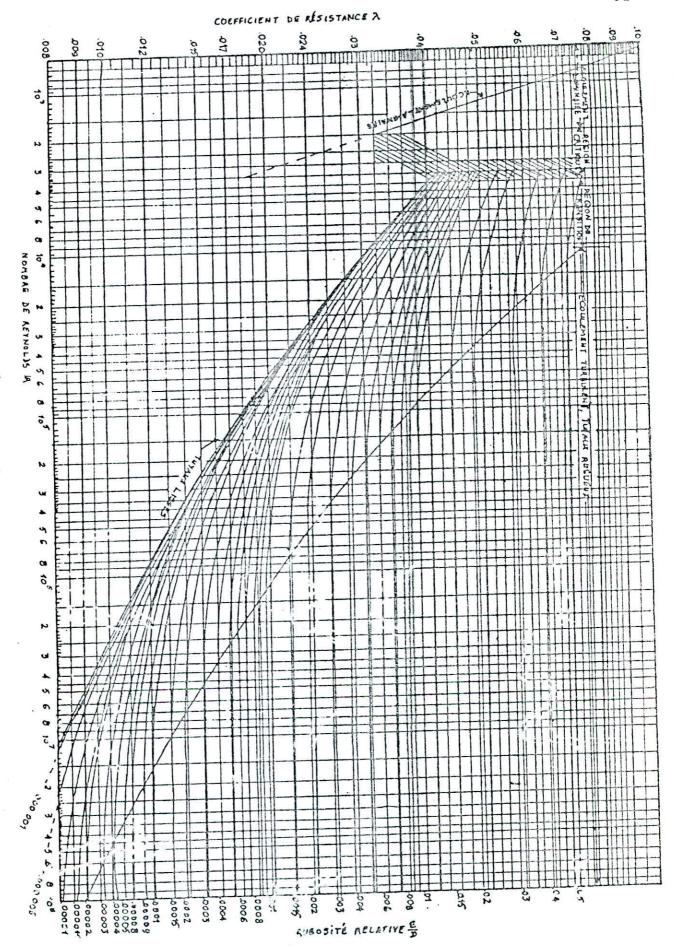
$$J = fe \frac{V^2}{2gD_n}$$
; $fr = (1,14-0,86 en \frac{\xi}{D_n})^{-2}$

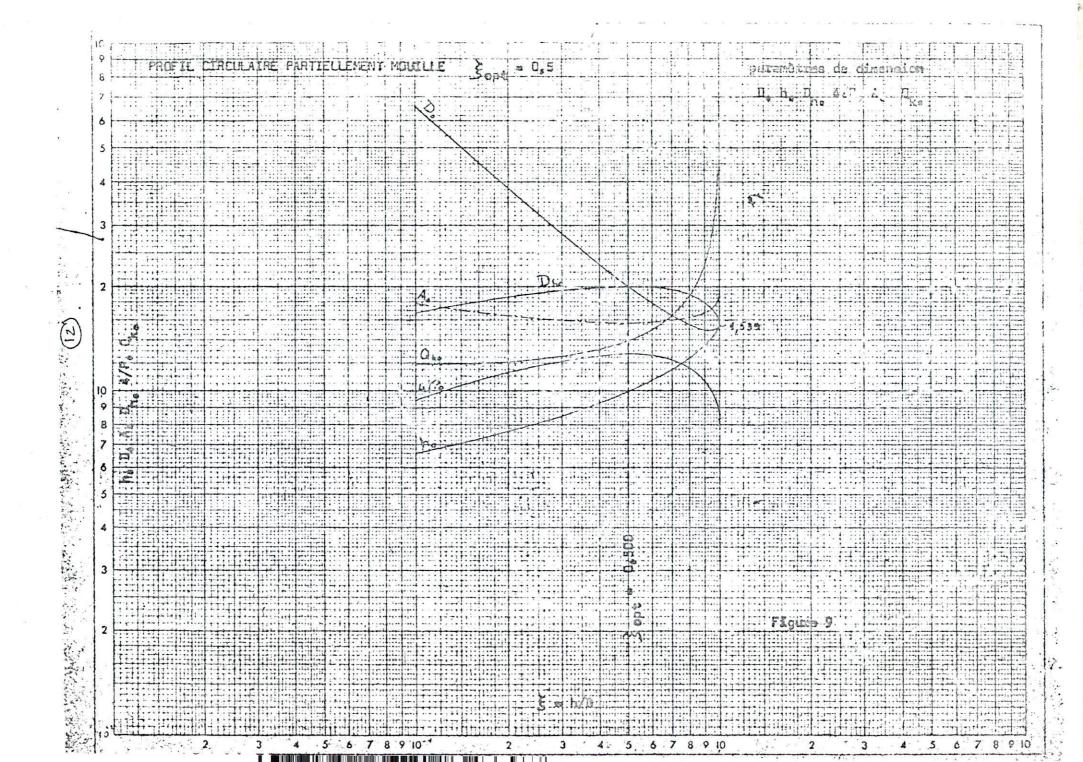
$$f_N = (1,14-0,86 \text{ kn } \frac{10^{-3}}{0,2})^{-2} = 0,030816$$

$$R = \frac{VD}{2} = 1,10*0,2 = 2,2.10^5$$
= 10^{-3}
Régime transitoire

D'aprés COLEBROOK

$$f_c = \left[-0.86 \text{ Ln } \left(\frac{\varepsilon}{3.70} + \frac{-2.51}{RV_{fr}} \right) \right]^{-2} =$$


$$f_c = \left[-0.86 \text{ Ln } \left(\frac{0.001}{3.7 \times 0.2} + \frac{2.51}{2.2.10 \text{ V} 0.030816} \right) \right]^{-2} = 0.03100$$


$$DH_T = J. Ley = J.L.1,15$$

$$DH_T = 0.009499 * 20 * 1.15 = 0.22 m$$

Les deux méthodes donnent les mêmes résultats.Les dimensionnements des autres conduites reliant les autres points se détermine ont de la même façon.

./.

-* Conduite reliant le point (9') au brise-charge:

Données de base :

$$Q = 4,24 l/s$$

$$L = 70 \text{ m}$$

$$V = 1 \text{ m/s}$$

$$D = \sqrt{\frac{4*0,00424}{3,14*1}} = 0,073m \cdot 0n \text{ prend un diamètre normalisé égal à 100 mm}.$$

$$V = \frac{4*0,00424}{3,14.(0,1)^2} = 0,54 \text{ m/s}$$

$$DH_T = f.v^2$$
 L. 1,15 avec $f_N = 0,038440$

$$fc = 0.039788$$

$$DH_{T} = 0.48 \text{ m}$$

-* Conduite reliant la brise charge au point (1)

Données de base :

$$Q = 21,24 l/s$$

$$L = 180$$

$$V = 1 \text{ m/s}$$

$$D = \sqrt{\frac{4*0,0214}{3,14*1}} = 0,165m$$
. On prend un diamètre normalisé de 200 mm donnant une vitesse réelle de :

$$V = \frac{4 Q}{11 * D^2} = \frac{4 * 0.0214}{3.14 * (0.2)^2} = 0.68 m/s$$

$$DH_T = \frac{fc \cdot V^2}{29} \cdot L \cdot 1,15$$

$$f_N = (1,14-0,86en_E)^{-2} = (1,14-086 en_{0,001})^{-2} = 0,030316$$

fc =
$$\left[-086\text{en} \left(\frac{0.001 + 2.51}{3.7 \times 0.2} \right) \right]^{-2} = 0.031692$$

$$DH_{T} = \frac{(0.031692)(0.68)^{2} *180 * 1.15}{19.62 * 0.2} = 0.77 \text{ m}$$

```
./.
* Conduite reliant le réservoir au point (1')
   *~Zône Basse :
Données de base
Q = 36,63 l/s
L<sub>R</sub>-1'= 100 m
\mathcal{E} = 1 \, \text{mm}
V = 1 \text{ m/s}
* Calcul
D = 0,216 on prend un diamètre normalisé de 200 mm
V = 1,17 \text{ m/s}
f_N = 0.030816
f_c = 0.031396
DH T= 1,27 m
- Du point 1' au point 1
Données de base
Q = 30,49 \text{ l/s}
L = 26 \text{ m}
* Caicul
D = 0,197 on prend un diamètre de 200 mm
```

./.

V = 0.97

 $f_N = 0,030816$ $f_C = 0,031481$

 $DH_{T} = 0,22 \implies DH_{T} = 1,27 + 0,2? = 1,49 \text{ m}$

./.

- * Conduite reliant le point 1' au brise charge
 - * Sous-Zône B de la zône basse :

Données de base

Q = 6,14 l/s

L = 40 m

V = 1 m/s

* Calcul

D = 0,088 m on prend un diamètre normalisé de 100 mm

V = 0.78 m/s

fN = 0.038440

 $f_c = 0.039447$

 $DH_{T} = 0,56 \text{ m}$

* Conduite reliant* la brise charge au point1

Données de base

Q = 23,24 l/s

L = 400

V = 1 m/s

* Calcul

D = 0,172 m on prend un diamètre de 200 mm

V = 0.74

fN = 0.030816

 $f_c = 0.032415$

 $DH_{T} = 2,080 \text{ m}$

Nombre de Populationpour chaque zône

Zones	Surface e	in (ha)	Poatti
Lones	dforte	d. faible.	Population
Zone - Raute	14,00	4, 33	1376.
Zone - Moyenne	24,50	25,07	3161.
tone- Bosse	41,05	7,00	3532
- total	79,55	30,4	8069

Répartition des débits pour l'horizon 2010

Zones	Population	clotation 1/j/hab	Qm m³/չ:	Qmm m³/j	Qmm -l/s.
Z.H	1376	200	275	330,24	3,84
Z. M	3161	"	632,20	758,64	8,80
Z. B	3532	"	706,40	847,69	2.62
tatal	8069		1614	1936,57	22,46
s	,				≈ 25

Débits soutirés: Zône Haute

h /	Surface of	en (ha)		0	
noeucts	d. porte	d. faille	Po fulation	Qm (-l/s)	amax
1	1,00		85	0,20	0,48
2	1,00	x	85	0,20	0,48
3 .	1,00	_	85	0,20	0,48
4	7,40		119	0,27	0,65
5	0,60 .,	1.40	111	0,26	0,62
6	1,00		85	0,20	0,48
<i>5</i> 7 · · · · · · · · · · · · · · · · · · ·	1,50	-	128	0,30	0,72
ଞ	2,00		170	0,39	0,94
9	0,50		42	0,09	0,22
10	2,60	* <u>#</u>	221	0,51	1,22
1.7	1,20	_	102	0,24	0,58
12	0,20	1,43	78	0,18	0,43
13		1,50	65	0,15	0,36
totai.	14,00	4,33	1376	3,19	7,66

ľ	need	Surface	ed fal	2.0.1.	0	0
	nocuds.	d. fork	d. faible	PoPulation	Qm Us	Q max
	1	4,60		3,91	0,90	2,17
	2	2,00	-	170	0,39	0,94
	3	3,10	2,20	358	0,83	1,99
	4	3,00	3,30	39 <i>7</i>	0,92	2,21
	5	3,00	1,00	298	0,69	1,65
e A	6	-	3,30	142	0,33	0,79
5.20nc	7		1,30	56	0,13	0,31
Sous	8	3,40	2,60	401	0,93	2,23
	9	0,90	2,50	188	0,43	1,04
	lotal.	20,0	16,3	2401	5,55	13, 33
	1	0,50	1,80	120	0,28	0,67
	2		2,80	120	0,28	0,67
	3		2,00	86	0,19	0,48
Ó	4		1,20	52	0,12	0,29
2002	5	4,0		340	079	1,89
Sous.	6		0,70	30	0,07	0,17
	7		0,3	13	0,03	0,07
The second secon	total.	1,50	8,8	760	1,77	4,2%

Zône Basse

	Noeuds	Surface	en(ha)	Population	Qm	Qmax
	5	d. fork	d. faible.	,	(8/2)	
	_ 1	2,10		178	0,41	0,98
	2	1,50		128	0,30	0,72
	3	4,80	_	408	0,94	2,26
	4	4,80	1,07	454	1,05	2,52
one. h	. 5	4,20	-	\$ 357	0,83	1,99
S. 20	6	5,60	-	476	1,10	2,64
Sou	. 7	3,50	-	298	0,69	1,5€
	B	1,50	-	128	0,30	0,72
	total.			2427	5, 62	13,49
	_ 1	4,00		340	079	1,89
8	2	4,20	- ,	<i>357</i>	0,83	1,99
s. 2.0ne	3	4,80	-	408	0,94	2,26
Sous.	talal.	13,00		1105	2,56	6,24

