13/83

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

U. S. T. H. B.

1 ex

ECOLE NATIONALE POLYTECHNIQUE

DEPARTEMENT HYDRAULIQUE

SUR _

Alimentation en Eau Potable des Villes Sidi - Aïssa - Aïn - El - Hadjel - Sidi - Hadjeres

4 PLANS

EN VUE DE L'OBTENTION DU DIPLOME D'INGENIEUR

Proposé par :

SONAGTHER

Etudie par :

LAYADI A. BOUDJELEL S. Dirigé par :

Dr. BEDNARCZYK

PROMOTION JANVIER 1983

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE U. S. T. H. B.

ECOLE NATIONALE POLYTECHNIQUE

DEPARTEMENT HYDRAULIQUE

PROJET DE FIN D'ETUDES

_____ SUR _____

Alimentation en Eau Potable des Villes Sidi - Aïssa - Aïn - El - Hadjel - Sidi - Hadjeres

> EN VUE DE L'OBTENTION DU DIPLOME D'INGENIEUR

Proposé par :

SONAGTHER

Etudie par :

LAYADI A. BOUDJELEL S. Dirigé par :

Dr. BEDNARCZYK

PROMOTION JANVIER 1983

A LA MEMOIRE DE NOS PERES

A

NOS PARENTS

EN TEMOIGNAGE DE TOUT CE QUE NOUS LEUR DEVONS ET DE L'AMOUR QUE NOUS LEUR PORTONS

A

NOS FRERES ET SOEURS

LEURS CONSEILS NOUS ONT TOUJOURS AIDE ET ECLAIRE DANS LA VOIE CHOISIE...

BON STANDER OF THE STANDER OF THE PROPERTY OF THE PROPERTY OF THE STANDER OF THE

A NOS PROCHES

The state of the s

A NOS AMIS

A NOS CAMARADES DE PROMOTICH.

AVEC TOUTE NOTRE AFFECTION

TOUS NOS PROPESSEURS :

Nous avons eu le privilege de nous compter parmis vos éleves.

Nous sommes heureux de vous exprimer notre profonde reconnaissance

- Au prometeur = Dr BEDNARC;YK
- Aux Responsables de la SONAGHTER, INGENIEURS ET PERSONNELS de la Division Technique.

A tous ceux qui ont participé de prés ou de loin à l'élaboration de cette Thése

A Monsieur DAOUD Said.

Veuillez trouver ici le témoignage de wotre gratitude.

SOMMAIRE

CHAPITRE / I - GETTERALITIES	100
1- Situation	
2- Oliman	
3- Présentation actuelle	
4- Schéma d'un puit de forage	
CHAPITRE / 2 - ADDUCTION	
1- Choix du tracé	10
2- Variantes proposées	57)
3- Considérations économiques	121
3.1-Etude des diamètres économique : Variante nº 1	
3.2- " " " * Variante n° 2	
CHADITRE / 3 - RESERVOIRS	
1- Utilités des réservoirs	
2- Projets	
2.1-Capacité des réservoirs	
2.2-Dimensionnement des réservoirs	1
3-Equipement des réservoirs	
CHAPITRE / 4 - PROTECTION DES CONDUITES	
1-Protection contre le coup de bélier	
2-Principe de calcul	
3-Mode de calcul du réservoir d'air	
CHAPITRE / 5 - CHOIX DES GROUPES	
1- Choix des groupes pour la variante n° 1	
2- Choix des groupes pour la variante n° 2	
3- Fonctionnement des pompes	
4- Automatisation	
5- Etude comparative des 2 variantes	

GRAPITUE / 6 - ADDUCTION GRVITAIRE

1- Emportance du cloix de lavagouite	64
2- Calcul des pertes de charges	64
3- Trace de la ligne peizométrique	68
4- Threedroup de bálier	72
5- Réservoir de mise en charge	76
5.1-Calcul de la capacité de ICIC	76
CHAPITRE / 7 - DISTRIBUTION	
1- Démographie	78
2- Ewolution des besoins en eau potable	78
3- Tableau récapitulatif des besoins de la ville de Sidi-Majers	79
4- Réseau de distribution	80
4.1-Calcul du réseau	80
CHAPITRE / 8 - PROTECTION CONTRE LA CORRESION	
1- Corrosion par formation de pile	91
2- Corrosion sous l'influence d'un installation électrique extérieure	92
3- Pratique de la protection cathodique	93
4- Protection des conduites contre les phénomènes divers	94

ABREVIATIONS

BN: Huméro des forages

R M C : Réservoir de mise en charge

R N: Réservoir de stockage (nº 1,2,3)

D. : Diamètre de la tubulure

d : diamètre de la tuyère

🕻 : Coéfficient de mottement

a : Célérite d'onde

Deq : Diamètre équivalent - R/1

V: Vitesse moyenne

Vo : Vitesse moyenne aréthmétique

Q : Débit

T.P: Côte du trop plein (m.N.C.A)

S.P: Station de Pompage

C: Moeud de Jonction

T: Résistance de la conduite

R.V: Robinet - Vanne

Hm : Hauteur manométrique

Hg : Hauteur géométrique

Le : Longueur équivalente

2: Rugosite absolue

J : Gradient de perte de charge

DH : Perte de charge totale

A : Section

2 Rugosite relative

C.M.P : Corecction propre à la maille

C.M.A: Correction de la maille ajacente

VF: Vitesse finale

CHAPITRE -- I

क्षाना भूगा

Thursda Gard :

Notre projet a pour but d'étudier une adduction mixte refoulement gravitaire pour les agglomérations de Sidi-Alssa, Sidi-Hadjeres et him El-Hadjel, ainsi une distribution pour Sidi-Hadjeres.

1-SITUATION :

Les villes de Sidi-Aîssa, de Aîn-El-Hadjel et de Sidi-Hadjeres font partie de la Vilaya de M'SHLA.

Sidi-Afssa est situé au nord-ouest de la ville al limite de la Wilaya de BOUTRAet DJELFA.

Ain-El-Hadjel est reliée à la cap'tale par Sour-El-Ghozlane cur la route Mationale n° 8.

Sidi-Hadjeres se trouve à une vingtaine de kilomètres à l'Estde Ain-el-Hadjel.

2-CLIMAT :

Les trois villes se situent sur les hauts plateaux qui sont caractérisées par deux saisons, en hiver très froid et en été très chaud.

3-PRESENTATION ACTUELLE :

Actuellement ces villes sont approvisionnées en eau par d'autre sources qui ne satisfont pas les besoins, en plus nous ne disposipas des données concernant leurs sources d'alimentations et leurs capacités de stockage.

D'après une étude approfondie, la seulle solution possible d'approvisionner les villes en eau potable, c'est à partir d'une zône de la ge se trouvant dans la commune de BIRINE (Wileya de DJELFA).

Pour cela notre étude consiste à établir un nouveau projet d'alimentation des villes précitées à partir des forages dont les essais de débits réalisés par la D.E.M.R.M. (Direction des Etudes du Milieu et de Rechurche Hydraulique) en 1978 ont donné les résultats suivants :

и° В !	HND !	HNS	! 🤈 !	H !	D	P.F.
В !	57,95	30,78	50	141,22	19 , 18	180
В 2	82,98	29,70	6	220,30	54 , 28	250
B 3	58,79	50,35	60	249,65	9,44	300
В 4	57,93	47,07	60	192,93	10,86	240

HND : Hauteur du niveau dynamique (m)

HNS : Hauteur du niveau statique (m)

Q : Débit du forage (P/S)

H : Hauteur de la nappe (m)

D : Rabattement (m)

P.F : Profondeur du forage (m)

N°-B : Numéro des forages

.../...

 $\mathtt{HND} = \mathtt{Harberr} \ \mathtt{Cu} + \mathtt{iver} \ \mathtt{Cy} + \mathtt{ci} \mathtt{ion}$ (M)

HMS = H phour fr throng pondione (M)

Q = Dabib on Dange (I/s)

H = Horizon de la mapa (<math>H)

B = Rabattement (H)

MB = Netar Cos Filesc.

4. SCHE MA D'UN PUITS DE FORAGE

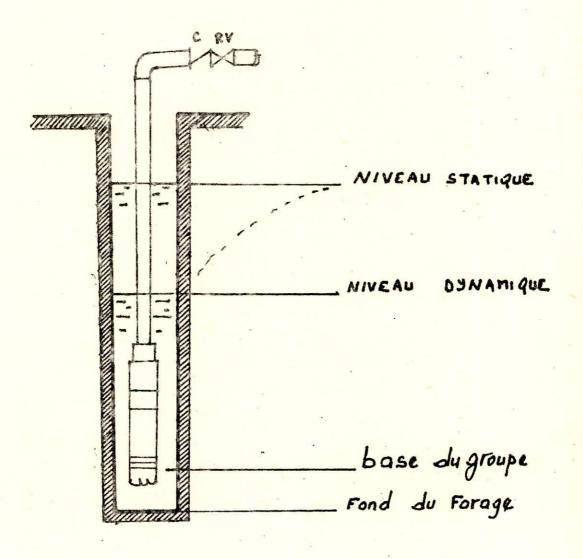


Fig. N=3

-CHAPITRE -2-

1) CHOIX DU TRACE :

Le tracé des conduites d'adduction a été étudié sur un plan d'état major à l'échelle 1/50000, en vue de l'établissement dans la conduite d'adduction il y aura lieu de tenir compte de certains impératifs que l'on s'éfforcera dans la mesure du possible de les respecter.

- Le tracé le plus court entre les forages et les reservoirs.
- Recherche d'un profil en long aussi régulier que possible.
- Dans la mesure du possible suivre les accotements des routes pour faciliter l'acheminement du matériel.
- Dans notre cas le topographie a imposé une adduction mixte refoulementgravitaire, car la distance entre la Zone de forage et les réservoirs de stockage est importante.

2) VARIANTES PROPOSEES:

2.1 : Généralités: En tenant compte des impératifs concernant la construction des conduites et les conduites données par la nature, nous proposons deux variants de refoulement pour l'aménagement de l'adduction de l'eau.

VARIANTE Nº 1: Refoulement direct des 4 forages (B4 BA B 3 B 2) au reservoir de mise en charge (RAM C) son schema est présenté sur la Fig nº 4

VARIANTE Nº 2:

Les forages refoulent sur une bache de station de pompage (S.P) qui a son tour refoule sur le reservoir de mise en charge (R.M.C) son schemas est représenté sur la fik nº 5.

3) CONSIDUATIONS ECONOMIQUES:

La fixation du diamétre et de perte de charge qui en résulte sera orienté en dernière analyse par des considuation d'ordre économique. Il est doné infénitif qu'il existe un diamétre économique pour la conduite de refoulement résultant d'un compromis entre les deux tendances survantés.