1					,	1				
FRANCON	LONGUEUR	DIAMETRE	D&31T	J.	ΔΗ	V1T555E	H. PIEZ	H. Piez	COTE DU TERRAIN	PRESSION AUSOL.
	(100)	(m)	215	1	m	m15	m	m	m	m .
						-				
R-1	38	0,200	24,66	0,003886	0,15	0,78	400,00	399,85	375,00	24,85
1-2	64	0,150	21,22	0,013272	0,85	1,21	399,85	398,00	373,00	26,00
2-3	118	0,100	0,48	0,000013	901	0,06	399,00	398,99	378,00	20,99
2-7	95	-11-	1,20	0,0000353	0,03	0,14	399,80	398,86	370,00	28,86
7-6	95	-/1-	0,48	0,000075	0,01	0,06	,398,86	398,86	368,00	30,85
2-4	120	-11-	19,06	0,010800	1,30	1,09	399,00	397,70	365,00	32,70
2-5	61	0,150	1,41	0,000560	0,03	0,18	397,70	397,67	362,00	35,67
5-12	208	0,100	0,43	0,000005.4	0,01	0,05	397,67	397,66	346,00	51,66
5-13	223	-//-	0,36	0,000075	0,02	0,06	397,67	397,65	3 45,00	52,65
1-8	128	-11-	2,96	0,002118	9,28	0,37	399,85	399,57	375,00	24,57
8-9	113	-15-	0,22	0,000022	0,01	0,03	399,57	399,56	360,00	39,56
8-11	126	-//-	0,58	0,000099	0,01	0,07	399,57	399,56	350,00	49,56
8-10	290	0,600	1,22	0,000450	0,12	0,15	399,57	399,45.	310,00	29,45.
			147							

PRESSION AU SOL.

ZONE HOVENNE SOUS TONE A.

-	4	-					
111	TRANCON	DH	COTE OU	TERRAIN	COTE PIE	EOMETRIQUE	
18		(m)	Amont (m)	AVOL (m)	Amond (m)	AvaL.	SOL.
Z	R-1	0,22	35G	3 44	-	355,78	11,78
	1.5	7.4.5	344	321	355,78	348,33	27,33
	5-10	0,63	32/	310	348,33	347,70	37,70
	10-9	2,34	3/0	308	347,70	345,36	37,36
	9-4	-1,14	308	3/5	345,56	346,66	31,60
	4-3	- 4-31	315	315	346,60	347,31	32,31
	3-2	_5,45	315	142	347,31	353,24	4,24
	2- 1.	-2,60	342	344	353,24	3 5 5, 8.4	11,84
22	5-G	0,99	32/	326	348,33	347,01	21,01
	6-7	1,23	326	335	347,01	345,78	10,78
	7-8	0,73	335	3/0	345,18	345,05	35,05
	8-9	0,01	310	305	345,05	345,05	40,05
	9-10	-2,34	305	310	345,05	347,39	37, 39
	10.5	-0,63.	3/0	32/.	347,39	348,02	27,02.

PRESSION AU SOL

SOUS . ZONE.B.

W	1		COTE DU	TERRAIN	COTE PIEZ	OMETRIQUE	PRESSION
MAILL	TRANCON	2H (m)	Amont (m)	Avol (m)	Llmont (m)	AvaL.	4U 50L
I	BC- 1	0, 77	320	278	-	319,23	41,23
	1-7	462	278	288	319,23	317,61	29,61
	7- 4	0,70	288	283	317,61	316,91	33,91
	4-3	1,67	283	278	316,91	3 15,24	37,24
	3-2	- 407	2.78	277	3/5, 24	316,31	19,31
	2-1	- 2,91	277	278	318,31	319,22	41,22
II	1-6	0,15	288	291	317,61	317,46	20,46
-	6.5	0,46	297	285	314,46	317,00	32,00
2	5-4	0,09	285	283	317,00	316,91	33,91
	<i>5</i> 2 - 7	-0,70	283.	288	<i>316,</i> 91.	316,61.	29,61.

¥				COTE DU	TE OBALLY	SOLE PIET	OMETRIQUE	PRESSION
SONE	1441116	TRANCON	AH	Amont	AvaL	Amont	AVAL.	AU 604.
	I	Q-1	1,49	300	270	(m) .	298,5!	28,51
		1-8	2,70	270	245	298,51	295,81	50,81
		8-7	0,40	245	246	295,81	295,41	49,41
		7-3	0,58	246	243	295,41	294,83	51,83
'E. A.		3-2	-1,89	243	262	294,83	296,72	34,72
NOZ-500		2-1	1,30	262	270	296,72	298,52	28,52
SE . SC	Л	2 - 3	1,89	262	243	296,72	294,83	51,83
848		3 - 5	2,99	243	254	294,83	292,94	38,94
ZONE		5 - 4	-2,20	254	260	292,94	295,14	35,14
		4- 2	-2,70	260	262	295,14	297,84	35,8A
	亚	1-2	1,80	270	262	298,51	295:71	34,71
		2-4	2,70	262	260	296,71	294,01	34,01
		4- 6	-0,75	260	268	294,01	294,0!	26,76
		6-1	-3,81.	268	270	294,76	298,57.	28,57
		3C-1	5,77	270	235		264,23	29,23
ZONE.8		1 - 2	0,64	235	229	2 64,23	2 63,59	29,23
Sous		2- 3	- 0,01	229	230	263,59	263,60	34,59
	_	3 - 1	-0,63	230	235	2 63,60	264,33	20,23.

SOUS-ZONE A

CARI	ACTERI	STIQUE	DES MA	LLES	1. APF	ROXIM	7101	1º CO	RRECT	Orv I	DEBIT
Nº DE IAAILLE		CONDUITE	DIAIYETRE	Le (m)	Q (4/s)	AH=ra,	2~Q0	C.R.M	C.M.A	TOTAL	Q (es)
I		1-8	125	695	9,19	5,680	1236,08	-2,756	_	-2,756	6,434
			125	131	8,47	9909		- 2,756	_	-2,756	5,7/4
		8-7	125	384	6,81	1,274		-2,756	_	- 2,756	4,054
	I	7-3	125	379	-4,26	_0,665		-2,756	-0,978	-3,234	-7,016
	727.	2-7	125	69	-11,5	- 0,883	S	_2,756	_ 2,057	-4,813	-16,313
		•	<u> </u>			6,315	2291/2 2,756				
[I]	7		125	379	4,26	0,665	312,46	0,478	2,756	3,234	7,016
-11	I	2-3	125	352	8,81	2,644	600,16	0,418	_	0,478	9,288
		3-5	125	246	-10,18	-2,467		389	-	0,418	-9,702
	10	4-2	125	430	-6,52	-4769	542,56	0,478	- 2,057	-4579.	- 8,099
	1	1	L		l	-0,927			l		
						19:0,	478			•	
ΔĬ	ż	1-2	125	69	11,50	0,883	153,56		2,756	4,813	16,313
	Z	2-4	125	430	6,52	4,769	542,56		-0,478	1,579	8,099
		6-1	125	465 874.	-6,18	- 1,7/8 - 6,579	1491,86		-	2,057	- 4,125 - 6,763
	L	1	L		J	-5,645	2.744,12	L		+	1
2	a				2 4 9 9 1	DY=2 ROXINA		2' CORA	ECTIO N	6	
	T	1-7	/25	695	6, 434	T		-0,129	_	- 0,129	6,305
	ì	8-7	125	131	5,714	0,213		-0,129	-	-0,129	5,585
		7-3	125	384	4,154	0,611	301,27	-0,129		-0,129	0,925
	Z	3-2	125	379	-7,016		5/4,67	-9129	-3,010	-0,139	-7,155
	III	2-1	125	69	- 16,313	-1,777	217,84	-0,129	-0,049	- 0,175	-16,488
				•	•		1743,97				
	I	2-3	125	379	1,016	1,805	5/4,6	1 0,010	0,129	0,139	7,155
24	1	man nie	. 6	352	9,288		632,7	13.	1	0,010	9,288
		8-5	125	246	- 9,702			234	-	0,010	- 9,69
	<i>I</i> I/	4-2	125	430	- 8,059	-2,729	673,9	8 0,010	-0,046	0,036	- 8,135
	_	ـــــــــــــــــــــــــــــــــــ					2283,2	0			
						49:	9010	- 			1
1	I	1-2		150	16,31		217,84				8,135
<u> </u>		2-4	125	430	8,099		0.000	1		0,036	1
<i>I</i> II	Zī.			ALE	-4,125	- 0,765	371,03	0,046	-	1 9 0 - 6	
Zī	Zī.	4-6	125	165	6,763		1143,9	2 0,040	-	0,04	6,71
Zī	II.		7.1		1		Л	<u> </u>	-	0,04	6 -6,7/

JONE BASSE

CARA	CTERIST	IQUE D	ES IMAI	11E5	3:APA	ROXIMA	710~	#: co	RRECTI	0~	NOUVER DEBIT
N. DE MAILLE	Nº DE	CONDUITE	DIAMETRE	Le (M)	Qe/5)	OH=rd.	2100	C.P.N	CMA	TOTAL	Q (e)
z		128	125	695	6105	2,675	848,04			0,038	6,343
-1-		8-7	125	131	6,305	0,395		9,038	-	0,038	5,623
		20 10 E	125	384	3,925	0,572	141,59	0,038	-	0,038	3,953
	Z	7-3 3-2	125	379	-7,155	-1,902	531,72	0,038	-0,073	0,000	-7,190
	111	2-1	125	69	-16,488	,	220,17	0,038	0,002		-16,44
		•		-	1	-0,077 29 = 0,	2032,2 / 038	e!			1
.22	I	2-3	125	3797	2,155	4.877	5,24,80	0,073	- 0,038		7,190
	_	3-5	125	352	9,288	2,945	638,40	0,073	-	0,073	9,371
		5-4	125	246	-9,692	-2,286	641,42	0,073	_	0,073	-9,619
		4-2	125	430	- 8,185	-2,753	676,97	0,023	0,002		- 8,06
					L		2296,59				L
						09=0,	073				
团.	I	1-2	/25	69,	16,488	1,815	2 20,17	-0,002	- 0,038		16,44
	Π	2-4	125	430	8,135	2,753	676,97	- 0,002	-0,073		8,06
		4-6	125	465	-1,077	-0,748	366,89		-	-0,002	-4,07
		6-1	125	274	-6,917	- 3,816	1136,14	-0,002	-	-0,002	-4,07
							2400,17		7		
		•			4º APA	A9=.	0,002 1710N	ACOR	RECTIO	0//	
2		1-8	125	695	6,343	2,700	853,15	0,010	-	0,010	6,33
		2-7	125	13!	5,623	2,400	142,56	0,010	-	0,010	5,624
		7-3	125	384	3,953	0,581	293,77	0,010	-	0,010	3,954
	II	3-2	125	319	-7,190	-1,896	527,37	0,010	-0,006	0,004	-7,186
	7/1	2-1	125	69	-16,448	-1,806	2/9,64	0,010	-0,722	-0,012	-16,43
						49:01	2036,49				
:					1						Γ
Ü	I	2-3	/25	379	7,190	1,896	527,37	0,006	-0,010	-0,004	+7,186
		3-5	12.5	352	9,37/	2,991	608,37	0,006	- o, 	0,006	9,376
	孤	5.A 4-2	125	216 430	- 9,619 - 8,060	- 2, 202 - 2,70	459,94 670,73	0,006	-0,022	0,006 -0,016	-9,61
					<u> </u>	_ 0,015	2296,41				L
						19=0,	006	5	C. 1140	2000	
TII .	I	1-2	125	69	10,148	1,800	219,64	0,022	-0,010	0,012	16,43
	<i>II</i>	2-4	125	450	8,060	2,700	670,73	0,022	-0,006	0,06.	8,076
		4-6	125	.165	-4,079	-0,749	367,07	0,022	-	0,002	-4,051
		6-1	12.5	874	-6,7/9	-3,810	1136,48	0,022	2	6.002	-6,69
						- 0,053	2593,92				
							9022				

ZONE BASSE sous zone B.