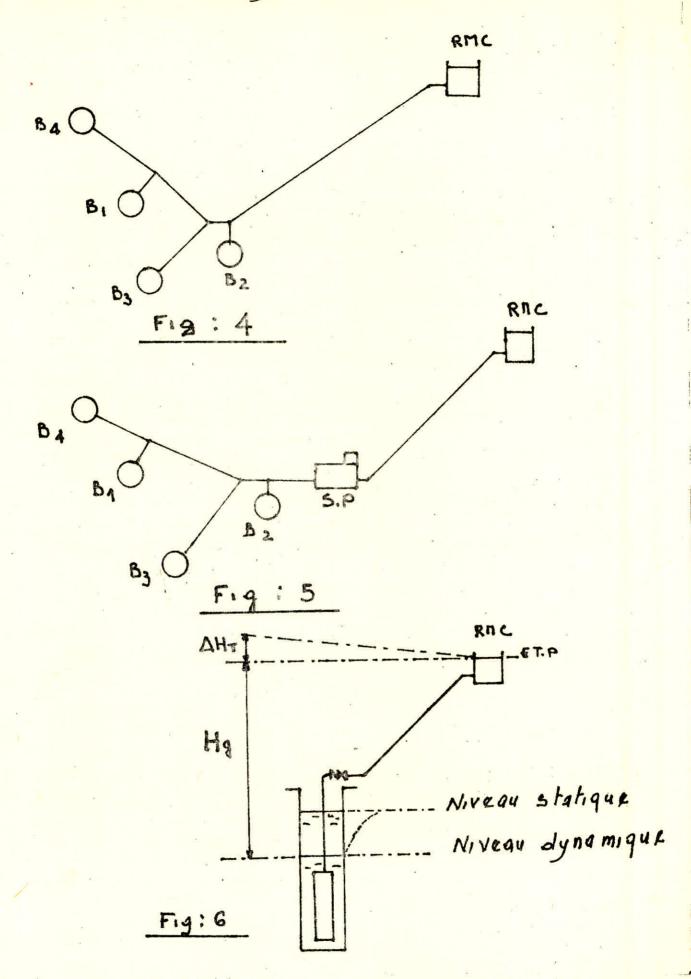
- Les fats d'amortissement de la conduite qui avissent avec le diamétre de la canalisation.
- Les frais d'exploitation de la station de pompage qui devissent quant le diamètre augmente.

PERTES DE CHARGES:

- es pertes de charges sont calculées suivant la formule de Darcy-WBISBACH. $J = \frac{9}{2} V^{\frac{1}{2}}$. J gradient de p.d.c par m.l

$$J = V$$
. J gradient de p.d.c par m.l

To Stre Ja 15 🐰 Bh: Diamètre de la conduite en (m)


V : Vitesse de l'eau en (m/s)

f: Coefficient de perte de charge qui est fonction du monbre de Reynolds et de la rugasite de la conduite E.Ce coefficienta été établi par coolbrok de la façon générale et par d'autre scientifique dans les diverses étufe détaillées, on le determine grace au programme pour T.I 59 (calculatrice). 1: V.5cos, ra cenematique de l'eau V=105 m²/5

.../...

$$R_e = \frac{4 \text{ } }{P \cdot \text{ } } = \frac{\text{V Dn}}{\text{J}}$$

Re = nombre de Reynolds.

Pour la rugosité , vue la faible distance entre les forages et R.M.C, nous prenons . = 104 m.

Les pertes de charge singulière dans un appareil quelconque varie essentiellement suivant le type de l'appareil (forme et le degré des surfaces interieures). La conduite d'adduction comprend un certain nombre de singularité (coudes, dérivations vannes, clapets, robinets ..etc..) obordon se contente d'estimer à 15% les pertes de charges singulières des pertes de charges liniaires.

- les cotes et les coordonnées des forages sont :

FORAGE	X	Y	Z
В 4	552 211,91	248.772,09	734;00
^B 1	\$\$5. 220 , 79	246.694,44	727,80
В 3	553.971,43	243.633,64	738,45
3 2	555.552,70	245.040,52	736,43

Calcul des hauteurs geometrique pour chaque forage V nº I

Le refoulement aura pour hauteur geometrique la différence entre le niveau du trop plein du reservoir de mise en charge et les côtes du niveau dynamique de chacun des forages (B 4,BI,B3 et B2) Fig - 6

La cote du trop plein du R.N.C étant fixé à 809 m NGA avec une hauteure d'eau de 4 métres par rapport a la côte étant 805 m. NGA.

FORAGE B4:

$$Hg = 809 - 676,07 = 132,93 \text{ m}$$

FORAGE B4:

$$Hg = 809 - 669,84 = 139,16 m$$

FORAGE B3:

$$Hg = 809 - 679,66 = 129,34 \text{ m}$$

FORAGE B 2:

$$Hg = 809 - 653,45 = 155,55$$
 m

HAUTEUR MANOMETIQUE:

Hm₁= Hg + DHT + 0,25 avec 0,25 m perte de charge dans l'espace annulaire du forage (d'aprés catalogue J. Schneider).

J = gradient de perte de charge par m/ liniaire

L = Longueur de la conduite (m)

PUISSANCE :

.../...

$$P = 9.81 \quad Q. \quad \text{Hm}, \quad \text{k w}$$

 $Q = \text{debit en } \mathbb{R}^3 / \text{s}$

n= Rendement du groupe .

Le prix de la conduite sera amorti sur 30 ans avec un taux d'intérêt de 8% correspondant pour une somme de 1 DA à une annuite de 0,09 DA.

Anuite =
$$\begin{cases} \frac{i}{(I+i)n-1} \end{cases}$$
 avec $i = 8\%$
 $n = 30$ ans
$$A = \begin{cases} \frac{0.08}{(1+0.08)^{-1}} + 0.08 = 0.09 \\ 0.08 = 0.09 \end{cases}$$
DE DES DIMMETRES ECONOMIQUE DE LA VARIANTE N° 1

Forage B h en première approximation nous determinons le diamétre économique d'aprés la formule de J. BONIN .

$$D = V - Q \cdot Q = 60 \text{ l/s}$$

 $D = V O_{9}O6^{4} = 0,245 \text{ m}$ soit D = 245 mm L = 2359 m

Diamètre normalisé supérieur 250 mm le choix définitif sera fait à la base d'un calcul économique en prenant les diamétres normalisés supérieur et inférieur. Tous les resultats de calcul seront représentés da s le tableau nº 2 :

TABLEAU Nº 2 : B4 - B.

FRAIS D'EXPLOITATIONS

D(mm)	J	L (m)	DH (m)	HmT (m)
200	0,01700	2359	85,84	219,02
250	0,005468	11	54,56	187 , 74
300	0,00220	11	45,70	178 , 88
350	0,00052	11	42,43	175,61

D(mm)	P=9,81.QHmT	Px24x Energie KwhAnnuel 365	[Frise de l'energie C=0,019DAKwh
200	169,62	1485917	282324
250	145,40	1273702	242003
300	138,54	1213591	230582
350	136,00	1191407	226367

FRAIS D'AMORTISSEMENT

D(mm)	Prix mlDA	L(n.	Prix de la	Conduite Annuité
200	,′138	2359	325542	29299
250	162	t t	382158	34394
300	216	11	509544	45859
350	301	11	710059	63905

D(mm)	F.D'AMORFISSEMENT	F.D'EXPLOITATION	(DA)
200	29299	282324	2852543
250	34394	242003	276397
300	45859	230582	276441
350	63905	226367	290272

Le diamétre économique est bien D = 250 mm

N.B: Le même principe de calcul sera appliqué pour tous les autres diamétres de conduites de refoulement à partir de la Zone forage jusqu'au reservoir de mise en harge.

FORACE B.: En première approximation on calcul de diamétre éconòmique d'aprés J. $D = \sqrt{Q} = \sqrt{0,110} = 0,332 \text{ m} = 332 \text{ mm}$.

FRAIS D'EXPLOITATION :

TABLEAU nº 03 B, - B 2

D(mm)	J	L(m)	A H T(m)	H mt =
250	0,017659	2821	91,49	230,9
300	0,006876	11	39,72	179,13
350	0,003180	.11	27,73	167,14
400	0,001632	11	22,70	162,11

D (mm)	P=9,81 QH	FMERGIE ANNUEL F* 24*365(Kwh)	PRIX DE L'ENERGIE @ =0,19 DA(Kwh)
250	154,99	1357712	257965
300	120,36	1054360	200328
350	112,30	983786	186919
400	108,92	954180	181294

FRAIS D'AMORTISSEMENT :

D(mm)	PRIX DU ml	L(m)	PRIX CONDUITE	ANNUITE
250	162	2821	457002	41 130
300	216	п	608383	54 755
350	301	11	849121	76 421
400	345	II	973245	87 592

.../...

D (mm)	FRAIS AMORTISSEMENT	FRAIX EXPLOITATION	TOTAL
250	41130	257965	299095
300	54755	200328	255083
350	76921	186919	263340
400	87592	181294	268886

EN VERTU DE CETTE ETUDE DE DIAMETRE D= 300 mm S'AVERE LE PLUS ECONOMIQUE

FORAGE B2:

En première approximation nous determinons le diamétre économique d'aprés la formule de J. BONNIN

D =
$$\sqrt{Q}$$
 Q = 0,176 m³/s
D = $\sqrt{0,176}$ = 0,420 m soit 420 mm
TABLEAU n° 4

FRAIS D'EXPLOITATION :

D (m)	J	L(m)	DH T(m)	HmT
350	0,00791	3650	3420	190,00
400	0,00415	11	1741	173,21
450	0,00220	11	8,15	163,95
500	0,00130	17	5,46	161,26

D (m)	P =9,81QH	ENERGIE ANNUEL P \$ 24×365(Kwh)	PRIX DE L'ENERGIE J = 0,19 DA Kwh)
3 50	16,21	148450	28 3 05
400	14,50	127020	24134
450	13,79	120764	22945
500	13,56	118 87 3	22569

FRAIS D'AMORTISSEMENT :

D(mm)	PRIX DU m(DA)	L (m)	PRIX CONDUITE(DA)	ANNUITE
350	301	3650	121 :7736	110814
400	345	11	1259250	113330
450	389	11	1419850	127787
500	432	- 11	1576800	141912

BILAN:

T	D (hh)	F.AMORTISSE INT	F.EXPLOITATION	TOTAL
	350	110814	28205	139019
	400	113330	24134	137469
-	450	127787	22945	150732
	500	141912	22569	164481

Le diamétre économique sero D= 400mm FRAIS EXPLOITATION:

10.00 = 0.740 = 0.010 = -47 = -47 = -0.00 = 0.00	1
D= /0,06 = 0,245 m soit D = 245 mm/ TAPCLEAU n° 5 B3 - B2	A
	distant.

D(mm)	o = , J :	L(m)	DH T	HmT
200 250 300 350	0,01700 0,005468 0,00220 0,0010	2172 11	59,87 31,07 22,91 19,91	189,46 160,66 152,22 149,50

D(mm)	ρ=9.81 QH	ENERGIE ANNUEL Px24x365(Kwh)	PRIX DE L'ENERGIE 0,19 DA/ Kwh
200	146,73	1285370	244220
250	124,43	1090007	207101
300	118,89	1041476	197881
350	115,78	1014232	192704

1	FRAIS D'AM	ORTISSEMENT:			
	D (mm)	PRIX Ml (DA)	L(m)	PRIX CONDUITE(DA)	ANNUITE
	200	138	2172	299736	26 976
	250	162	11	351864	31 668
	300	216	11	469152	42 224
	350	301	11	653772	58, 839

D (mm)	FRAIS AMORTISSEMENT	FRAIS EX LOITATION	TOTAL
200	26 976	244220	271196
250	31 668	207096	238764
300	42 224	197881	240105
350	58 839	192711	251550

Le diamétre économique sera donc D = 250 mm

CALCUL DES HAUTBURS GEOMETRIQUE POUR CHAQUE FORAGE VNº 2

Le refoulement aura pour hauteur géométrique la différence entre la côte, trop plein de la bache de reprise et les côtes du niveau dynamique de che des forages -

La hauteur manométrique sera calculée d'aprés l'expression suivante

$$HmT = Hg + DHt + 0,25$$

(0,25 m = p;d.c. dans l'espace annulaire du puit de forage - La côte du trop-plein de la bache de reprise est : 739mNGA.