CARA	CTERIS	TIQUES	DES 14	AILLES	1º AP	PROXIM	ATION	100	RRECT	ON	DEBIT
Nº DE MAILLE	M.ADJ	CONDUITE	DIAMETRE	(m)	Q (e/s)	ан=га.	27000	C.P.M	C.14.A	TOTAL	Q (2/5)
		/-2	(00	529	120	0, 267	423	0,621		0,621	1,821
I		2-3	100	460	1,26	-0,146	292,5/	0,621	-	0,621	-0,379
	-	3-/	100	373	- 2,99	-406	70918	0,621	_	0,621	- 2,369
	<u> </u>	L				-9886	1424,93			!	l
* *				- 3		19=0,	62/				i.
CARA	CTERIST	TIQUE A	DESMAI	LLES	2.4 AP	PROXINA	TION	24 004	PRECTIC	~	NOUVEAU DEBIT
N: DE MAILLE	N: DE M.ADJ	CONBUITE	DIAMETRE	1e (m)	Q (e/s)	AH=ro.	210,	c.A.M	C.M.A	TOTAL	Q (ess)
		1-2	100	529	1.581	0,595	632,73	0,069	_	0,069	1,95
I		2-3	100	460	- 0,379	-0,020	110,86	0,069	-	0,069	-0,310
		3-1	100	273	_2,369	-0,665	561,89	0,069	-	0,069	_ 2,300
					٠,	-0,09			L.,		
						19=	0,069		n 127		
CARL	CTERIS	TIQUES	DES MAI	L L E5	3" 40	PROXIM	ATION	3" 00	RRECT	on	NOUVEA DE BIT
N. DE HALLE	N. DE M. ADJ	CONDUITE	DIAMETRE	2 e (m)	Q (e/s)	OH= FQ	2700.	C.P.M	C.MA	FOFAL	Q _{E/s}
		1-2	100	529	4.950	0,639	655,94	0,001	_	0,001	1, 951
I	!	2-3	100	460	-0,310		90,68	0,001	-	0,001	-0,309
		3-1.	100	373	-2,300	-0,627	545,14	0,001	-	0,001	-2,295
						-0,002	1292,14	L		J	J
							0,001			2	-

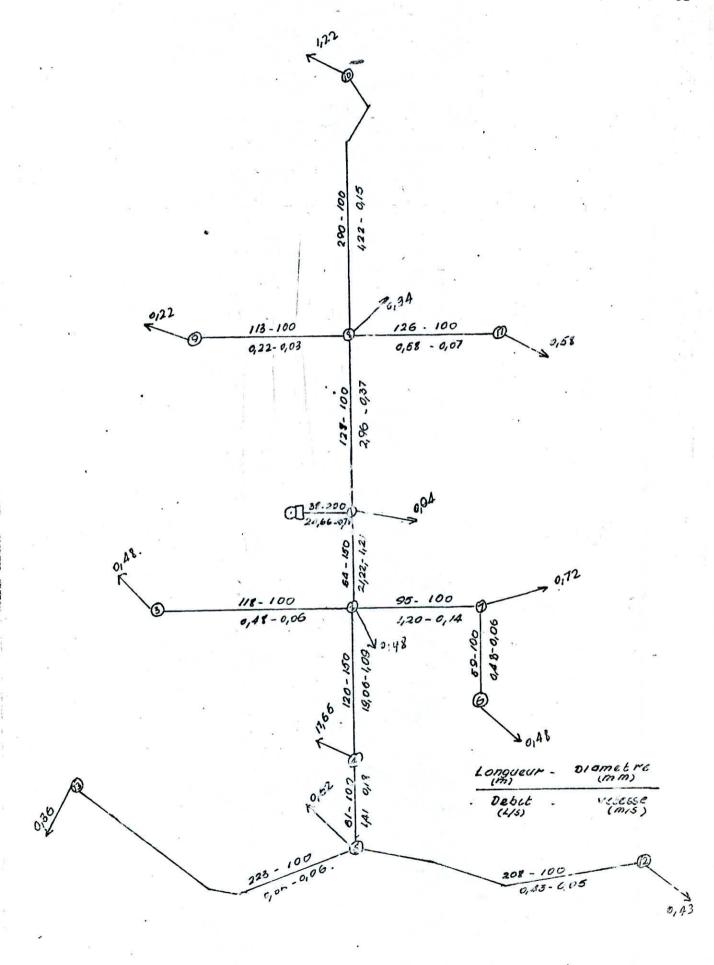
ZONE HOVEINNE

SOUS · ZONE A

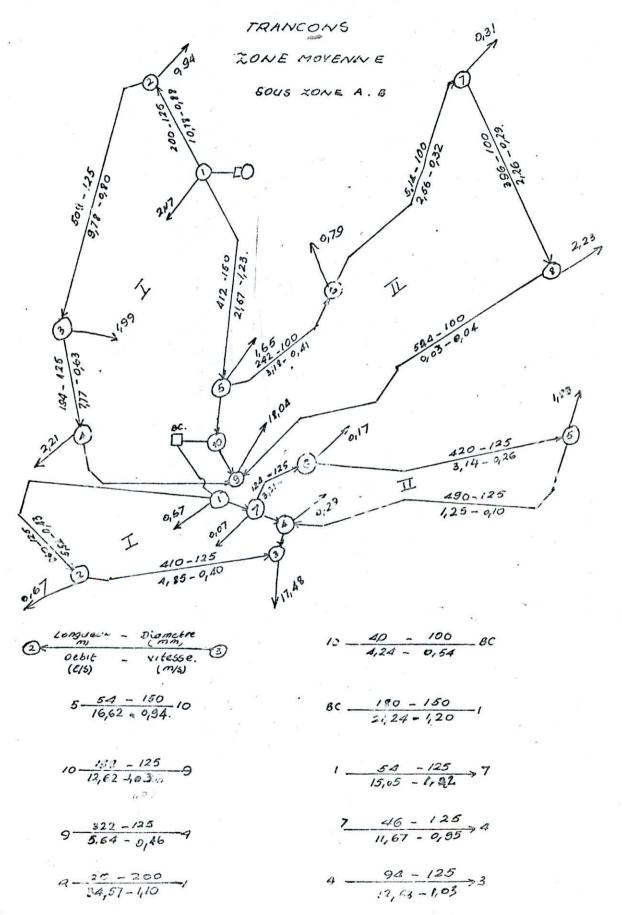
CAR	ACTERIS	TIQUE L	DES MAIL	LES	I APP	ROXIMA	TION	I! COR	DEBIT		
Y DE Y A I L LE	N: DE M.ADJ	CONDUITE	DIAMETRE	Le	Q (4/5)	44=r6.	2rQ.	C.R.14	C. /7.A	TOTAL	Q (Us)
-					****	605-	C1800	2,107	_	2,107	21,367
I		1-5	150	438	1926	5,950	618,90	2,107	-0,678	1,429	16,709
	77	5.10	150	62	15,28	0,530	69,50	2,107	-0,678	1,429	12,455
		10-9	125	159	11,04	1,875	339,7/	2,107		2,107	-5,893
39		9-4	/25	370	-8,00	-2,291	572,85	2,107	- 1	2,107	-8,103
		4-3	125	223	-10,21	- 2,249	440,63		-	2,107	_10,09
		3-2	125	584	-12,20	-8,411	1378,86	2,107	-	2,107	-11,03
		2-1	125	230	-13,14	-3,843	584,88	2,107	-	2,107	-1,000
	ļ	1	l			- 8,438	4005,35				
			*			19=	2,107				
		5-6	100	278	2,33	0,480	411,89	0,677	_	0,678	3,008
e e e e e e e e e e e e e e e e e e e	1	6.7	100	591	1,50	0,446	57878	0,678	-	0,678	2,218
		7-8	100	455	1,23	0,219	355,87	0,678	-	0,678	1,908
		8-9	100	627	-1,00	-0,199	398,70	0,678	-	0,678	-0,332
12		9-10	125	159	-11,04	_1,875	339,71	0,678	-2,107	-0,108	-12,45
•	I	10-5	150	62	-15,28	-0,531	69,60	0,678	-2,107	-0,108	_16,70
								<u>.</u>		<u> </u>	1
							0,678				
						29-	0,078				
C.A.	RACTER	157100	E DES M	411185	2ª A	PPROXI	MATION	25 0	ORREC	TION	NOUVE DEBI:
N. DE		CONDUITE	DIAMETRE	Le (m)	Q _{EC}	DH=175	2ra.	C. R.M	C.74.A	707AL	G ₍₎
.I		1-5	150	438	21,36	7 7,335	6 86,55	0,208		0,208	21,57
		5-10	150	62	16,70			1000			16,60
	I	10-9	125	159	12,45		1 2 2 2	1		0,108	12,35
		9-4	125	370	- 5,893		421,97	9208	70.0	0,208	-5,68
		4-3	125	223	- 8,103	1	346,55		, -	0,203	
		3-2	125	584	1	-5,756				0.208	-9,23
		2-/	125	235	1,000	-2,709				0,208	-10,82
			1			0.741	3546,30	<u> </u>		·	
			*				20,208 .				
				T	T	T	Π.	T	ν.		
		1	2		1	3 1000	531,74	0,310	5 _	7,316	3,32
		5-6	100	278	1,00	9 900	1 000,	1			
		5-6 6-7	100	278 59'		1		1	5 -	0,316	
						0,92	9 833,54	0,310	1	0,316	22
Л		6-7	100	591	2,218	8 0,527	9 833,54	4 0,316	5 -		2,22
Л		6-7 7-8	100	155	1,20	0,92- 8 0,527 2 -0,02	9 833,54 552,0 1 128,38	0,310 4 0,316 0,316	5 -	0,316	2,22
Л	I	6-7 7-8 8-9	100 100 100 125	591 155 627	2, 2, 8 490 -0,33	0,92- 8 0,527 2 -0,02 59 -2,38	9 833,54 552,0 1 128,38 8 383,37	0,316 0,316 0,316	5 - 5 - 17,20	0,316	2,22 -0,0 -12,35
Л	I	6-7 7-8 8-9	100 100 100 125	591 455 627 153	2,218 490 -0,33 -12,43	0,92- 0,527 2 -0,02 59 -2,38 09 -9,63	9 833,54 552,0 1 128,38 8 383,37	0,316 0,316 0,316 0,316 0,316	5 - 5 - 17,20	0,316	-0,0

ZONE MOYENNE

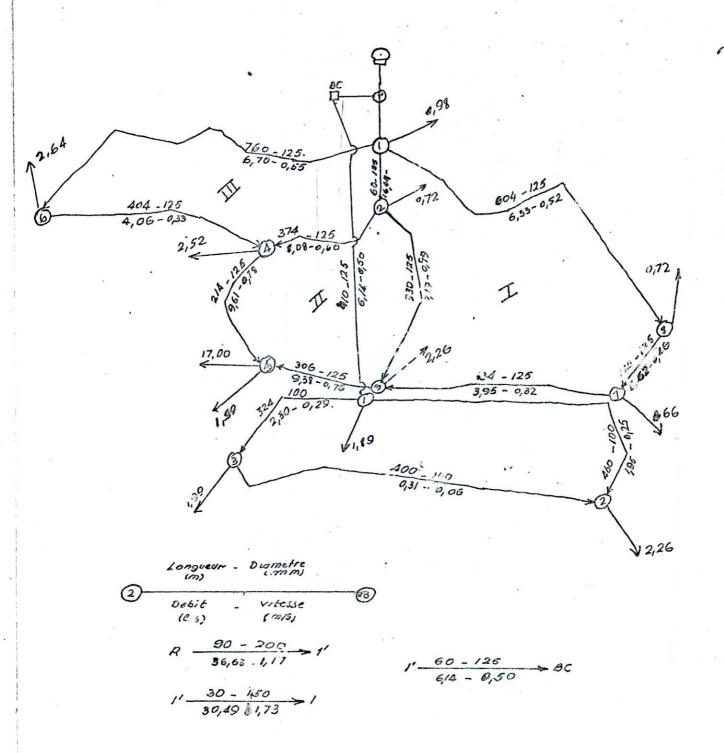
SOUS ZONE A


CARA	ACTERIS	STIQUE	DES MA	ILLES	5" AP	PROXIM	ATION	5 CO	NOUVEAU DEBIT		
	M. DE M.ADJ	CONDUITE	DIAMETRE	Le (m)	(<i>Us</i>)	AH=ra.	2100	CAM	C.M.A	10T4L	(L/5)
					-					720	2/5/5
z		1-5	155	438	24,576	7,479	693,77	0,020	-	0,020	24,535
T	27.	5-10	150	62	16,601	9627	75,51	0,020	25 //	0,009	16,592
	1	10-9	125	159	12,351	+2,345	380,05	0,020	-0,029	-0,009	-5,665
		9-4	125	370	_5,685	-1,157	407,10	0,020	-	0,020	-7,802
		4-3	125	225	-7,822	-4320	337,57	0,020	-	0,020	-9,805
		3-2	125	584	-9,825	-5,455	1110,43	0,020	-	0,020	
-		5.1	125	230	-10,825	-2,610	481,84	0,020	-	0,020	_10,805
	L	l	<u> </u>	1			3425,77				
			41			Age	7,020				,
					2 7 2 4	2076	E97.C0	0,029		9,529	3,353
\mathcal{Z}		5-6	100	278	3,324	0,916	587,60	0,029		0,029	2,563
		6-7	100	591	2,534	1,206	952,29	4000000000	1	9,029	2,253
		7-8	100	455	2,224	0,715	2,392	0,029	_	0,029	0,023
	1	8-9	100	627	-0,01	-0,001	38905	0,029	-0,020	N. 50. 100. 100. 100. 100. 100. 100. 100.	-12,34
	Z	9-10	125	159.		- 2,347	7551.	0,029	-0,020	0,009	_16,59.
		10-5	150	-62	- 16,60	-0,627	2,5%	1 9,02	1.		L
8	-		1 3		Į.	-0,077 49 =	264/30			v.	
SAA	RACTER	P1571QU	E DES	MAILLE	4. A	PPROXII	MATION	3. C	PREC	TION	DEBIT
N. DE	in the second	CONDUIL	TE DIAMETR	E La	(E)	AH=ra	2 ra.	, c.A.	C.MA	105.14	@.(2)
I		1-6	150	438	21,535	7,451	691,99	0,029	,	0,029	21,56
	Ì	5-10	150	62	16,59				1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1 2	10-9	Contract Contract	159	12,34	1 020					1
		9-4		370	-5,66					0,029	1
ļ		4-3	125	223		2 43/3	336,7		200	0,02	- 7,773
1		3-2	125	584		-5,43	2 1108,1			0029	
ŀ		2-1	125	230		-2,59				0,02	
-				1		-9071	2481,57	,			
		2	9			19	0,029				
	1			-							7 10
I		5-6		278	2 °					0,00	A Contract of
		6-7				- A	The second section			0,00	
		7-8		1			1 1 2 2 2 2 3			0,00	
	1	8-3								2,00	
1	2	9.1				42 -2,34				100	
1	1	10-3	130	1	-10,5		-	0,00			
		1	1		i						
	_L	_1									

ZONE MOVENNE SOUS. ZONE B


CAR	ACTER	157/QUL	E DESM	AILLES	, I APP	PROXIM	ATION	1° COA	RECT	10~	DEBIT
Nº DE MAILLE	Nº DE MADJ	CONDUITE	DIAIYETRE	Le (m)	Q (US)	AHISTQ.	210.	C.P.M	C./*!A	TOTAL	Quis
x		1-7	125	74	12,66	4147	181,31	2,284	-	2,284	14,94
	272	7-4	125	55	5,29	0,143	54,26	2,284	2,990	5,274	10,564
		4-3	125	108	10,24	1,096	214,03	2,284	-	2,284	12,524
		3-2	125	472	-7,24	- 2,394	661,34		-	2,284	- 4,956
		2-/	125	989	_7,91	- 0, 988	1514,00	2,284	-	2,284	_5,626
	•		L			-5.996	2624,89				
				×			2,284		×		
Zī		7-6	125	143	730	0,737	5 5	- 2,990	-	-2,990	4,310
		6-5	125	483	7.13	2,376		- 2,990	-	- 2,990	4,140
		5-4	125	563	5,24	4,496		_ 2,990	~	-2,990	2,250
	I	4-7	125	53	-5,29	-0,143	54,26	_ 2,590	-2,284	-5,274	_10,56
*				•			1493,68 2,990		*		
CARA	CTERIS	TIQUE	DES IYA	ILLES	2°APP	ROXIII	ATION	2º CORRECTION			DEBIT
MO DE MAILLE	Nº DE MADJ	CONDUITE	DIAMETRE	1e (m)	(E/5)	AH= rQ,	210,	C. P.14	C.14.A	TOTAL	Q (LIS
			10.5	14	14,944	, 500	2// 0/	0,161		0,161	15,105
Σ		1-7	125	14 53	19.554	0,572	108,35	0,161	0,800	1,047	1,611
	.27	7-4	125	108	12,524		261,77	0,161	-	0,161	12.00
		3-2	125	472	-4,956	-1,122	452,71	0,161	_	0,161	- 4,795
		2-/	125	989	-5,626	-3,029	1076,82	0,161	-	0,151	- 5,46
					1	-0,341		L			l
		·				29=	0,161	,	r	·	1
D		7-6	125	143	4,210	0,267	119.28	-0,886		-0,886	3,424
1			125	483	4,190	0,801	1	-0,886	_	-0,886	1,364
		6-5 5-4	125	563	2,250	0,276		0,886		-0,886	1,364
	I	4-7	125	53	-10,564	12		-0,886	-0,161	-1,047	-11, 611
				-	I	0,762	859,16	<u> </u>	l	·	
1						44=0	2.886			8	

SOUS . ZONE . B


CARACTERISTIQUE DES MAILLES						PROXIC	74710~	3.00	DEBIT		
MAILLE	NO DE MADJ	CONSUTE	DIAMETRE	Le	(4/3)	AHERO	210	CRM	CMA	70741	Q (E/s
Z		1-7	/25	74	15,105	1,634	2/6,32	-0,047		0,047	15,058
	D	7-4	125	53	11,611	0,691	119,09	,	0,100	+0,053	11,664
		4-3	125	108	12,685		265,13		100	0,047	12,638
		3-2	125	472	-4,795	- 4,050	408,00			0,047	-4,84
		2-/	125	999	-5,465	-2,858	1046,00	0,047	-	0,047	-5,5/2
						0,098	2084,54	<u> </u>	ļ	<u> </u>	
			1			19=0					
Z ī		7-6	125	143	3,424	0,162	94,76	-0,100	_	-0,100	3,324
		6-5	125	483	3,254	0,495	304,17	-0,100	-	-0,100	3,154
		5-1	125	563	1,264	0,101	148,62	-0,100	-	0,100	1,264
	I	4-7	125	53	-4,611	-0,691	119,09	-0,100	0,047	-0,055	-11,664
						0,067 59 = -	666,64 0,100 .		(*) ¥		7
CARA	CTERIS	TIQUE .	DES MAI	2265	4°4PP.	ROXIMA	1710N	4° CO	RRECT	104	DEBIT
Nº 0E YA/LLE	MADJ	CONOUNE	DVAT46TRE	Le (m)	(P(s)	1.H= rQ0	2 M OGO	C P.M	CHA	70TAL	Q (4/5)
		, -,									
J	zż	7-4	125	74	15,058	1,624	215,65	-0,006		-0,006	15,092
	24	4-3	125	53	11/2 34	0,698	119,64	0,006	0,011	0,005	11,659
1		3-2	125	472	4,842	1,639	246,15	-0,006	-	0,006	12,652
		2-1	125			-1,071	1055,00	-0,006	-	0,006	-4, 818 -5,518.
				1		0,013	2018,14				
						49=-0,0	906				
_					Ì			¥		T	
ZI.		7-6	125	143		0,153		-0,011	-	0,011	8,313
1		6-5	125	483		0,465		-0,011	-	-0,011	3,143
	x	5-4	125	563 55 -	1,264	0,087	137,72	0,011	0,006	0,005	1,263 11,669.
						0,007	64117				
						,00					

DANS LES DIFRERENTS

REPARTITION DEFINITIVE DES DEBIT DENS LES DIFFERENTS TRANCONS ZONE BASSE. A ET B SOUS ZONE A, B.

Nous avons utilisé un ensemble d'accessoires pour l'équipement de notre réseau de distribution:

-Ventouse:

.On prévoit des ventouses à chaque point haut afin d'éliminer les contonnements d'air qui peuvent déteriorer la canalisation et perturber l'écoulement.

-Décharges:

.Aux points les plus bas on place des robinets pour permettre la vidange. Ils seront placés dans des regards et l'eau sera évacuée dans un réseau d'assainissement ou d'irrigation.

-Bouches d'incendie:

.On raccorde les bouches et poteaux d'incendie sur les conduites capables d'assurer un débit minimal de 17l/s avec une pression au sol de 10 m d'eau, ces poteaux doivent être espacés de 200 à 300 m les uns des autres et répartis suivant l'importance des risques à défendre.

-Pièces spéciales du réseau.

Sont des pièces de raccordement normalisées parmi ces pièces on désigne:

Les tés à 2 ou 3 emboitements qui permettent la prise des canalisations secondaires des conduites de diamètres différents. Les croix à 4 emboitements qui jouent le même rôle que les tés.

.Les coudes à 02 emboitements à différents angles qui permettent d'effectuer des changements de direction.

CHAPITRE -VI-

1. BRISE - CHARGE

11.-Description du brise-charge et leur utilité.

Les brises de charge à surface libre sont des types simples de réducteurs de pression. Ils permettent l'alimentation d'une partie basse pression à partir d'un étage à pression sensiblement plus élevée.

Les brises charges comportent des obturations à disque sous capot ou à disque noyé. Ces disques sont actionnés par l'intermédiaire d'un palonnier qui est lui même commandé par un flotteur.

Dans notre étude, notre choix s'est fixé sur un obturateur à disque sous capot car ils ont :

-un fonctionnement progressif et sans heurt; -une résistance à l'usure et à la cavitation.

1.2-Dimensionnement du brise-charge.

Le dimensionnement du brise-charge nécessite la connaissance des ordonnées suivantes:

- * La hauteur statique Hs susceptible d'être appliquée sur l'appareil;
- * Le débit maximal de l'adduction à équiper;
- * La charge résiduelle Hr sous laquelle l'appareil doit laisser passer de débit Q.

Le diametre de l'obturateur doit être suffisant pour permettre l'écoulement du Jébit sous la charge résiduelle hr qui est égale à la charge statique diminué de la perte de charge de la conduite * Pour un obturateur à disque sous capot:

* Pour un obturateur à disque noyé:

Ø = Diamètre de l'obturateur en (mm)

Q = Débit transit en(l/s)

Hr = Charge résiduelle.

La puissance maxomale P à dissiper dans une chambre de rupture située à l'extrémité d'une conduite en commande par l'aval est donnée par les formules suivantes, selon les valeurs relatives de la charge statique Hs et de la perte de charge DHr de la conduite pour le débit Q on a

./.

$$DH \leq \frac{Hs}{3}$$

$$P = Q (Hs-DHr)$$

$$DH \geqslant \frac{Hs}{3}$$

$$P = \frac{Q.Hs}{195VDHr}$$

avec (P en ch); (Hs et Hr en m); (Q en l/s).

Le volume nécessaire à la dissipation d'énergie est de :

$$Vdiss = \frac{P}{10} \quad Obturation sous capot$$

Vdiss =
$$\frac{P}{3}$$
 Obturateur noyé.

2. Calcul des pertes de charge :

- Les calculs des pertes de charge des tronçons.

Sont calculées dans le chapitre distribution (dimensionnement de la conduite d'amenée page ().

Ces pertes de charge serviront pour le calcul de la brise charge. Les autres pertes de charge seront calculées de la même façon.