3.2 ETUDE DU DIAMETRE ECONOMIQUE DE LA VARIANCE Nº 2

FORAGE B4: En première approximation nous determinons le diametre économics d'aprés la formule suivante J.BONNIN.

$$D = \sqrt{Q}$$
 $Q = 0.06$ m3/s
 $D = \sqrt{0.06}$ = 0.245 m sait 245 mm

En prend un diamétre normalisé de 450 mm le choix définitif sera fait à la tasc d'un calcul économique en prenant les dimamétres supérieurs et inférieurs dont les résultats sont représentés dans le tableau n° 06

TABLEAU nº 6 B4 — B1

FRAIS D'EXPLOITATION :

D (m)	J	L-(m)	DH t -(m)	HmT
200	0,01660	2359 n	67,89 37,60	131 , 07 100;78
300 400	0,00219	11	28,80 24,45	91 , 98 87 , 83
400	0,000519	11	24,40	01,100

D(m)	P= 9,81 QH 2	EMERGIE ANNUEL Px24 x365 (Kwh)	PRIX DE L'EMERGIE C= 0,19 DA/Kwh
200	101,51	889230	168954
250	78,05	683731	129909
300	71,24	624062	118572
400	68,02	595873	113216

FRAIS D'AMORTISSEVENT:

D(mm)	PRIX ml(DA)	T(i)	PRIX CONDUITE	ANNUITE
200	138	2359	325542	29299
250	162	n	382158	34394
300	216	n-	509544	45852
400	345	ti	81 3 855	73247

BILAN :

FRAIS D'EXPLOITATION

D(mm	FRAIS AMORTISSEMENT	FRAIS EXPLOITATION	TOTAL (DA)
200	29299	168954	198253
250	34394	129909	164303
300	45852	118572	164424
400	73247	113216	186463

Le diamétre D= 250 mm s'avère le plus économique.

FORAHE : E $D = \sqrt{Q} = \sqrt{0,110} = 0,332 \text{ m}.$ TABLEAU Nº 7 B,-B2

D (m)	J	L (m)	DHT	HmT	
250	0,01766	2821	57,70	126,86	
300	0,00697	11	22,85	92,26	
350	0,00319	11	10,58	79,99	
400	0,00163	II .	5,51	74.92	

	P= 9,81 Q.H	AMERGIE AMWEL	PRIX DE L'ENERGIE
D(72:)	7	Dx24 X 3 55 Tmh	3= 0,19(DA) Kwh
250	85,24	746698	141873
300	61,99	545042	103178
350	53 , 75	470821	89456
400	50,34	440980	83786

FRAIS D'AMORTISSEMENT :

D(m ·n)	PRIX DU MI(DA)	L(2)	PRIX CONDUITE	ANNULTE
250	162	2881	457002	41150
300	216	2821	609336	54840
350	301	11	849121	76421
400	345	11	973245	87592

BILAN :

D(mm)	FRAIS AMORTISSIMENT FRAIS	EXPLOITATION	TOTAA
250	41130	141873	183003
300	54840	103178	158018
350	76421	89456	165877
400	87592	83786	171378
			1

D'aprés cette étude le diamétre économique est bien $\mathbb{D}=300~\text{mm}$. FORAGE : $\mathbb{B}3$

 $D = \sqrt{Q} = \sqrt{0,06} = 0,245$ Soit 245 mm FRAIS D'EXPLOITATION :

TABLEAU nº 8 B3 - B2

	and the same of th	L (m)	DHT	HmT	
200	0,023408	2172	58,70	118,04	
250	0,0054680	or n	13,89	73,48	
300	0,002181	n	5,44	65,03	
350	0,0010091	n	2,75	62 , 34	

D(mm)	P=9.81 OII	EMERGIE AIN		PRIX DE L'ENERGIE C=0,19DA	Kw!
Ca	9 12	27.2.59	- 5	152159	
250	56,91	498532	G	94721	
300	50,96	446410		04016	1
350	48,28	422939		80358	

FRAIS D'AMORTISS MENT :

D(mm)	PRIX Ml(DA)	L(m)	PRIX CONDUITE	ANNUITE
200	138	2172	299736	26976
250	162	17	351864	31668
300	215	n	469152	42224
350	301	11	653772	58839

BILAN :

D (mm)	FRAIS AMORTISSELLHT	FRAIS EXPLOITATION	TOTAL (DA)
200	26976	152159	179135
250	31668	94718	126386
300	42224	84818	127042
350	53839	80358	139197

Le diamétre économique est bien D= 250 mm

FORAGE: B 2 D= $\sqrt{0,176}$ = 0,420 ou soit 420 mm.

FRAIS D'EXPLOITATION :

TABLEAU nº 9 B2 - S.P

D(mm)	J	L/M	DHT	HMT
400	0,004009	50	0,23	86,03
450	0,002213	17	0,13	85,93
500	0,001302	11	0,075	85,88
600	0,00118	11	0,069	85,87

D(m)	P=9,81 QH	ENERGIE ANNUEL	PRIX DE L'ENERGIE
	7 76	P × 24 × 365Kwh	0=0,19 DA Kwh
400	7,43	63335	12034
450	7,32	65247	12017
500	7,32	63247	12017
600	7,32	63247	12017

D(mm)	PRIX Ml (DA)	L(m)	PRIX CONDUITE(DA)	ANNUITE
400	345	50	17250	1553
450	389	11	19450	1751
500	432	11	21600	1944
600	608	11	30400	2736

BILAN:

D(mm)	FRA	IS ALORDISSEART	FRAIS EXPLOITATION	TOTAL (DA)
400		1553	12034	13587
450		1751	12017	15768
500		1944	12017	13961
600		2736	12017	14753

Le diamétre économique est bien D= 400 mm /S.P RMC

√ D= √ G	$Q = \sqrt{0,175} = 0$,420 m soi		
D (mm)	J	L(m)	DHT	HmT
300 400	0,01736 0,004013	3600 11	71 , 87	144,87
450 500	0,00221 0,00130	11	9,17 5,39	89,62 82,17 78,39

D(mm)	P=9,81 QH	ENERGIE ANNUEL P×24 × 365(Kwh)	PRIX DE L'ENERGIE (DA) &= 0.19 DA(Kwh)
300	333,50	2921480	555081
3 90	206,31	1807297	343385
490	189,16	1657058	314841
550	180,46	1580830	300358

FRAIS AMORTISSEMENT:

D(mm)	prix Ml	(DA)	L(m)	PRIX CONDUITE(DA)	ANNUITE
300	216		3600	777 600	699 84
400	345		11	124 2000	111 780
450	389		11	140 0400	126 053
500	432		11	155 5200	139 968

D(mm)	F.AMORTISSEMENT	F.EXPLOITATION	TOTAL (DA)
300	69 984	555081	625065
400	111 780	343386	455166
450	126 036	31 4841	440877
500	139 968	300358	440326

En vertu de cette étude le diamétre D= 450 mm s'av ére le plus économique.

CHOIX DES CONDUITES :

En fonction des conduites de l'adduction le choix des tuyauxe en acier presentent les avantages suivants :

- Ils sont plus legers que le tuyaux en fonte, d'ou économique sur le transport.
- Leurs resistance au contraimes (chois, ecrasement déplacement de terrains).

Par contre la corrosion est due à la qualité du revêtement interieur est exterieur (Elle sera du type revetement C).

Neamoin, ou prévoir une protection cathodique

CHAPITRE: 03

UTILITES DES RESERVOIRS :

Les réservoirs sont dostinés a régulariser l'apport d'au, il sont abs l'uner indispensable pour pouvoir restituer l'eau au moments des heures de pointes (cas des réservoirs de stockage). Ils permettent en cas l'accidents sur la conduite d'adduction u en cas de panne electrique de satisfaire la demande en eau de la zone cosiderée pour une certaine durée qui peut aller jusqu'a une journée coest a dire le temps de reparche la panne ou letronç no de conduite endommagé.

PROJET: En vue de satisfaire les bescins de chaque ville, en prévoit de projeter trasservoirs de stockage.

RESERVOIRS	! X	Y	. Z	!COTE DU TROP PLEIN
R 1 R 2	595.693,98 604.213,09	287.136,03 282.639,70	! 693 ! 588	. 697 . 592
R 3	620,684,35	265.065,00	518	!: 521 !-
		•		!

1. CAPACITE DES RESERVOIRS/

-le

- La determination de la capacite du reservoir se calcule en fonction du debit d'app ru et de soutirage d'eau pendant les differentes heures de la journée. Le reservoir doit être en mesure de stocker l'axeces d'eau et y compris une reserve d'incendie de 120 m
- Si on appelle a la valeur du debit moyen horaire de distribution $a=\frac{C}{\overline{24}}$ cu C= debit maximum journalier .

En vertu du TOME II (hydraulique urbaini.A.DUPONT).

'our une ville peut importante la répartition de la consomationen 24 heures se fait de la nanure suivante.

6 h	eires	à	7 h	eures	•		0	•	۰	•	۰		•	0	•	•	c		·a	
7			II	11					•	•	•	٠	•	•	•	•	•	•	.3,5	a
İI	11	11	16	11	۰							•	•				•	•	.0,4	а
16	11	11	I8	11															.2	
18	11	11	22	11															.0,5	
22	11	11	06	11	•	۰	۰						٥		•		•		.0,1	25a

pour une durée moyenne de deux heures.

1	Adulin	HOTE BOTEN	DIFFEI	ENCE
Heures	avec un debit	mmz.	+	
0-1	a	9/25 Q	0,875	
1 - 2	2 Q	0,290 a	1,750	
2 _ 3	<u> </u>	0,375 Q	2,625	
3 - 4	400	6,500 a	3,50	
4 - 5	50	0,625 Q	4,375	
5-6	6 Q	- 0,750 a	5,25	
6 - 7	70	1,190 a	6,25	
7 - 8	8a	5,250 Q	2,75	
8 = 3	90	8,750 a	0,25	
9 - 10	100	12,250 a		2,25
10 - 11	110	15,750 a		4,75
11 - 12	1204	16,170 Q		4,15
12 - 13	13 CL	16,550 Q		3,55
13 -14	140	16,990 a		2,95
14 -15	15 Q	17,350 Q		2,35
15-16	160	17,750 a		1,75
16-17	170	19,150 a		2,75
17-18		21,790 Q		3,75
18-19		22,250 Q	1	3,25
19-20		22,750 Q		2,75
20- 21	210	23,290 9		2,250
21 - 2:	2 280,	23,750 a		1,750
22 -23	3 230	23,875 Q		0,875
23-2	4 240	24,000 a		0,00

22 - Dimensionnement des reservoirs :

Dines signmement de Ru (SiDI-AISSA) - le débit moyen heraire éat :
$$a = \frac{C}{24} = \frac{1967}{24} = 320 \text{ m}^3$$

On etablit un tableau de calcul a la base des normes citées precedement, la composition de la la base des normes citées precedement, la composition de la la base des normes citées precedement, la composition de la la base des normes citées precedement, la composition de la la base des normes citées precedement, la composition de la base des normes citées precedement, la composition de la la base des normes citées precedement, la composition de la la base des normes citées precedement, la composition de la la base des normes citées precedement, la composition de la la base des normes citées precedement, la composition de la la base des normes citées precedement.

$$6,25$$
 a + $4,75$ a = 11 a

Le volu me du reservoir R 1 est:
$$V = 328 \times 11 = 3606 \text{ m}^3$$

En ajoutant à cela un volume d'incendie, le volume total sera de : V = 3600+120=3727 & Nous proposons un volume de 4000 m³ pour une colonne d'eau H = 4 m

$$V = \frac{\overline{II} D^2}{4}$$
. H $\Longrightarrow D = \sqrt{\frac{4 V}{II H}} = \sqrt{\frac{4.4000}{II 4}} = 35,69 m$

Le diametre interieur de la cume sera donc : D = 35,69 m

En supposant une même repartition pour les deux autres villes (peu importante). Dimenssionmement de R_2 : (Ain - EL-Hadjel). debit moyen horaire est : $a = \frac{C}{24} = \frac{6374}{24} = 266 \text{ m}$

ou C = Consommation maximale ,journalière (se referer au chapitre 6)

in volume sera atoro $V = ^266 \times 11 = 2926 \text{ m}^3$ Volume total du reservoir

 $V = 2025 + 120 = 3046 \text{ m}^3$

On propose un volume de 3100 m³

Pour une colonne d'eau de 4 m, le diametre interieur est de : D = 31,42 m

Dimenssionnement de R_3 (Sidi- Hadjeres)

La volume total du reservoir est de * V = 600 m³

Pour une colonne d'eau de 3 m le diametre intermeur sera donc : D = 16 m On prevoit au niveau de chaque reservoir de stockage un système de Javelisation o

3- EQUIPMENT DES RESERVOIRS R, R2 et R3:

Chaque reservoir doit être muni d'une conduite d'alimentation, d'une conduite de distribution, de vidange et. enfin d'une conduite de trop plein. Les dispositions speciales qui peuvent-être prise pour constituer le reserve d'incendie ne ne modifient en rien ces principes, ce ne sont que des amenagements de detail .

3.1 ARRIVEE DE LA CONDUITE D'ADDUCTION :

On prevoit une arrivée Par surverse, ceci permettra d'avoir une altitude constante defi ic par le niveau superieur de la crosse d'arivée. Cette arrivée sera reglée par un robuse a flatteur .

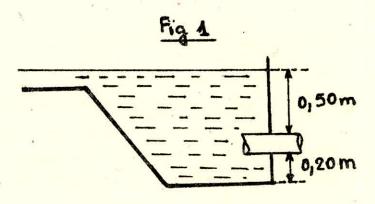
Les robinets à flotteurs ont pour but de maitenir a un niveau constant d'eau dans les reserves . Ils s'ouvrent quand le plan d'eau descend en dessous de ce niveau et se reformant de la reformation de la ref progressivement au fur et a mesure de la remontée du plan d'eau jusqu'au niveau maximen

Par leur fermeture progressive ces robinets permettent d'eviter le coup de belier. Nous équiperons les reservoirs R₁ R₂ et R₃ qui sont alimentés gravitairement, par des robinets a flotteurs

radier afin d'eviter l'introduction dans la distribution de la boue et du sable (
eventuellement pourait se decanter dans Ja cuve (Fig 1).

3.3 TROP - PLEIN ET VIDANGE:

La conduite de trop-plein est distinée à empêcher l'eau de depasser un niveau determent.


Elle debouchera a un extroire afin d'eviter toute pollution a partir de cet exutoire on y menage un syphon qui maintient en eau un tronçon du trop-plein. La conduite du vidange doit partir du point le plus bas du radier et se raccorde sur la canalisation trop-plein (Fig 2).

3.4 RESERVE D'INCENDIE :

La réserve d'incendie doit toujours etre prete en cas de sinistre .Afin d'éviter la stagnation de cette reserve dans la auve .

Ainsi, le dispositif le plus souvant adopter est le suivant (Fig 2) .

En service normal la Vanne N° 1 est ouverte (cette vanne est en réalité constamment ouverte sauf en cas de reparartion). Le siphon se desamorce dés-que le mineau de reserve est atteint grace a l'event ouvert à l'air libre une tranche d'eau se trouve ainsi constamment renouvlée. En cas d'incendie la vanne N° 2 est ouverte.

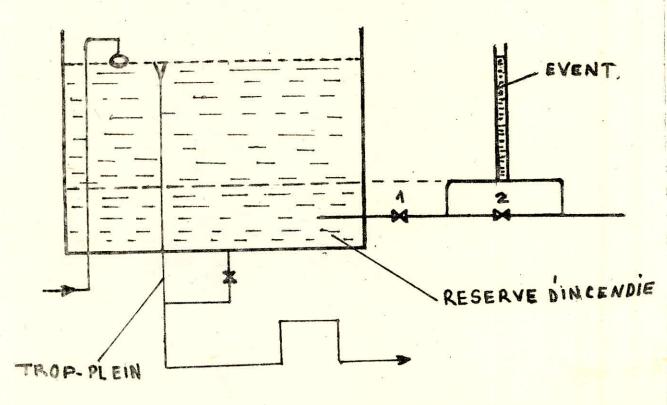


Fig 2

CHAPITRE 04/

" LA PROTECTION DES CONDUITE "

I. Protection contre le coup de belier .

Phenomènes du coup de belier :

- Le coup de belier est un phénomène oscilatoire dant les causes les plus fréquentes sont les suivantes.
- Arrêt brusque par disjonction inopinées d'un ou plusieurs groupes electro pompes lieure alimentant une conduite de refoulement debitant sur un reservoir.
 - Demarrage d'une pompe
- Fermeture instantanie ou trop rapide d'une vanne de sectionnement ou d'un robinet l' d'obturation placé en bout d'une conduite d'adduction.
- Les conduites de refoulement doivent être toujours examinées du point de vue de protection contre le coup de belier. Il en sera de même pour les conduites d'adduction dent le debât se trouve réglé a la vanne par un robinet dont les caractéristiques de fermeture sont connues.
- Le coup de belier, dont la brutalité est succeptible d'entrainer des ruptures de tuyaux, peut atteindre des valeurs pouvant être égales a plusieurs fois la préssion de service a basse pression.
- Il est donc indisponsable d'étudier des moyens propres a limiter ses effets puisque il en resultera une economie dans la construction des tuyaux les quels sont calculés notament pour resister a une pression interieure donnée. Pour notre cas nous avons a etudier la protection du coup de belier pour deux variantes :

- YARIANTE N° : 01 -

- Refoulement direct des 4 forages au reservoir de mise en charge .

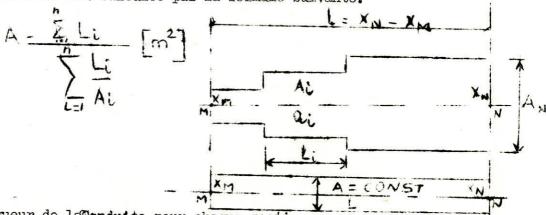
- VARIANTE Nº : 102 -

- Refoulement des 4 forages sur la bache de reprise .
- Refoulement de la bache de repride sur le reservoir de la mise en charge .

.../...

- L'etude du phenomène du coup de belier, dans l'ensemble des 4 forages est une entreprise complexe, du fait que les forages donnent des debits deffirents, et ils sont connecté avec des diametres differents.

Tans la presente etude, nous etudions le coup de belier et nous calculons l'anti-belier avalles hypothèses suivantes :


In Prenant chaque forage se parement lors de l'arrêt brusque du groupe electro-pompe conduit du se section sequivalente aux sections admises dans le projet.

- Celerite equivalente .
- Novenne arithmetique des vitesses
- Protection de la conduite contre une masse d'eau de :
- 176 Mg/s soit 1761/s pour le forrage B2
- 170 " " 170 " " " B_q
- 110 " " 110 " " B₁
- 060 " " 060 " " " B₄

2 Principe de calcul du coup de belier

2.1 CALCUL DE IA SECTION EQUIVALENTE/

Pour différentes sections calculée pour le refoulement, la section Equivalente est calculée par la formule suivante.

- 1; Longueur de la Conduite pour chaque section;
- A: Section de chaque conduitei
- A Section Equivalente.
- 2.2 La oélérité Moyenne est •alculée d'après la Formule suivante:

$$a = \frac{\sum_{i=1}^{n} L_{i}}{\sum_{i=1}^{n} a_{i}}$$

- a: Célérité dans la conduite pour chaque section.
- a Célérité Moyenne dans la section Equivalente.

.../...

$$Q_{i} = \frac{\sqrt{\frac{K}{g}}}{\sqrt{1 + \frac{KD_{i}}{Eei}}}$$

 $K = 2,15 \text{ IO}^9 \text{ N/M}^2$ - Module de compréssibilité de l'eau .

 $0 = 1000 \text{ MG} / \text{m}^3$ - Masse Volumique de l'eau .

 $E = 2.10^{II}$ N/m^2 - Module d'élasti**gi**té de la conduite .

€i= - Epaisseur de la conduite (i)

Di = Diamètre de la conduite (i)

2.3 CALCUL DE LA VITESSE /-

La vitesse V o est moyenne arithmetique de terminer comme suit :

$$V_{O} = \frac{V_{1} + V_{2}}{n} + \cdots + V_{n}$$
 où $n = (1, 2, \cdots n)$

2.4- COUP DE BELIER : SANS ANGI - BELIER .

La surpression Maximale est de :

$$b = \frac{a V_0}{g}$$

$$b = \underbrace{a : V_o}_{g}$$

a = La celérité moyenne (m/s)

 $V_{O} = Vitemse$ moyenne en marche normal .

Surpression = H'o + b

Depression = H'o - b

H'o Etant la pression pendant le fonctionnement normal .

H_{mt}=*E Hauteur monometrique

Hno- = Hauteur separant le niveau dynamique et le sol .

- Si la sur pression ou la depression sont inadmisibles la protection de la conduite contre le coup de belier sera obligatoire.

Parmis les methodes de protection contre les coup de belier nous proposons un reservoir d'air celui-ci sera placés à l'avait du chapet anti-retour.

Cette capacité contient de l'eau et de l'air et, en marche normale la pression de •st air equilibre la pression dans la conduite au point consideré. A la disjonction le chapet se ferme une partie décâu de la cloche est chassée dans la conduite. A ce moment la pression de l'air de cloche est encore superieur à celle qui s'éxerce à l'autre extrémité de la conduite, au reservoir.

Aprés diminution progressive de sa vitesse, l'eau revient en arière est remonte dans la cloche augmantant la pression dans la conduite de refordement. La dissipation de l'énergie de l'eau peut être aubtenue par le passage de celui-ci au trvert un organe d'étranglement (qui sera constitue par un tuyere).

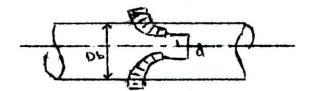
3 - MODE DE CALCUL DE RESERVOIR D'AIR .

Le calcul sera fait par l'application de la méthode graphique de Bergeron .Toute fois au lieux des débits l'echelle des obscisses sera representée par les vitesse .

La méthode consiste à déterminer pour approximations successive, les vitesses de K l'eau dans la conduite de refoulement au niveau du réservoir d'air, pendant des ossilations. L'intervalle de temps entre deux vitesses successives est :

T = 2L temps d'un aller retour de l'onde entre la pompe et le reservoir R' M C. On appelle V la vitesse finale de l'eau après intervalle de temps T

Nous partons d'un volume d'air initial arbitraire U. On se fixe une valeur de Vf et on calcule alors à la fin de l'intervalle. Tha pression dans le resevoir d'air, puis la pression dans la conduite en ajoutant ou en retranchant les pertes descharges suivant le cas. On verifie sur le diagramme de bergeron que cette pression finale eorrespond à la vitesse choisie Vf, si non les calculs sont refait en choisissent une autre valeur de Vf. Après l'amortissemnt des valeurs, la depression dait lie admissible, pinon a recommence en pressur une autre valeur de Vf.