* Zône moyenne :

Fc = 0.034302

DHT = 8,30

Q = 16,62L = 54

V = 0.94

D = 150

FN = 0.033678

Fc = 0.035332

DH = 0.63

$$DH_T = 8,30 + 0,63 + 0,22 + 0,48 = 9,63 \text{ n}$$

2.4 Calcul de la brise charge :

- * Zône moyenne :
 - La brise charge est placée à la côte 320 m
 - Niveau max dans le réservoir = 360m
 - Charge statique Hs = 360 320 = 40 m
 - Charge résiduelle Hr = 40 9,63 = 30,37 m
- * Diamètre de l'obturateur :

$$0 > 22 \sqrt{\frac{Q}{V_{Hr}}} = 22 \sqrt{\frac{4,24}{\sqrt{30,37}}} = 19,30 \text{ mm}$$

On choisira un diamètre égal à 20 mm.

* Volume de dissipation :

Pour déterminer le volume de dissipation d'énergie en doit déterminer tout d'abord la puissance à dissiper. Or la puissance à dissiper est exprimée selon les cas exposés par les formules précédement.

$$\frac{\text{Hs}}{3} = \frac{40}{3} > \text{DH}_{T} = 9,63 \text{ donc la puissance sera calculée}$$
:

Par la formule
$$P = \frac{Q(Hs-DHr)}{75} = \frac{4,24(40-9,63)}{75} = 1,72 \text{ C.h.}$$

Le volume de dissipation d'énergie est de :

V diss =
$$\frac{P}{10} = \frac{1.72}{10} = 0.172$$

1.

On choisi un volume de 0,50 m3.

* Zône basse :

./.

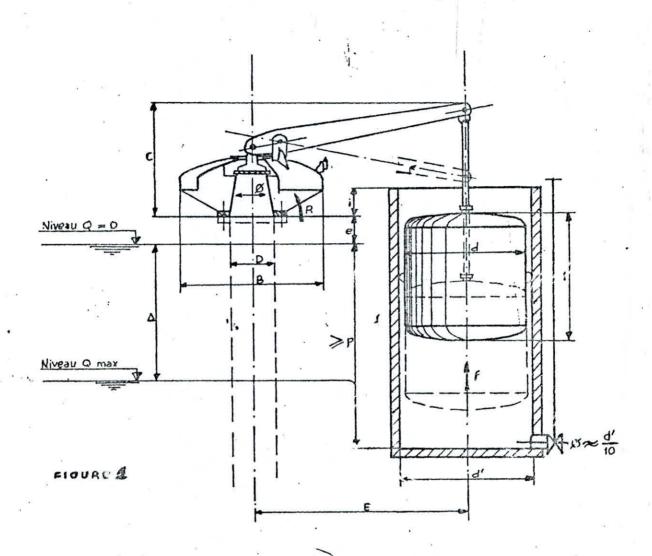
- La brise charge est placée à la côte 270 m
- Niveau max dans le réservoir = 304 m
- Charge statique Hs = 304-270 à 34 m
- Charge résiduelle Hr = 34-1,83 = 32,17 m
- * Diamètre de l'obturateur :

$$\emptyset = 22 \sqrt{\frac{23,14}{\sqrt{32,17}}} = 44,44 \text{ mm}$$

On choisira un diamètre égal à 50 m.

* Volume de dissipation :

$$\frac{Hs}{3} = 11,33 > DH'$$


$$P = \frac{Q(Hs-DHr)}{75} = \frac{23,14(34-1,83)}{75} = 9,93 \text{ C.h}$$

Le volume de dissipation d'érergie est de

V diss =
$$\frac{P}{10}$$
 = $\frac{9,93}{10}$ = 0.99 m3

On prendra un volume égal à 1m3.

obturateur à disque sous capot

CHAPITRE -VII-

I. PROTECTION DES CONDUITES CONTRE LE COUP DE BELIER :

1.1. Introduction:

Le coup de belier est un phénomène oscillatoire causé par :

- -l'arrêt brusque, par disjonction inopinée d'un ou plusieurs groupes électro-pompes alimentant une conduite de refoulement.
- -le démarrage d'une pompe.
- -la fermature instantanée ou trop rapide d'une vanne au bout d'une conduite de refoulement.

Donc les conduites de refoulement doivent être examinées et étudiées afin de les protéger contre les coups de belier.

Le coup de belier dont la brutalité est susceptible d'entrainer des ruptures de tuyaux, peut atteindre des valeurs très élevées, et qui sont parfois égales à plusieurs fois la pression de service sur le réseau à basse pression.

Notre étude est d'étudier ce phénomène pour limiter ses effets. Pour cela, nous proposons des réservoirs d'air.

2. ETUDE DU RESERVOIR D'AIS (ARRET-BRUSQUE DE LA POMPE) :

L'utilité du réservoir d'air, est de protéger l'installation contre la dépression et la surpression maximale dont les valeurs sont déterminées après avoir fixé, au préalable les caractèris-tiques du réservoir d'air, c'est-à-dire, le volume d'air Uo en régime normal; ainsi qu'un dispositif d'étranglement.

Pour ce qui est du dispositif d'étranglement, l'expérience montre qu'il y a intérêt à avoir une grande perte de charge au retour de l'eau qu'à son aller. Pour cela dans cette étude nous proposons une tuyère qui fonctionnera au retour de l'eau comme un ajustage de BORDA qui permet, théoriquement d'avoir une perte de charge quatre fois plus grande au retour qu'à l'aller; ceci entraine un rapide amortissement des asciltations ainsi qu'un réduction du volume d'air dans la cloche.

Dans cette étude nous avons décider de calculer les caractéristiques du réservoir d'air pour amortir la masse d'eau débitée par le forage et qui reviendra sur la pompe en cas d'arrêt brusque de cette dernière.

2.1. Calcul du réservoir d'air :

Pour le calcul de ce dernier, nous utiliserons la méthode de BERGERON qui se fait par tatonnement et qui consiste à tracer l'épure de BERGERON afin de déterminer la surpression et les dépressions maximales.

En se fixant un volume d'air Jo en choisissant une vitesse (VP) qu'on devra repérer sur le graphique aprés les calculs, si non nous supposons une autre vitesse jusqu'à ce qu'elle coîncide avec celle, éxistante sur le graphique.

2.2. Arrêt brusque de la pompe :

C'esc par l'application de la méthode graphique de BERGERON que va être, déterminé, le réservoir d'air qui est un antibelier qui intervient dans la protection de la conduite de refoulement.

./.

2.2.1. Caractéristiques au refoulement :

Q = 23 l/s

L = 5000 m

Vo = 0,73 m/s

Hq = 135 m

 $0 = 0.2 \, \text{m}$

La vitesse du propagation :

$$a = \sqrt{\frac{K/P}{1 + \frac{K \cdot D_i}{E \cdot e_i}}}$$

a = Célérité de l'onde (m/s)

K = Coefficient de compressibilité de l'eau [K=2,15.10 Pa]

E = Module d'élacticité de la conduite [E= 2.10¹¹ Pa]

D_i = Diamètre intérieur de la conduite (m)

e = Epaisseur de la conduite [<math>e = 5 mm]

F = Masse volumique de l'eau [P = 1000 Kg/m3]

d'où

$$a = \sqrt{\frac{2,15.10^{9}.10^{-3}}{1+\frac{2,15.10^{9}.0,2}{2.10^{11}.5.10^{-3}}}} = 1226,7 \text{ m/s}$$

- Le temps d'un aller retour de l'onde est :

$$\theta = \frac{ZL}{a} = \frac{2.5000}{1226,7} = 8,15$$

- Le coup de belier peut atteindre la valeur maximale:

$$b = \frac{a \cdot v_0}{g} = \frac{1226, 7 \cdot 0, 73}{9,8} = 91,36 \text{ m}.$$

- cas de surpression :

$$Ho + b = 135+91,36 = 226,36 \text{ m}$$

- cas de dépression :

$$Ho - b = 135-91,36 = 43,64 m$$

La pression absolue dans le réservoir d'air est :

$$2g = Ho + 10 = 145 \text{ m}$$

Ou Ho est la hauteur géométrique d'élévation au droit du réservoir.

2.2.2. Pression dans le réservoir :

La nouvelle pression sera exprimée suivant la loi de POISSON.

$$(z_0+u_0) u_0^{1,4} = z_0^{1,4} \implies 7 = \frac{(z_0+s_0) u_0^{1,4}}{u^{1,4}}$$

Z = Pression dans le réservoir d'air

So = Perte de charge dans la conduite

Zo = Pression initiale dans le réservoir d'air

U = Volume d'air à l'instant considéré.

2.2.3. Pertes de charge au niveau de la tuyère :

La perte de charge est différente suivant que l'eau monte dans le réservoir ou qu'elle redescende.

- Perte de charge à la montée de l'eau:

$$\frac{V1}{Vf} = \frac{D^2}{(\lambda \cdot d^2)} = K \quad \text{ou} \quad 15 < K < 20$$

d = 50 mm

$$\frac{0}{2} = 100 \text{ mm}$$

 λ = Coefficient de débit : λ = 0,92 pour une tuyère.

$$\frac{v_1}{v_f} = \frac{(200)^2}{0.92(50)^2} = 18.9 \text{ V}_f \implies v_1 = 18.9 \text{ V}_f$$

Dh₁ = c₁
$$\frac{V_1^2}{2g}$$
 ou V₁ est la vitesse dans la tuyère.

$$m1 = \frac{d^2}{0^2} = \frac{(0.92.(50)^2)}{(100)^2} = 0.21$$

$$m_1 = 0.21$$
 Abaque DUPONT . Tome II (2) $\approx c_1 = 0.62$

$$0h1 = 0.62 \cdot \frac{V_1^2}{2g} = 0.03163 V_1^2$$

Dans notre étude on suppose que le volume d'air en régime normal soit de Uo= 1,10m3 et que l'on dispose d'une tuyère de diamètre d = 50 mm incorporée dans une tubulure de diamètre D = 100 mm.

2.2.4. Augmentation du volume d'air dans le réservoir :

Le volume d'air dans le réservoir augmente quand l'eau monte dans la conduite . Le volume d'air diminue quand l'eau redescend.

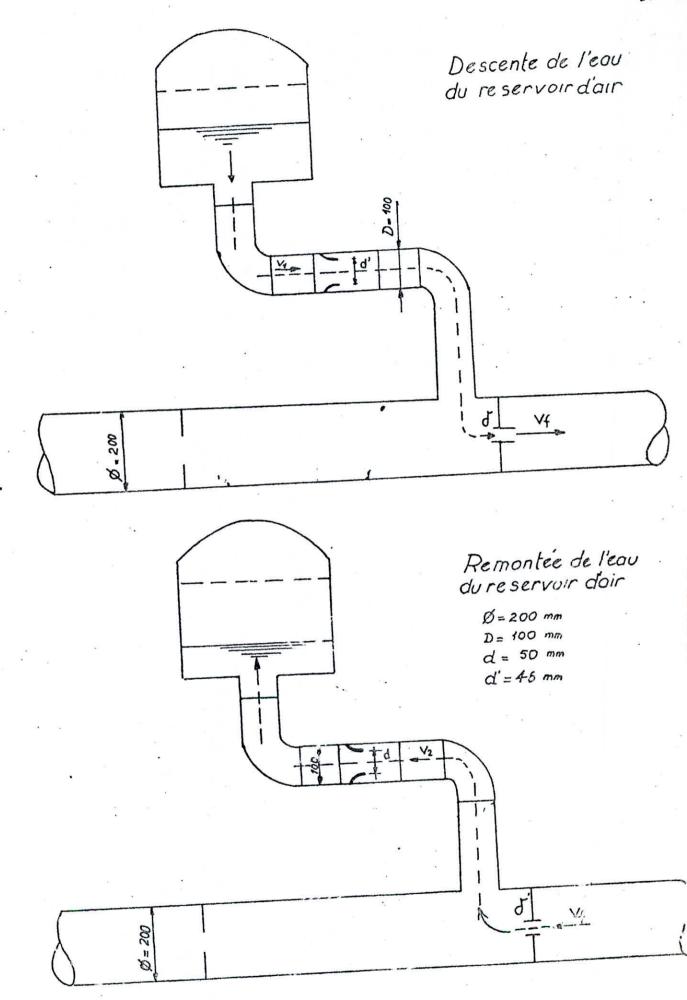
$$\delta V = Ao.Vm.0$$
; ou $0 = \frac{21}{a}$

$$Vm = \frac{Vfi-1+Vf}{2};$$

Au premier temps de l'écoulement $\forall m = \frac{Vo + Vfi}{2}$

Vo = Vitesse de l'écoulement avant la disjonction;

Vf = Vitesse finale choisie.