3.1 CALCUL DE L'ETRANGLEMENT DE LA TUYERE .

Pour calculer l'antibiléer, on fixe au prealable les caracteristiques du reservoir à'air:

-Volume V d'air en regime normal .

-Son disposif d'étranglement . Les caracteristique de la fuyere saont :

$$D_t = Diametre de 10 tubulure d = " " Tuyère$$

montage de la tuyere

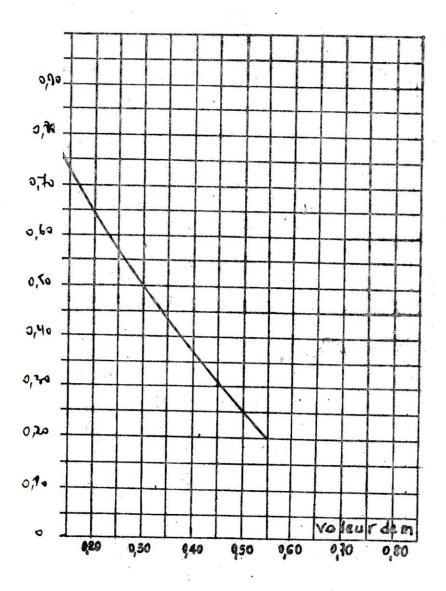
A la montée de l'eau : La tuyère ayant un cofficient de debit de l'ordre de : 0,92 .

$$\frac{V_1}{V_f} = \frac{D_{eq}^2}{(0.92.d)^2} = K$$

Deg = diametre equivalent de la conduite

d sera choisi pour K reste compris entre 15 et 20

La perte de charge Ah, a la montée de l'eau s'évalue en, fonction du rapport m des sections de la veine contractée et de la tubulure que détermine sur le graphique un coeffécient C.

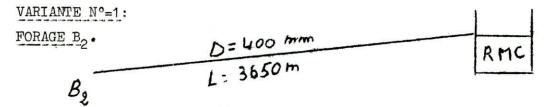

$$m = (0.92 \cdot d)^2$$

$$\mathbf{h}_1 = \underline{\mathbf{v}}_1^2 \cdot \mathbf{c}$$

A la descente de l'eau : la tuyere agit comme unajutage rentrant de borda avec cooficient de conttaction de 0,5

$$V_2 = \frac{\sqrt{1000}^2}{0.5.\sqrt{400}^2}$$

La perte de charge Ah₂ a la descente de l'eau s'evalue en fonction du nouveau rappor m des sections de la veine contractée et de tubulure qui determine sur le graphique un nouveau cooficient C.


crefficient de Perte de charge c dans une hyère

$$m = \frac{0.5 \cdot \cancel{4}}{\cancel{11} \cdot \cancel{\cancel{N}^2}}$$

$$h_2 = \frac{\cancel{\cancel{V}^2}}{\cancel{2} \cdot \cancel{\cancel{g}}} \times \cancel{\cancel{g}}$$

APPLICATION:

A l base du schema de pri cipe de calcul presentée ppécédament.Il sera applique aux deux à l'éxptio du traço S.P.—Rnc de la variante N°=2.

TABLEAU DES DONNEES

TRONCONS	LONGUEUR	DIAMETRE DE LE CONDUITE(m)	EPAISSEUR DE LA CONDUITE(mm)	DEBIT HYPOT DE CALCUL(L/S)
B ₂ - RMC	3650	400	05	176

CALCUL DU COUP DE BELIER .

$$b = \frac{avo}{g} = 1,40 \cdot 1075 = 153,57 \text{ m}.$$

Aumniveau du puit la pression sera donc :

Supression: H'o + b = 90,23 + 153,57 = 243,8 m

Depression: H'o - b = 90,23 - 153,57 = -63,34 m

$$H'o = Hmt - HND = 173,21 -82,98 = 90,23 m$$

La protection contre le coup de belier s'averee donc obligatoire, car la depression n'est pas admisible.

CALCUL DE L'ANTI-BELIER .

On propose un reservoir d'air :

$$e$$
 = 176 L/S , L = 3650 m , D = 400 mm . e 0 = 45.33 m
Ho = He - hND = 155.55 - 82.98 = 72.57 m
Zo = Ho + 10 = 92.57 m .

•••/•••

So = 97.9 m

CHARGES DANS

Montée de l'eau

$$\frac{V_1}{V_f} = \frac{400^2}{(0,92.105)^2} = 17 = 2 = V_1 = V_f. \text{ A}$$

$$m = \frac{(0,92d)^2}{200^2} = \frac{(0,92.105)^2}{200^2} = 0,23 \text{ du graphe C=0,82}$$

$$\Delta h_1 = \frac{V_1^2}{2g} \cdot 0,82$$

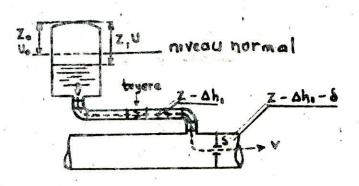
Descente de l'eau :

$$\frac{V_2}{V_f} = \frac{2.400^2}{105^2} = 29 = V_2 = 29 V_f$$

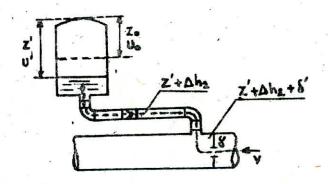
 $m = 0.5 \cdot (105)^2 = 0.74$ on tire du graphique C = 0.74

$$\Delta h_2 = \frac{v_2^2}{2g^2} \cdot 0.74$$

La pente :
$$\frac{a}{gs} = \frac{1075}{9,8.0,1257} = 873 \text{ m}^{-2}.\text{s}$$

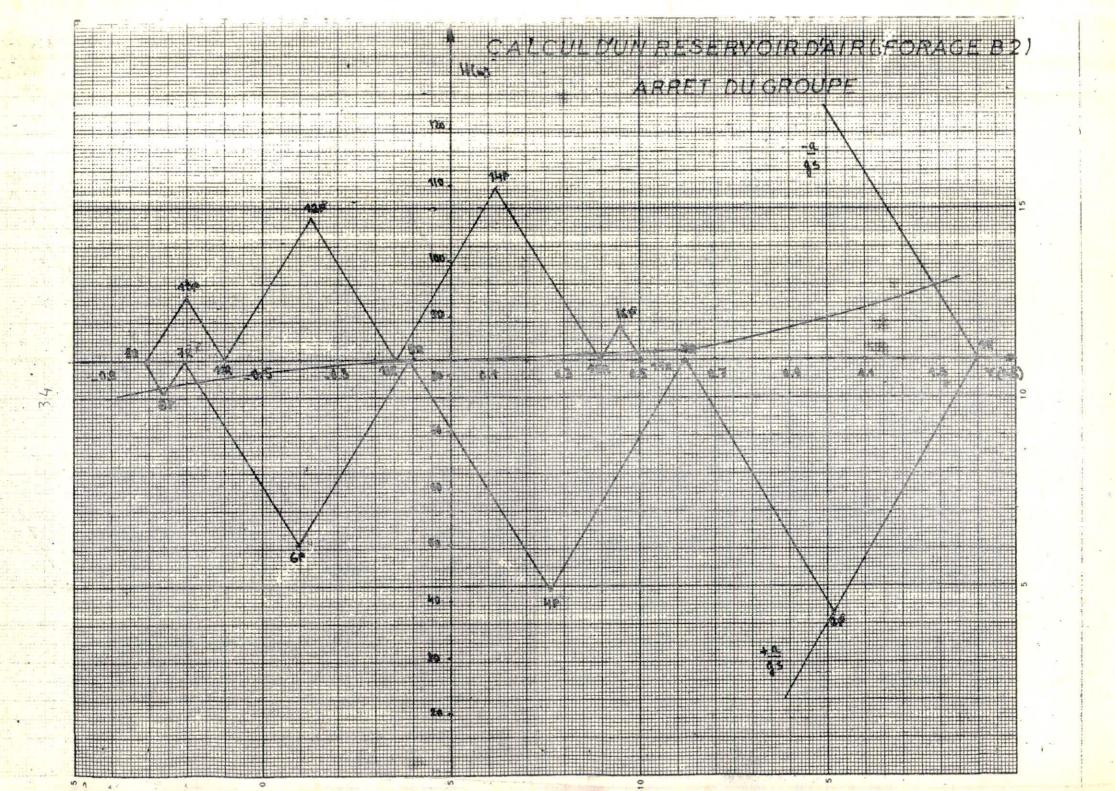

L'echelle des b est de : 1,5 cm pour 10 m , Donc 873 m seront représentés par 130,95cm Si l'échelle des debits est granduée a raison 14 cm pour 0,176 m³/S donc 1m³/S sera représenté par 79,5 cm .

La pente a sera donc 130,95 = 1,65 à l'échelle de l'épure


Conclusion: Sur la base de la resolution graphique on trouve une depression maximale (en tenant compte des pertes de charges) de 40 m environ et une surpression de 27 m environ .

- Caracteristique finale du reservoir d'air : D'aprés la troisième colonne du tableau l'air peut occuper un volume max de 3,582 m3.

Il sera prevu une cloche de capacite totale 4 m3.



Perte de charge successives à la montée de l'eau dans la conduite



Perte de charge Successives à la descente de l'eau dans le reservoir

θ	ΔU = (SV ₁₃ +8 = 0,850	U	Z=258	Ц=17-Ц √2-29Ц	$\Delta h_1 = \frac{\sqrt{2}}{29} \cdot 0.6$ $\Delta h_2 = \frac{\sqrt{2}}{29} \cdot 0.74$	Z-4h, Z+4h2	S	Z-14/2-8	4	Desi- onation du point	Vm	V _f
0	0	U <u>=</u> 2	97,9			97,9	/15 _/ 33	82,57	1,4	1R		
6	7,035	3,035	54,57	17,34	9,2	45,37	8,714	37,23	1,02	21	7,21	1,02
2₿	0,547	3,582	43,24	4,42	06	42,64	0,53	42,77	0,26	4P	0,64	0,26
3€	- 0,06	3,5 2 2	44,27	11,6	5,08	49,35	1,25	50,6	-0,4	6P	-0,07	-0,4
40	-0,4 9 6	3,026	54,75	22,04	18,34	73,09	4,52	77,6	-0,76	8 P	-0,58	-0,76
<i>5θ</i>	-0,620	2,402	75,48	2.0,3	15,56	91,04	3,83	94,83	- 07	10P	-0,725	-07
60	-9,457	1,945	101,65	10,73	4,35	106	7,07	107,07	- 037	12p	-0535	-037
70	-0,107	1, 838	110,04	2,04	0,13	109,91	0,11	109,8	012	140	-0,125	0,12
8 0	0,244	2,082	92,12	7,65	1,79	90,63	1,58	89,05	0,45	16p	0,285	0,45

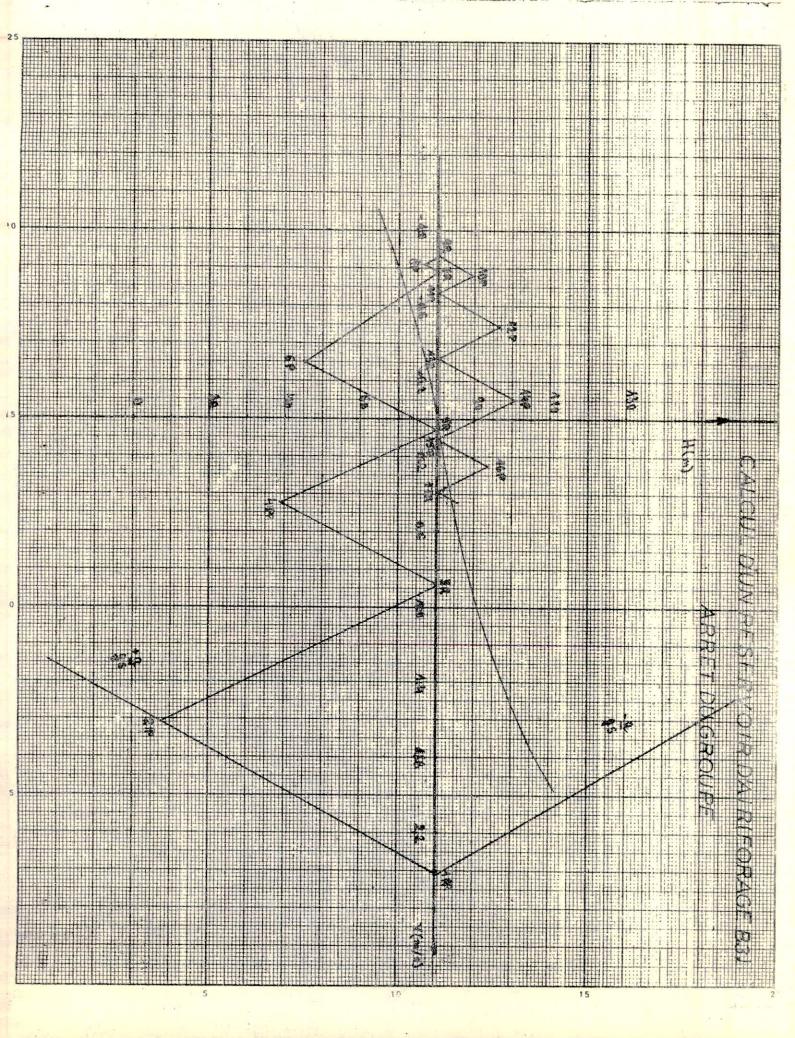
FORAGE B₃ :

TABLEAU DES DONNEES //

TRON CO NS	LONGUEUR (m)	DIAMETRE DE LA CONDUITE(m)	EPAISSEUR DE LA COMDUITE(mm)	DEBIT(L/s)	SECTION (A) (M ²)
B ₃ - B ₂	2172	250	3,5	60	0,0491
B ₂ - RMC	3650	400	05	06	0,1257

TABLEAU DES RESULTATS //

TRONCONS	CELERITE EQUI- VALENTE(M/S)	VITESSE MOYENNE (m/s)	SECTION EQUI- VALENTE (m ²)	LONGUEUR	DEBIT DE CALCUL (L/S)
B ₃ -RMC	1081	2,41	0;079436	5822	170


744			ı	L			
	ъ (m)	H'o (m)	H'o + b(m)	Н'о́⊷b(m)	D _t (mm)	d(mm) (/(m ³)
	265 ; 84	101,87	3 6 7,71	163,97	100	√ 80	05

Sur la base de la resolution graphique :

Depression maximale est de : 30 m

Sur pression maximale est de : 20m/ .

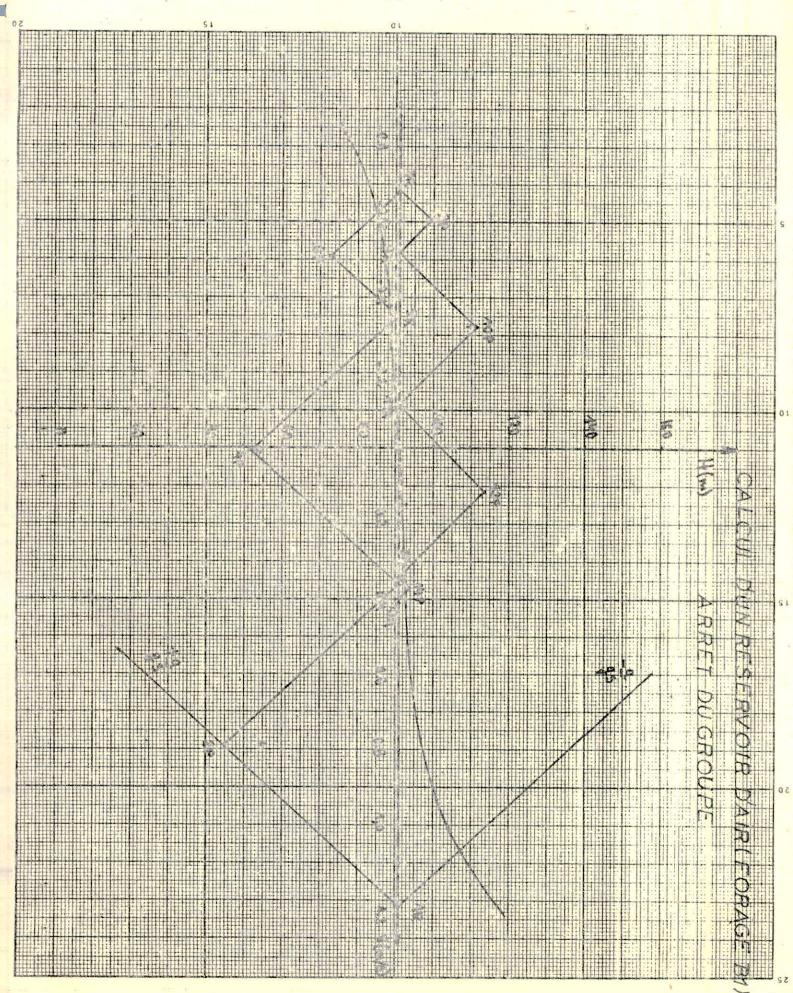
-									-	2	·	
	ΔU=5V,θ ΔU=0,36V, (m³)	Volume du reseving d'oirl (1713)	z = 310 054 (m +)	V1 = 10, 7 V5 V2 = 31, 6V4	Mh - 42 1/10	2-6h,- 2+8h2	8 (3m)	Z-Ah, -8 Z+Ah,+8	V ((m/s)	Designation do Point	Vm (m/s)	Υ _ξ (m/ς)
I	2	3	4	5	6	7	8	9	IO	II	I2	13
Θ	0	₩ 0=I , 5	176	0	0	176	95 , 45	80 , 55	2,41	I.R	0	0
Θ	I,73	3,23	60,05	30 , 29	9,36	50,69	43 , 23	7,46	I,62	2.P	2,02	I,62
2.0	0,89	4,72	42,701	8 , 42	0,72	4I , 99	3,33	38 , 66	0,46	4.P	I,04	0,45
2	+ 0,07	4 , I9	41,71	9,48	2,20	43,91	I,48	45 , 3 9	- 0 , 30	6 . P	÷ 0,06	- 0,30
4.0	- 0,48	3 , 7I	49 , 59	25 , 9I	16,44	66,03	II,07	77,10	- 0,82	ô.₽	- 0 , 56	- 0,82
5.0	- 0,68	3 , 03	65,66	24,02	I4 , I3	79,79	9,59	89,38	- 0,76	IO.P	- 0 , 79	- 0,76
679	- 0,54	2,49	86,43	15;408	5 , 87	92,30	3 , 95	96 , 25	- 0,49	I2.P	- 0,625	-0,49
7.0	- 0 , 25	2,24	100,23	I , 90	0,24	100,47	0,16	100,53	- O,IO	I4.P	- 0,295	- 0 , IO
8.0	+ 0,07	2,31	96,01	7 , 9	I,53	94. 48	I , 03	93 45	+ 0,25	I6.P	÷ 0,075	+ 0 , 25
1		COMPANY CONTRACT	· Control of the second of the second	S. Of the parties of the parties of the second	Power or warm with	:	A	0				

FORAGE B₁

TABLEAU DES DONNEES:

- 11.00.00.00	lor to ton (11)	DIAMETAL DE LA COFDUITE(nm)	EFALSSEUR DE LA COUDULTE (rm)	ודדתונים	SECTION ni
1 - B ₂	2821	300	04	50	0,0707
	3650	400	05	06	0,1257

TABLEAT DES RESULTATS:


#RONCONS	CERERITE EQUI-	:VITESSE MOY ! (M/S)	EQUIVALENTE (M 2)	LONGUEUR (M)	DEBIT DE	<u>-</u> !
B ₁ -R M C	1082	1,22	0,0935	6470	110	

b (m)	H'o (m)	H'o+ b(m)	H'o -b (m)	!Dt (mm)	d (mm)	! (_/ (m ³) !
134,17	121,17	255 , 87	- 13 , 53	250	90	04

Sur la base de la resolution graphique.

Depression maximale est de 39 m

Surpression maximale est de : 24 m .

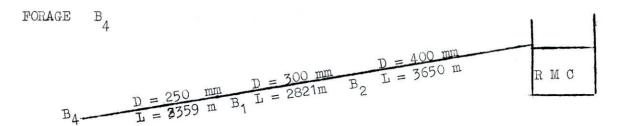
VIF

15

0,79

0,01

- 0,5I


- 0,605

- 932

+ 0,II5

+ 0,37

40

TABLEAU DES DONNEES:

TRONCONS	LONGUEUR (m) !	DIAMETRE DE LA ! CONDUITE(mm)	EPAISSENR DE LA CONDUITE (mm)	DEBIT(L/S)	SECTION(M ²)
B ₄ B ₂	2359	250	3 , 5	60 !	0,0491
^B 1 - ^B 2	2821	3000	04	50	0,0707
B ₂ -RMC	3650 !	400	05	06	. 0 , 1257

TABLEAU DES RESULTATS:

TRONCONS	CELERITE EQÙI- VALENTE (m/s)		0	1	DEBÎT DE CALCUL
B ₄ - RMC	1087	0,85	0,07546	8830	60

b (m)	! ! H'o	H ¹ 0 + b(m)	! H¹ • , - b	!D+(mm)	d (mm)	! (/ (m ³)
111	! ! 42,85	! ! 153,85	! - 68,15	200	! ! 80	03

Sur la base de la resolution graphique

Depression maximale: 37 m

Surpression maximale : 42 m

A property of the property of	В	D'ins!	Johne (1)3)	1. ABITALIA	12:301P	4h, 2, 374	Z- 11, Z+0h,	8	Z-4h,-6 Z+4h2+8	1 `f	Cesignalian	V _n ,	Vfinnis			
A STATE OF THE STA	I	2	3	4	5	- 6	7	. 8	9	IO	II	I2	13			1
	0	0		I04	-	-	I04	19,00	85	0,85	I.R		-	-	-	
The state of the s	Θ	+ 0,68	I , 68	50 , 30	7,97	2,40	47 , 90	5 , 22	42, 68	0,445	2.P	0,65	0,45	_	-	
AND APPEAR OF A PARTY	2.0	+ 0;09	I , 77	46 , 76	09	I,24	48	2,32	50,32	- 0 , 30	4 . P	÷ 0,08	- 0,30	_	-	
1	3.0	- 0,50	I,27	74,42	18	4,96	79,38	9 ,2 8	88,66	- 0,60	6 . P	- 0,48	- 0,60	-	_	
	Ŋ ^{4.0}	- 0,40	0,87	I26 , 39	5 , IO	0,40	126,76	0,74	I27 , 53	- O,I7	8 . P	- 0,39	~ 0,17	_	-	
district periods	5.0	+ 0,II	0,98	106,98	6 , 73	I,7I	105,27	3,72	101,55	0,38	IO.P	÷ 0,II	38و0 ⊹	-	-	,
	TO SEE HAN DOOR SHOW AND	OF THE STATE AND A COST STATE AND A COST	an marsimum ar annuar ar 4	7					•						_	
							á							r	}	•
			į												; ;	
			,	•						i	•					
,	∯ .*	,			9						• • •			x *		
i	4 3				,							#1 6 6				
		i	,	į	į							t i	j		X.	