2.2.5. Volume d'air dans le réservoir :

U = Uo + DV ----> Quand l'eau monte vers le réservoir d'air (vidange du réservoir).

U = Uo - DU ----> Quand l'eau descend (remplissage du réservoir d'air).

Un= Un.1+ DU.

. 1 .

2.2.6. Pertes de charge dans la conduite de refoulement :

Ces pertes de charge sont représentés sur l'épure de BERGERON par la parabole classique qui n'est autre que la caractéristique de la conduite.

Dans l'application de l'épure de BEROERON, les pertes de charge sont supposées concentrées en un point.

Au départ de la pompe, comme s'il existait à cet emplacement un diaphragme fictif donnant la même perte de charge.

Donc ces pertes de charge doivent s'exprimer en fonction de la vitesse qui sera en ce point .

$$s = 1,15.f L · $\frac{V^2}{2g}$$$

En supposant un régime Turbulant rugueux; le coefficient de frottement f sera calculé d'après la formule de NUKUPADZE $f = (1,14-0,86 \text{ en } \frac{e}{D})^{-2}$

$$f = (1,14 - 0.86 \text{ fn} \frac{0.000\%}{0.2})^{-2} = 0.0237814$$

$$\{f = 4.10^{-4}\}$$
 $\implies f = 0.0237814$

La perte de charge dans la conduite de refoulement est

$$s = 1,15.0,0237814 \cdot \frac{5000}{0.2} \cdot \frac{v^2}{19,62} = 34,45 v^2$$

Soit en fonction de la vitesse finale Vf

2.2.7. Perte de charge à la descente de l'eau :

- La tuyère agit comme un ajutage de BORDA.

$$\frac{V_2}{V_f} = \frac{2 p^2}{d^2} = \frac{200^2}{0.5(50)^2} = 32 \implies V_2 = 32 V_f$$

$$m_2 = \frac{0.5 d^2}{0.2} = \frac{0.5.(50)^2}{100^2} = 0.125$$

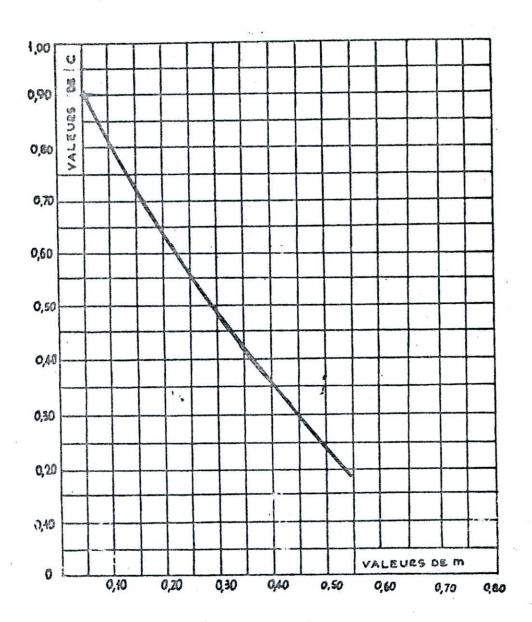
$$m_2 = 0.125$$
 Abaque Dupont Tome II \rightarrow $c_2 = 0.77$

$$Dh2 = C_2 \cdot \frac{V2^2}{2g} = 0,77 \cdot \frac{V2^2}{2g} = 0,03928 \cdot V_2^2$$

2.2.8. Pression dans la conduite :

La pression dans la conduite se déduit en négligeant la hauteur d'eau dans le réservoir d'air.

Z - DH1 quand l'eau monte


Z + DH2 quand l'eau descend

On calcul les pertes de chaque C correspondant à la vitesse Ví choisie la pression finale absolue dans la conduite, en aval du diagramme fictif s'obtient:

Z - DH1 - 8 (montée de l'eau)

Z + DH2 + 8 (descente de l'eau).

C'est par cette valeur de la pression que sera menée une horizontale qui coupera la droitc<u>a</u> et qui devra correspondre à la vitesse Vf fixée arbitrairement, si non les calculs seront recommencés avec une nouvelle valeur de Vf.

Ĺ

(C) DANS UNE TUYERE.

2.2.9. Construction de l'épure :

Il s'agit du diagramme de Bergeron ou l'axe des abscisses est gradué selon les vitesses de l'eau.La droite a part du point de coordonnées (Vo,H+10), Vitesse de pression absolue de l'écoulement normal (pertes de charge non comprises) l'intersection de la droite $\frac{a}{gS}$ se réflèchit sur l'horizontale passant par la valeur de la pression regnant dans la conduite donne un point à partir duquel la droite $\frac{a}{gS}$ se réflèchit sur l'horizontale passant par la valeur duquel la droite $\frac{a}{gS}$ se réflèchit sur l'horizontale passant par la valeur rZo = Ho + 10.

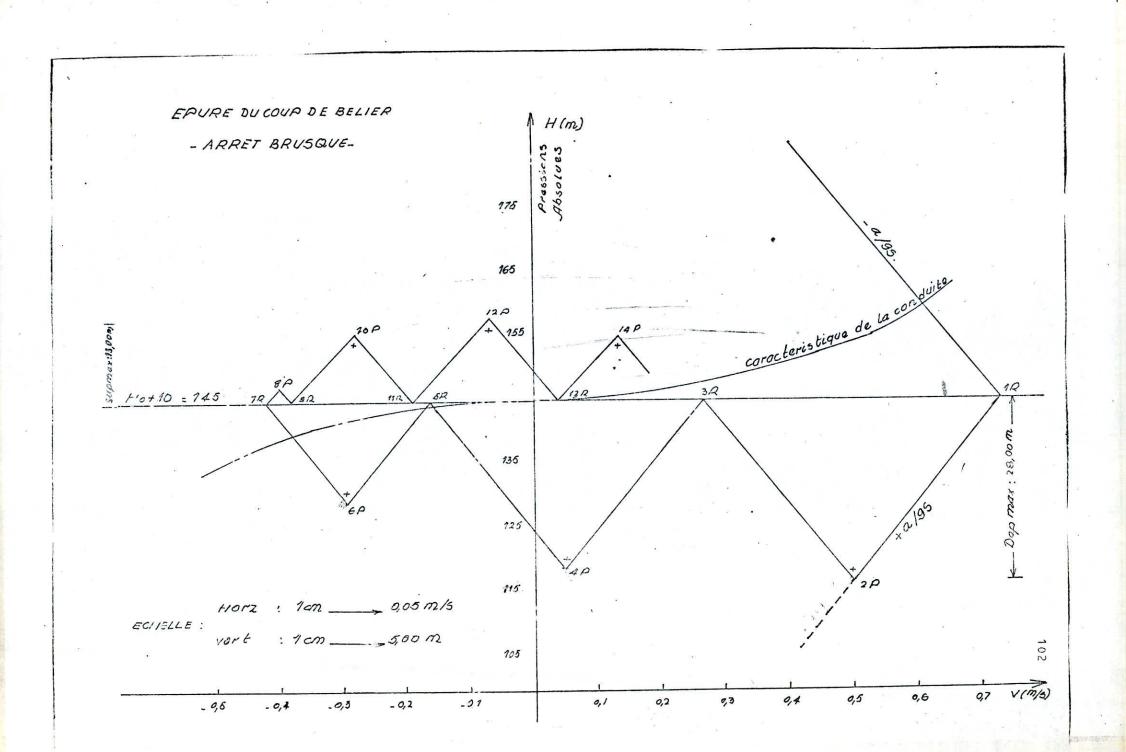
La construction de l'épure se poursuit de la même façon et ce durant un aller-retour de l'eau (Période ou l'intensité du coup de belier).

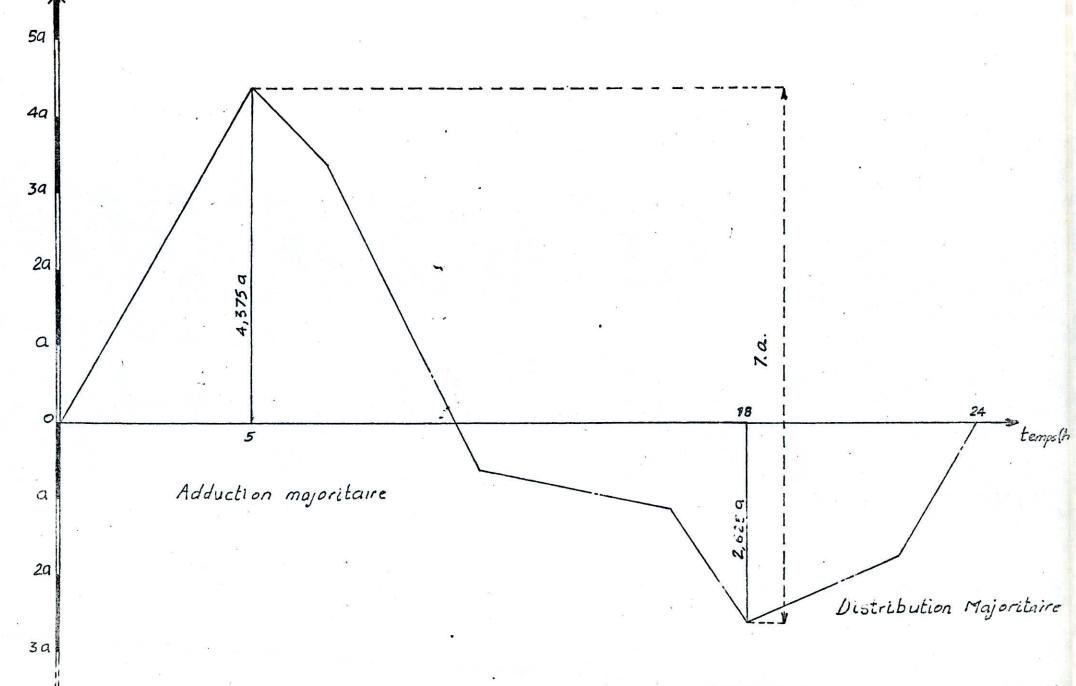
2.2.10. Pente de la droite
$$\frac{a}{gS}$$
:

$$D = 0.2 \text{ m} \longrightarrow S = 0.0134 \text{ m}^2.$$

 $g = 9.8 \longrightarrow a = 1226.7 \text{ m/s}$

$$\frac{a}{98} = \frac{1226.7}{9.8.0.0134} = 3986.42 \text{ m}.$$


Si l'échelle des pressions est graduée à raison de 1cm pour 5m; 3986,42 seront représentés par 797,28 m.


L'échelle de débit :est graduée à raison de 0,00157 . Pour 1 cm, 1m³/s sera représenté par 636,94.

d'ou tg =
$$h = 797,28 = 4;2517$$

 $636,94$
 $\approx \approx = 51^{\circ},38$

2.2.11. Protection des conduites au démarrage:

Tout comme l'arrêt brusque, la conduite de refoulement doit être protégée au démarrage du groupe. Le coup de belier à l'arrêt brusqué étant plus dangereux qu'au démarrage, nous nous sommes limité à l'étude du coup de belier, à l'arrêt. Quand au démarrage il sera imperatif d'opérer à un démarrage à vanne fermée qu'on ouvre lentement.

TABLE DE CALCUL

FORAGE RESERVOIR ZOIVE BASSE (ARRET BRUSQUE)

70	60	50	40	30	20	0	0	`	Intervalles du temps O
0,010	-0,044	- 0,086	-0087	-0,030	0,070	9.57	0	2	Variation du volume AU = 5·Vm·8 = 0,2559.Vm.
1,090	080%	4124	4210	1,297	1,327	1257	0017=97	Çı	Valume d'air
155,680	551,753	1.49,176	134,600	122,080	118,237	127,560	755358	A	Préssion dans le reserva d'air Z - (Zo+So) Uo4 - 175,7 U/14
2,55/	2,080	8,960	12,640	9,120	0,945	9,450	1	S	Vitesse dans Latubulaire de branchement M: 18,9. Vf 10: 32,0. Vf.
0,205	0,170	3,150	6, 276	3.267	0,028	2,820	ı	0	P.D.C dans la Euyere. 17: $\Delta k_1 = c_1 \frac{V_1^2}{29} = 0,03/63 \cdot V_1^2$ D: $\Delta k_2 c_2 \frac{V_2}{29} = 0,03928V_2^2$
155,700	157,923	152,326	140,876	125,347	118,209	124,740	155,57	7	Pression dans la conduite aver P.D.C 11: Z-Abi D: Z+Ab2
0,635	0,147	2,732	5, 437	2,231	0,087	8,710	18,57	æ	P. D.C refoulement 8 S = 34,85.Vf
155,035	158,070	155,059	146,313	128,178	118,122	116,030	135	9	Pression dans la consuité sans P. D.C M.Z-Dh,-S D:Z+Dh2+S
0,135	- 9,065	-2,280	-0,395	-0,295	0,050	0,500	Vo = 0,73	6	Vitesse lue sur le graphe. Vf.
3,085	-0,172	-0,337	-0,300	-0,117	0,275	0,615	ı	"	Vitesse moyenne Vm
14/0.	12.0	401	SD	60	Q B	2 D	12	/2	Désignation du Point.
0,135.	-0,065	-0,280	. 1395	- 0,285	-0,050	0,500	ı	13	Vitesso finale choisie Vf.