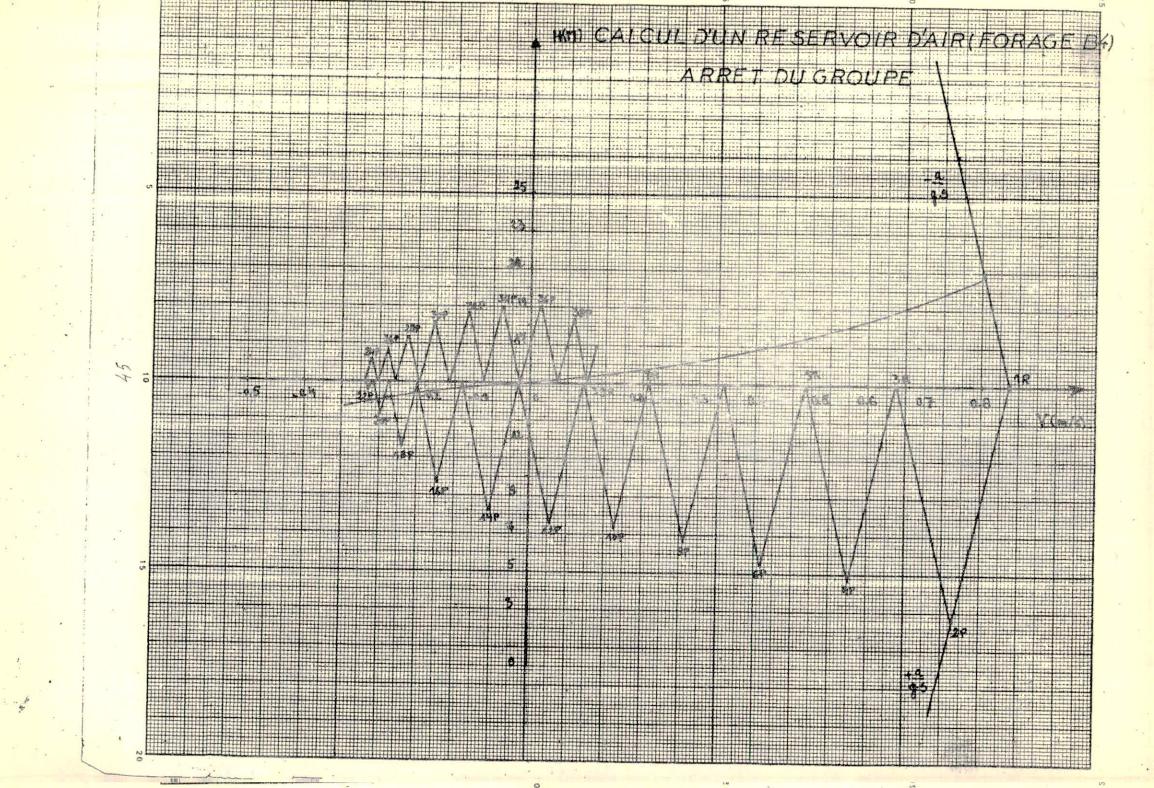
ETUDE DE LZ VERLANTE N2 :/

-FORAGE B4.

TABLEAU DES DONNEES:

TRONCONS	LONGUEURS(m)	DIAMETRE (m) !	EPAISSEUR (mm	LDEBIT(LAs)	section(2)
B ₄ - B ₁	2359	250	3,5	60	0 , 0491
B ₁ - B ₂	2821	300	04	! 50	0,0707
B ₂ - SP	0050	400	05	06	D ,1257

TABLEAU DES RESULTATS :


TRONCONS	CELERITE EQUIVALENTE(m/s)	VITESSE MOYENNE(m/)	SECTION EQUIVALENTE(NTF(m)	LONGUEURS (m)	DEBIT DE CALCUL(L/S)
B4 - SP	1096	0,85	0,0594	5230	60

b (m)	H'o (m)	H¹o + b	H'o - b	! D ₁ (mm)	d(mm)	<u>∠</u> √(m ³)
95,06	37,85	132,91	- 57,27.	130	70	03

du graphe on a :

Depression max est : 6 m d'eau .

surpression max est 4 m d'eau .

John salles	64=5×m8	U	z=21,15	V, = 18V(Vz=31Vf	sh,= × × 0,57	z. 6h,	4	z-Δh, - 8	Vý Lue surle graphe	ignation apoint	Yra	Vf.
0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(m)		(m/s)	Oh, 2 = 23 1 74	2 + 3 112	rs 76	2+4h2+8 15		1R	(m/s)	chasie
			24,75				12,75		0,85			
θ	0,46	1,46	16,34	13,5	5, 3	11,04	है,63 	2,41	20,75	2P	0,8	0,15
- θ	0,38	1,84	11,92	10,26	3,06	8,16	516	3,60	957	4P	0,66	957
3.9	2,28	2,12	ક <u>ે,</u> 69	7,56	1, 66	8,03	2,71	5, 32	0,415	6 P	0,50	0,415
40	0, 20	2,32	8,54	4,77	0,66	7,85	1,23	6,59	0,265	81	0,34	0,265
50	0,12	2,44	7,96	2,70	0,21	7,75	0,40	7,35	0,155	100	0,21	0,155
6 B	0,05	2,43	7,74	0,63	0,01	7,73	0,04	7, 69	0,035	12.7	0,09	0,035
78	- 0,01	2,48	7,78	2,48	0,23	8,01	0,06	8,07	-0,08	148	-0,02	- 8,08
8 0	-0,07	2,41	8,10	4,36	0,96	9,03	0,45	3,48	-0,155	168	-0,12	-0,16
90	-0,11	2,30	8,65	7,13	1,92	16,57	0,93	11,50	-0,23	184	-0,20	-0,23
10 8	-0,14	2,16	9,44	8,37	2,64	12,08	1,28	13,36	-0,27	208	-0,25	0,27
118	-0,16	2,00	10,51	8,83	2, 34	13,45	1,40	14,85	-929	227	- 0,28	- 0, 29
t28	-0,16	1,84	11,82	8,68	2,84	14, 66	1,40	16,06	-0,28	248	- D , 28	-928
130	-0,15	1,69	13,31.	7,75	2,21	15,58	1,10	16,68	-0,25	268	-927	-0,25
140	-0,13	1,56	14,89	6,67	1,68	16,57	9,78	17,35	- 0,215	281	-0,23	-0,215
150	-0,11	1,45	16,49	5,27	1,05	17,54	0,51	18,05	- 7,17	30 P	- 2,19	-0,17
168	-0,08	1,37	17, 86	3,41	0,44	18,30	0,25	18, 55	-0, H	321	- 3,14	-2,11
178	-0,05	1,32	18,81	1,55	0,09	18,90	0,06	18,36	- 0,05	341	-0,08	0,05
180	-0,01	1,31	19,01	0,27	0,01	19,00	0,01	16,33	+0,015	361	-0,02	0,015
198	+ 0,03	1,34	18,42	1,35	0,06	18,36	0,06	18,30	10,075	388	+905	1600

FORAGE B2:

TABLEAU DES DONNEES :

!-TRONCON	LONGUEUR (m)	DIAMETRE DE LE CONDUITE (mm)	!EPAISSEUR DE LA ! CONDUITE (mm)	! ! Debit ! L/S	! !SECTION !(m ²)
B ₂ 6 SP	50	1 400	05	06	0,1257

TABLEAU DES RESULTATS :

TRONCON	CELERITE ! EQUIVALENTE m/s	VITESSE m/s	SECTION EQUI	LONGUEUR(m)!	DEBIT DE CALCUL(1/p)
B ₂ 6 SP	! ! 1075	1,40	0,1256	50	176

; b (m)	! H'o (m)	! H'o + b	H'o - b	! D _t (mm)	! d (mm)	(/ (m ³)
153,57		156 , 62	150,52	200	110	03

La depression max est de 12 m d'eau environ .

FORAGE B 1

TABLEAU DES DONNEES:

TRONCONS	LONGUEURS (m)	DIAMETRE DE LA GONDUITE (m)	EPAMSSEUR DE LA CONDUITE (mm)	DEBIT L/S	SECTION
B1 - B2	! ! 2821	300	4	50	.0 , 0707
B - SP	! 50	400	! ! 5 !	6	0,1257

TABLEAU DES CONDUITES :

TRONCONS	CELERITE EQUI- VALENTE M/S.	VITESSE (M/S/)	SECTION EQUI- VALENTE M.	LONGUEUR M	DEBIT CAL-
B ₁ - SP	! ! 1091	1,22	0,0711	! ! 2871	110
	<u>i</u>			! !	! !

! b (m)	! H'o ! ! H'o !	H'c + b	! ! H'o - b !	! ! Dt (mm) !	d (mm)	(_) (m3) !
135,82	! ! 34 , 30 ! !	170,12	! ! - 101,52 !	150	<u>8</u> 0	4

APRES PROTECTION, LA DEPRESSION MAXIMALE EST DE 2,3 m D'EAU ENVIRON.

FORAGE B3

TABLEAU DES DONNEES:

TRONCONS	LONGUEURS (m)	DIALETRE DE LA CONDUITE (mm)	EPAISSEUR DE LA CONDUITE	DEBIT	SECTION
B ₃ = B ₂	2172	250	3 , 5	60	0,0491
B ₂ - SP !	50	400	5	6	! !0 , 1257

TABLEAU DES RESULTATS:

! TRONCONS	CELERITE (m/3)	V• (m/s	! ! A (m2)	L (m)	! Q L/S !
B ₄ - SP	1101	2 , 41	o , 0499	50	170

b (m)	Ho (m)	! ! Ho + b !	! ! Ho - b !	! ! Dt (mm) !	! ! d (mm) !	! ! (<u>/</u>)(m3)
270 , 76	14,14	! ! 274,90 !	-256,62	! ! 80	! ! 65	! ! 1:

La résolution graphique donne une depression max de : 38 m d'eau.