-CONCLUSION :

Suivant nos calculs, on remarque que pendant la phase de dépression, le volume d'air est 1,10m3. A la fin de la dépression elle passe à 1,327m3 et la pression dans la conduite tombe à 118,209 m tandis que pendant la phase de surpression le volume d'air passe à 1,080m3. A la fin de la surpression la pression dans la conduite monte à 157,923m. D'aprés les calculs effectués on voit que l'air peut occuper un volume maximal de 1,327m3, puisque l'air occupe le volume, il doit en resté de l'eau dans le réservoir, pour cela nous proposons de choisir un volume de 2m3 et dans cette étude on prendra une conduite qui peut supporter jusqu'à 16 bars.

Pour la vidange nous pouvons utiliser un robinet-vanne.

CHAPITRE -VIII-

I. PROTECTION DES CANALISATIONS CONTRE LA CORROSION :

Les phénomènes de corrosion sont des réactions chimiques ou électrochimiques, qui se manifestent à la surface de séparation métal-milieu ambiant. Ce sont généralement des réactions d'oxydation.

Si le processus de corrosion est trés important, il peut provoquer des destructions de la canalisation, entrainant une diminution de l'épaisseur de la conduite, et même parfois une perforation de celle-ci donc les tuyaux métalliques, et surtout les tuyaux en acier, doivent être soigneusement protégés contre la corrosion.

Pour cela nous préconisons donc les protections suivantes:

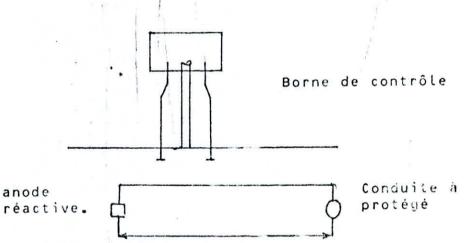
- Protections externe;
- Protection interne.

1.1. Protection externe:

1.1.1. Enrobage.

Ces conduites doivent être convenablement revêtues d'une enveloppe en laine de verre et de la bîtume et on doit assurer la conduite de cet enrobage au droit des joints.

1.2. Protection cathodique:


Il peut y avoir des défauts d'isolation de la conduite qui rendent la protection cathodique nécessaire.

Pour cela la protection cathodique consistera:

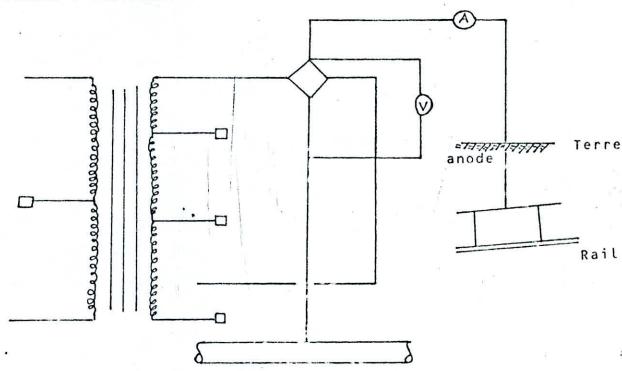
 soit à constituer avec un métal électronégatif que le fer une pile où le fer jouera le rôle de cathode; - soit à relier la conduite d'une part à une source d'énergie électrique extérieure (Borne négative) et d'autre part à une anode enfouie dans le sol et destinée à se corroder.

1.3. Protection par anodes réactives:

Cette méthode consistera à relier de place en place la conduite à une pièce de métal plus électronégatif que le fer (Zinc ou magnésium) de façon à former des piles dont la cathode est la canalisation. La pose des anodes doit s'effectuer dans les sols pour faciliter le passage du courant, mais il est préférable de choisir les lieux susceptible de retenir les eaux (sols imperméables) les anodes doivent être posées de 2 à 3 mètres environ de la conduite.

Ce dispositif convient pour la protection des troncons de petits diamètres et de faibles longueurs, car il ne nécessite pas un nombre important d'anode.

En présence de courant vagabondo, ce procédé ne convient pas.


1.4. Protection par soutirage de courant:

Cette méthode consiste à provoquer la chute de potentiel de la conduite. A partir d'une source électrique de courant continu (courant alternatif redressé) on relie la conduite à la norne négative de cette source, la borne positive était raccordée à de vieux rails disposés à une profondeur environ de 1,20 m.

La distance minimale séparant la conduite aux rails soit de 50 m environ.

Dans ce cas les rails (Anode) se corrodent au profit de la conduite (cathode).

SCHEMA D'INSTALLATION

1.5. Protection interne:

Pour éviter tout risque d'oxydation il sera recommandé que les conduites soient revêtues intérieurement d'un enduit par exemple: par une peinture bîtumineuse.

2. POSE DES CONDULTES .

2.1. Pose des conduites en tranchée :

Cette opération s'effectue par tronçons successifs en débutant par les points hauts de façon à éviter s'il éxiste, l'écoulement naturel d'eau d'infiltration.

La largeur de la tranchée doit être telle qu'un homme puisse y travailler, des élargissements de la tranchée appelée niches se font au niveau des joints pour faciliter le raccordement ou la soudure. La largeur du fond (E) sera égale à E=D+2x0,30(m). Ces niches seront séparées d'une distance de 40 m. La profondeur de fouille dépend du diamètre de la conduite, de la température du lieu -(maximal-minimal)-.

$$(h > D + 0.80 (m))$$

Le fond de la tranchée est choisi de telle manière que la température de l'eau reste constante afin d'éviter les dégâts qui pouront être causés par le gel et de protéger la conduite contre les sollicitations des charges mobiles.

La protondeur est recouverte d'un lit de pose de 0,20 m.

Le lit de pose doit être constitué soit en gravier dans le terrain ordinaire, soit des pierres cassées qui servent de drains dans les terrains rocheux ou imperméables. Le remblai se fait d'une succession de couches soigneusement tassées et arrosées. Nous préconisons un remblai de gravier naturel afin d'éviter la corrosion pour notre conduite en acier. Lorsque le remblai atteint 0,2 m au dessus de la génératrice supérieure de la conduite, le reste est exécuté à l'aide de tout venant, l'angle d'inclinaison de la fourille est = 60° pour la section trapozoidale, afin d'éviter les affouillements.

$$I = ctg 60^{5} = 0,577$$

La section A = (B + Ih) hVolume du déblai V = AL = (B = Ih)hl.

B = Largeur du fond de fouille.

h = Profondeur de la fouille.

l = Longueur de la tranchée.

I = Inclinaison du talus.

DEUXIEME PARTIE

ASSAINISSEMENT

CHAPITRE -I-

I. INTRODUCTION :

A cause des éxigences sanitaires, et en faveur de l'évolution socio-économique en Algérie, l'assainissement de chaque agglomération consiste à évacuer par voie hydraulique le plus rapidement possible et sans stagnation, les eaux usées d'origine domestique et pluviale de telle façon que ces eaux évacuées ne puissent souiller l'environnement.

Ainsi c'est sur cette base de recommandation que notre étude se fera .

2. SITUATION EXISTANTE :

averses, d'ou innondation.

Le réseau neuf posé recemment en (1977) consiste en :

.Un collecteur principal qui longe l'Oued DJEMAA et qui s'achève en une fosse septique avant le reget en milieu naturel.

.Quatre (04) collecteurs internes ascurent en système unitaire l'évacuation des eaux pluviales et usées de Aomar gare. Ce réseau se trouve souvent chargé surtout en période de fortes

3. TOPOGRAPHIE :

Le terrain présente des pentes importantes, dans la direction Nord-Sud, les pentes sont en moyennes de 10 %.

4. CHOIX DU SYSTEME :

Etant donné que le terrain présente des pentes fortes, celles-ci permettent une évacuation directe des eaux pluviales par voies superficielles (les fossées et l'Oued n'est pas éloigné des points collectés.

Les extensions prévues dans le cadre de P.U.D. seront réalisés d'ou le réseau unitaire existant en aval servant d'éxutoir sera saturé s'il reçoit les eaux pluviales de la partie amont.

Pour ne pas arriver à cela nous proposons dans cette étude de réaliser un réseau séparatif pour les collecteurs à projeter; les eaux pluviales seront évacuées par voies superficielles. De plus nous proposons de réaliser un déversoir d'orage pour dégager le surplus des eaux pluviales en période de charge.

Ces collecteurs en aval, se joindront après le déversoir au collecteur éxistant, ceci pour utiliser dans la mesure du possible les collecteurs dont le réseau a été posé en 1977.

CHAPITRE -II-

I. DEBITS DES EAUX USEES :

Dans cette étude en estime à 80 % la proportion d'eau évacuée par rapport à l'eau distribuée. Les valeurs des débits, comprennent ceux des usagers domestiques et aussi non domestiques telles que l'administration, les collectivités, les établismements d'enseignement etc...

1.1. Valeur de consommation en eau :

Qm = Débit moyen journalier 2001/j/hab.

Qmm = Débit moyen au jour le plus chargé Qmm = 1,2*200 = 240 l/j/hab.

Valeur de rejet à l'égout:

Qmax : Débit de pointe

$$Qmax = Qmm * P* (l/s) ou$$

$$P^* = 1.5 + \frac{2.5}{V_{Qmm}} \le 4$$

Q'mm = 0.8*240 = 192 l/j/hab.

Pour chaque tronçon nous aurons:

Les eaux usées à évacuer:

HORIZON	POPULATION	Qmm	Qmax	
2010	8069	17,93	37,48	

./.

REMARQUE :

Quand à la répartition des débits, elle est déterminée selon les prévisions de P.U.D. en se basant sur les surfaces à desservir par chaque tronçon: il a été défini deux types -02de densité, forte et faible. Chaque superficie planimétrée sur
le plan d'urbanisme et classée d'après les caractéristiques
de densité, Pour trouver les nombres d'habitants et ainsi le
débit par tronçon voir les tableaux de calcul.

2. CALCUL HYDRAULIQUE DES RESEAUX :

Pour les calculs hydrauliques nous avons utilisé la formule de CHEZY qui servira de base au dimensionnement des collecteurs.

 $V = C V_{R}$ dans laquelie

I = Pente du collecteur

V : Vitesse d'écoulement (m/s)

R = Rayon hydraulique

$$C = \frac{87}{1+8} = \frac{87 \sqrt{R}}{\sqrt{R} + 8}$$

La valeur de **%**, coefficient de BAZIN, dépend de la rugosité de la conduite.

2.1. Réseau séparatif :

Pour le débit des eaux usées à évacuer on tient compte seulement du débit de pointe.

Le coefficient **%** de la formule de BAZIN peut être pris égal à 0,25

d'ou

./.

$$c = \kappa R^{1/6}$$

$$V = K R^{2/3}, I^{1/2}$$

$$Q = V.A (m3/s)$$

K : Coefficient de rugosité

K = 70 (collecteur en béton avec plusieurs branchements).

Dans laquelle

Rayon hydraulique $R = \frac{A}{P}$ (m)

A = Surface mouillée

p = Périmètre mouillé

I = Pente hydraulique m/m

Comme les valeurs des débits ne sont pas grandes on a obtenu un réseau de section homogène de 250 mm de diamètre avec l'utilisation minimum du diamètre choisi.

2.2. Réseau unitaire :

. / .

Pour le débit à évacuer, on tient compte du débit d'eau pluviales plus le débit moyen du mois de pointe de l'année des eaux usées.

2.2.1. Calcul des débits pluviaux :

Les débits véhiculés par chaque tronçon sont calculés suivant la superficie du bassin d'apport.

Q = C.i.A ou: -C : Coefficient de ruissellent égal à 0,4 pour Aomar gare.

-i : Intensité de la pluie.

-A : Superficie du bassin d'apport (ha)

Le calcul du réseau unitaire a été effectué pour une période de retour de 2ans, la relation fréquence, durée, intensité sont données par la pluviométrique de la ville d'Aomar.

-Durée de la précipitation t = 15mm

- -Période de retour 2 ans
- -Fréquence de dépassement n = 1/2 = 0,5
- -Intensité de la pluie C=63 mm/h

Ces valeurs nous ont été fourni par la station météologique de Tizi-Ouzou.

2.2.2. Calcul des débits de pluie:

$$L = \frac{\text{Hauteur}}{\text{Dur\'ee}} = \frac{\text{N}}{\text{T}} \quad (\text{mm/min})$$

A partir de l'intensité ioncalcul la précipitation

$$r = \frac{10.000 \text{ (l/ha:mm)}}{60 \text{ (s/min)}}$$
 . λ (mm/min) = 166,7 λ (l/s/ha)

d'ou
$$4 = 63$$
 mm/h soit $\frac{63}{60} = 1,05$ mm/min

$$\dot{\mathbf{L}} = \frac{10.000 \times 1,05}{60} = 175 \text{ L/s/ha}$$

3. VERIFICATION DES SECTIONS EXISTANTES :

En égard aux dépôts qui peuvent se former, le coefficient de la formule de BAZIN a été pris égal à 0,46 ainsi le coefficient de CHEZY peut être représenté par l'expression approximative -> C = 60 R 1/4 en écoulement gravitaire, il peut être fait appel a la formule de MANNING-STRICKLER pour le calcul de la vitesse d'écoulement :

$$v = 60 R^{3/4} . I^{1/2}$$

A partir du rapport des débits (∠) et cela à l'aide de l'abaque de BAZINE on détermine la hauteur de remplissage ains: que le rapport des vitesses

$$B = \frac{V_u}{V_{p_s}}$$
; $S = \frac{h}{H}$ d'ou

 $Vu = \beta \cdot V_{ps}$ (m/s)

h: Hauteur de rennlissage H: Hauteur de la conduite

h = 8.8 (mm)

) .

3.1. Vitesse d'autocurage :

La vitesse d'autocurage exprime la vitesse de l'eau pour le 1/10 àpleine section. Les vitesses d'autocurage se déduisent donc en multipliant la vitesse $V_{\rm PS}$ par 0,6.

$$(1/10 Q_{p_s}) = 0.6 V_{p_s}$$
 (m/s)

La vitesse fixée pour l'autocurage est de 0,6 m/s elle est conditionnée par V_{p_S} .

Remarque:

D'après le tableau de calcul, on doit réaliser un déversoir d'orage au point 11 du collecteur I pour dégager le surplus des eaux pluviales en période de charge. (voir planche N°

Il faut noter aussi que la construction d'une station d'épuration est importante ceci pour éviter la pollution de la nappe phréatique au niveau de l'Oued DJEMAA.

La station d'épuration devra être réalisée dans la partie aval de la future agglomération - à l'ouest au niveau de l'oued Djemâa à l'extérieur du périmètre urbain.

3.2. Dimensionnement du péversoir d'orage projeté :

Un déversoir est un ouvrage destiné à décharger le réseau d'une centaine de quantité d'eau pluiviales de manière à réagir sur l'économie en réduisant les dimensions du réseau aval; d'ou le dimensionnement de celui-ci se compose de :

- La hauteur du seuil de déversement;
- La longueur au seuil de déversement.

*3.2.1. Hauteur du seuil de déversement :

Le tuyau d'arrivage au déversoir d'orage à pour raractéristique:

- ·Le diamètre Ø (mm) 🧆
- -La hauteur d'eau H mm
- -pebit en pleine section Q_{p_s} (m3/s)
- -rébit par lemps de pluie Qp (m3/s)
- -Débit par lemps sec Q_{pu}

Comme on a pris le coefficient de dillution égale à 3 alors le débit qui sera évacué, et qui va acheminer dans le tronçon sera égale à :

$$q_{pu} = 34,43 \text{ l/s} = 0,03443 \text{ m}^3/\text{s}.$$

$$Qdiv = 0,03443 + 2 . 0,03443 = 0,10329 m3/s .$$

Le débit qui va vers le milieu 'n récepteur (Oued) soit égal : $Q_{\mu} = Q_{D} - Q div =$

$$Q_0 = 0.35503 - 010329 = 0.25174 \text{ m}^3/\text{s}.$$

0,10329 m
3
/s (débit transit dans le tronçon $D_{op} - C_{p_1}$).

*3.2.2. Calcul du niveau d'eau dans le tuyau d'arrivage.

$$Q_p = 355,03 \text{ L/s}$$
; $Q_{p_S} = 342,11 \text{ L/s}$
 $Q_p = \frac{Q_p}{Q_{p_S}} = \frac{355,03}{342,11} = 1,03 \xrightarrow{\text{Abaque}} X = 0,86 ...$

$$h = 6. D = 0.86 * 600 = 516 mm$$

-Par 3 X débit de temps sec

$$\lambda = \frac{Qd}{Q_{ps}} = \frac{103,29}{342,11} = 0,30 - \frac{Abaque}{} \Rightarrow \delta = 0,36$$
.

$$\rightarrow$$
 h = 216 mm.

. . .

-3% débit de temps sec, c'est-à-dire 103,29 l/s débit transit dans le tronçon D_{0p} - C_{p1} .

Pour 103,29 l/s (0600) a une hauteur de 216 mm dans le tuyau; donc la hauteur du seuil du déservoir hW = 216 mm.

./.

Qo =
$$\frac{2}{3}$$
 . N . b . $\sqrt{2g}$ ho $3/2$;
b = $\frac{3}{2}$ $\frac{Q_0}{N \sqrt{2g} \cdot ho^{3/2}}$; N = 0.6 pour le seuil du déservoir.
b = $\frac{3}{2}$ $\frac{0.25174}{0.6 \sqrt{19.62} \left(\frac{0.3}{2}\right)^{3/2}}$ = 2.44 mm

Toute fois, il faut affecterà la longueur b un coefficient de sécurité compris entre (1,5 ÷ 1,75) donc la longueur finale du déservoir sera égale à 4,15 on prendra b = 5m

*- Choix du type de tuyau:

Nous avons choisi des tuyaux en béton armé en évitant les stagnations pouvant donner naissance à l'hydrogène sulfure, ainsi qu'une bonne ventilation par l'installation de regards.

- Pose des conduites :

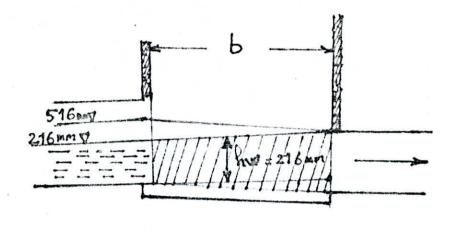
Les conduites seront enterrées en profondeur 2 2m, les conduites des eaux usées sont placées à (10 ou 25 cm) sous les conduites d'eau potable.

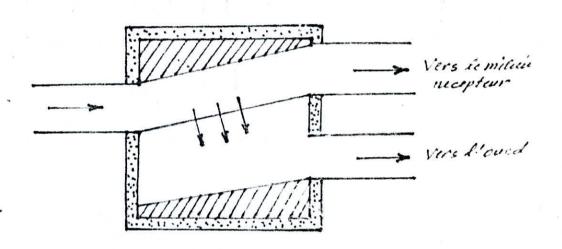
4. OUVRAGES :

* Etanchéité.

L'étanchéité d'un tuyau dépend de la compacité du matériau constitutif; l'étanchéité dépend essentiellement des joints, nous préconisons des joints en caoutchouc, ces joints sont étanches aux eaux extérieures et intérieures.

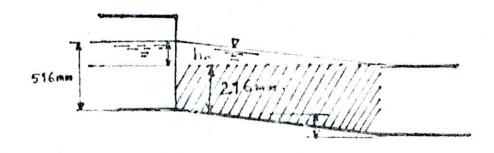
*.Regards.


Seront placés tous les 50 m, ils sont construit en vue de la surveillance et du nettoiement du réseau de canalisation, ainsi que pour la ventilation. ./.


*.Bouche d'égouts.

Servent à l'absorption de l'eau de surface de la rue et du trottoir garantissent une meilleur aération du réseau.

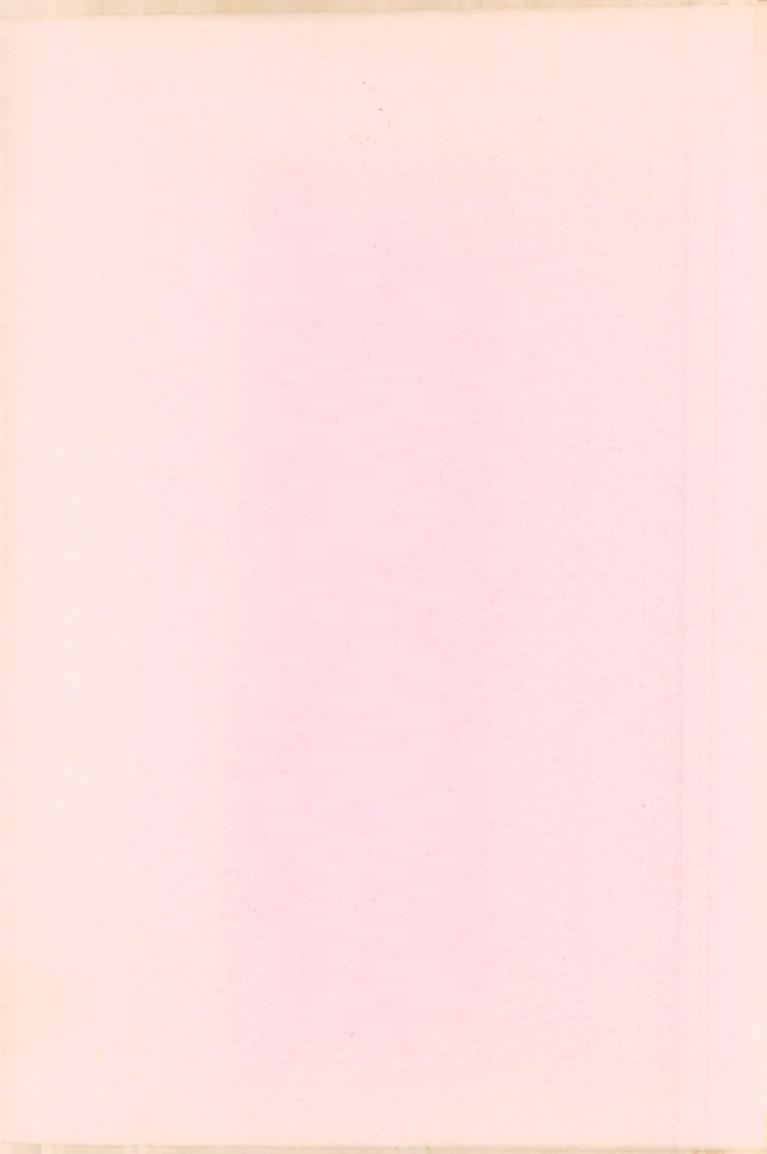
*CONCLUSION :


Nous ne pouvons pas affirmer que ce modeste travail soit directement éxécutable, mais néanmoins il pourrait servir d'avant projet.

Vue en plan:

calcul de la longueur du sevil de deversois

ho = 516-216 = 300mm


BIBLIOGRAPHIE

- HYDRAULIQUE URBAINE -TOME II-
 - A. DUPONT
- THEORIE DE LA LONGUEUR FLUIDO-DYNAMIQUE.
 - G. LAPRAY
- AIDE-MEMOIRE D'HYDRAULIQUE URBAINE.
 - J. BONNIN
- CATALOGUE DES POMPES.

JEUMONT SCHNEIDER.

- COURS D'ASSAINISSEMENT URBAIN .

UNIVERSITE DES SCIENCES ET DES TECHNIQUES -ALGER.