STATION DE POMPAGE:

TABLEAU DES DONNEES:

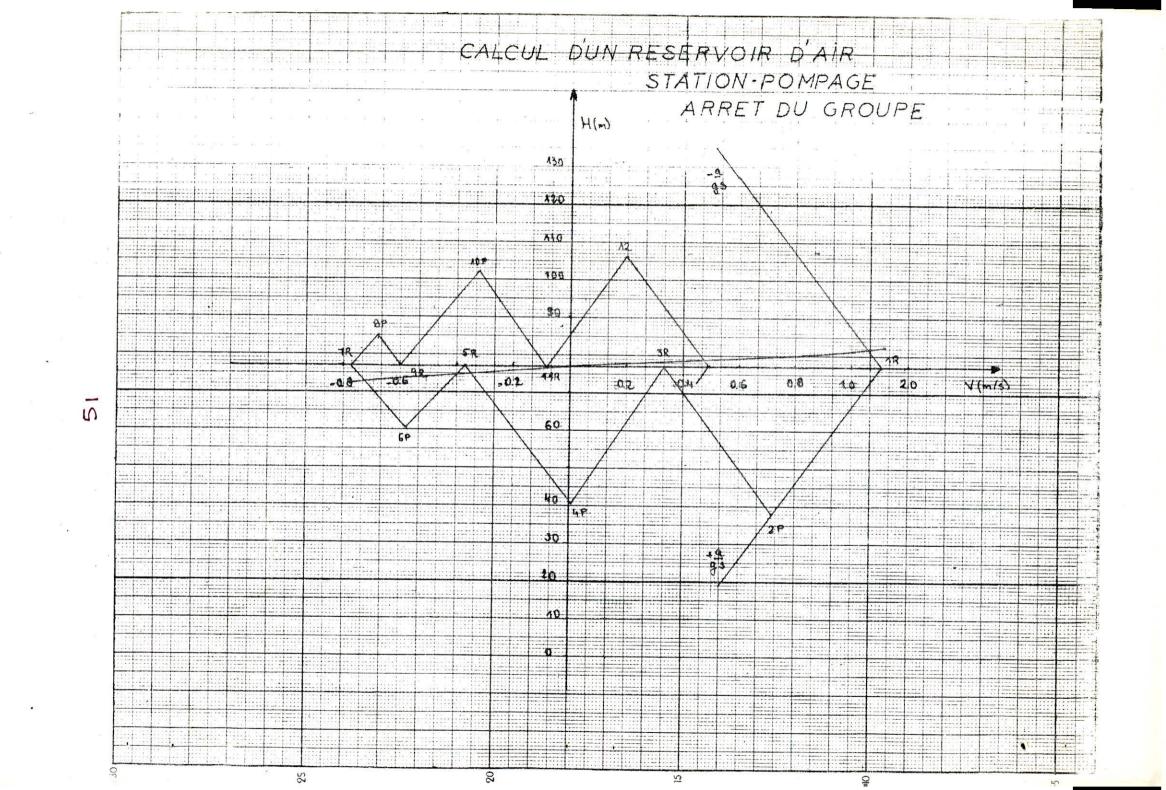

TRONCONS !	LONGUEURS (m)	DIAMETRE DE LA CONDUITE(mm)	EPAISSEUR DE LA CONDUITE (mm)	! DEBIT L/S !	SECTION m ²
SP -RMC	3600	450	! 05 !	176 !	0 , 159

TABLEAU DES RESULTATS :

TRONCONS !	a (M/S)	! V (m/s)	b (m)	Ho (m)	
SP - RMC	1026	1,11	116,27	12,17	i
!		!	_i	i	i

H'o + b	! H'o - b	D _t (mm)	d (mm)	(_/o (m ³)
128 ,3 8	! - 104,04	! 300	120	! 04

L'analyse des résultats donne une depréssion maximale de 37 m d'eau environ et une surpression de 25 m d'eau

of temps	ΔU=5Vmθ ΔU=1,2 Vm (rm³)	Volume Bair Ll (m³)	Z = 227	V1 = 15,6 V1 V2 = 28 V1	2h,=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	z - shi z + ch2	E Kan	z-sh8 z+sh.+6	Vf (m/s)	Designation duriont	V _{in} (m/s)	V(chara	
1	2	₁ 27	<i>Ž</i> ,	Ü	Ġ	7	ė	ગુ	110	11	14	/3	
Θ	0	_ = 02	36 , I7			85 , I7	9,17	77	ΙgΙΙ	I.R	(4.18)		
Θ	I,02	3,02	48,3I	12,12	5,55	42,76	4,85	37,91	0,73	2.₽	0,92	0,73	
2.0	0,410	3?43	40,42	0,17	0,001	40 , 42	0,0009	40 , 42	0,01	4.P	0,37	0,01	
3.0	- 0,325	3,IC	45 , 57	I6 , 24	II,30	57,87	3,06	60,93	- 0,58	6.P	0,29	0,58	g he were ever grow
\$ 4.0	0,700	2,34	57,00	19,04	I5,54	82,54	3,09	85,63	-0,68	8.P	-0 , 63	. 0,68	e n Seatlet in the
5.0	0,56	78, آ	101,26	8,4	0,38	IOI,66	0,69	I02 , 35	- 0,32	IO.P	-0,50	- 0,32	· · · · · · · · · · · · · · · · · · ·
6.0	0,07	I,7I	I07,II	3 , 32	0,4I	106,70	0,27	106,43	+ 20	I2.P	- 0,06	÷ 0,20	7 7 7 100 1 to 100 1
7.9	0,46	2,07	8 1, 97	7,47	2,10	79,07	3,01	76,87	0,44	I4.P	÷0 , 32	· 0,44	
			.	A . An and a second of the sec	i							To come and a community	d a san a sa sa san san san san san san s
				1				100 cm			F. 500		:
			E .										
			The second secon			,		-			! !		

PROTECTION DE LA CONDUITE CONTRE LE COUP DE BELIER :

- Nous avens fait une étude pour proleger la conduite de refoulement, pour attenue l'effet du coup de belier dans le cas d'un arret brusque du groupe electro-pompe. Cette protection sera assurer par un reservoir d'Air.

Cependant il est necessaire d'étudier la protection de la conduite au moment de demarrage du groupe, alors que l'eau contenue dans la conduite n'est pas en mouvement.

En effet, l'introduction, dans cette conduite de l'eau refoulee va engendrez un coup de baller qui se manifestera avec d'autant plus d'intensite que cet apport aura été brutal et i su minortant. En tenant compte de cette observation nous imposons un demmarage qui s'éffectue a vanne fermée. Le coup de belier sera dans attenué lorsque on ouvrira progressivement, la vanne. Pour notre etude on prevoit des Vannes motorisés.

CHOIX DE GROUPE

Le choix de groupe se fait en fonction du débit à refouler : Ret de la hauteur d'élevation HmT.

Nous avons à determiner :

1) CHOIX DES GROUPES POUR LA VARIANTE Nº 1

* FORAGE B, B3 , B1 , B2 :

Nous choisissons un groupe électro-pompe immérgé et nous prévoyons un groupe identiques en secours :

A l'aval, la pompe sera munie des accessoires suivants :

- Un clapet anti-retour - UN comptain de debit - Un robinet vanne

FORAGE B 4

Les caractéristiques de refoulement sont suivantes :

Q = 60 L/S = 216 m3/h

 $HmT = Hg + DH_{\bullet} = 187,74 \text{ m}$

Avec Hg: hauteur géométrique de refoulement

DHT: pertes de charge totales

Du catalogue JEUMONT -SCHWEIDER, pour les pompes immérgées, on a determiné la pompe qui correspondant à ces caractéristiques :

TYPE DE POMPE	POMPE PUISSANCE ABSORBEE(Kw)	RENDEMENT	LONGUEUR (m)	massæ(kg)	VITESSE DE R A TA- TION Tr /mn
12220 R 10 C	143	0,76	3927	760	2900
HA 220					Hm _τ = 198 Q = 216 m3/h

FORAGE B 3:

Les caractéristiques de refoulement sont les suivantes :

Q= 60 L/s = 216 m3 /h

HmT = Hg + DHt = 160,66 m

TYPE DE POMPE	POMPE PUISSANCE ABSORBEE (Kw)	RENDEMENT	LONGUEUR(m)	IIASSE Kg	VITESSE DE ROTA- TION Tr/mn	-
12220 R 8 C	126	0,76	3497	675	2900	
H A 180					Hmt = 163 /Q= 216 m3/h	2"

FORAGE B 2:

Les caractéristiques de refoulement sont les suivants :

$$Q = 6 1/s = 21,6 M3/h$$

 $Hm \mathfrak{P} = 173,21 \, \text{m}$

TYPE DE POMPE	POMPE PUISSANCE ABSORBEE(Kw)	RENDEMENT	LONGUEUR m)	MASSE	VITESSE DE ROT Tr/mn	ATION
8030.R9.GA	21	0,70	1793	155	2900	
30		0,10	1793	199	HmT = 188 Ø = 21,6 m3/h	12"

Forage B 1:

Les caractéristiques de refoulement sont les suivants:

HmT = 179,13 m

TYPE DE POMPE	POMPE PUISSANCE ABSORBEE (Kw)	RENDEMENT	LONGUEUR (m)	MASSE Kg	VITESSE DE ROTATION Tr/mn
12220.R.8.C	126	0,73	3497	675	2900 HmT = 183
HATOV				1	$\emptyset = 180 \text{ m}3/\text{h}$ 12"

2) CHOIX DES GROUPES POUR LA VARIANTE N° 2

FORAGE B4, B3, B2, B1:

Nous choisissons aussi des groupes électro-pompe immergie et nous prévoyons des groupes identiques en secours dans chaque forage. Et nous choisissons des pompes centrifuges multi cellulaires pour la station de pompage (avec pompe de secours) A l'aval, la pompe sera munie des accessoires suivants:

- Un cône (divergent) pour le raccordement pompe-conduite de refoulement.
- Un clapet anti-retour
- Un robinet vanne
- Un compteur de débit

FORAGE B 4:

Les caractéristiques de refoulement sont les suivants :

$$Q = 60 \text{ l/s} = 216 \text{ m3/h}$$

HmT = 100,78 m

.../...

TYPE DE POMPE	POMPE PUISSANCE ABSORBEE (Kw)	RENDEMENT	LONGUEUR (m)	MASSE Kg	VITESSE ROTATION Tr/mn	
12220.R.8.C H.A 180	126	0,76	3427	675	2900 HmT = 102 m 1Q= 216 m3/h	12"

FORAGE :61

Les caracteristiques de refoulement sont les suivants:

Q = 50 l/s = 180 m3/h

HmT = 92,26 m

TYPE DE POMPE	POMPE PUISSANCE ABSORBEE (Kw)	RENDEMENT	LONGUEUR (m)	MASSE Kg	VITESSE ROTATION Tr/mn	
12220 R.4.	65	0,73	2654	512	2900 HmT = 95 mm	12"
G.A. 95					j0= 180 m3/h	, , _

FORAGE B 3:

Les caractéristiques de refoulement sont les suivants :

50 = 60 l/s = 216 m3/h

HmT = 73,48 m

	POMPE PUISSANCE	RENDEMENT	LONGUEUR	MASSE	VITESSE DE ROTATIO
POMPE	ABSORBEE (Kw)	1	(m)	Kg	Tr / mn
12220 . R.4					2900
	65	0,76	2654	512	HmT = 95
G.A. 95		-		5	Q = 180 m3/h

FORAGE B 2:

Les caractéristiques de refoulement sont les suivants :

% = 61/s = 21,6 m3/h HmT = 86,03 m

TYPE DE POMPE	POMPE PUISSANCE ABSORBEE (Kw)	RENDEMENT	LONGUEUR (m)	MASSE Kg	VITESSE DE ROTATION Tr / mn
8030 R. 5 a	9,9	0,70	1664	120	2900 HmT = 95 m
T.A 15		i i			Q = 21,6 m3/h

ろと

	NOMENCLATURE			10
N ₈	Denomination	D.N	Materiau	121.27°;
A. Common of the	Tuyau	300	Acier	
2	Gaine Etanche	350	"	
3	T é	300-300	· · · · · · · · · · · · · · · · · · ·	
4	Robinet Vanne	300	Fonte	
5	Coude	"	Acier	Ch se **
6	Corte	300-200		
7	Groupe			se A-de
8	Robinet Vanne	200	Fonte	v
9	Plaque Pleine	300	A cier	1
10	Gaine Elanche	250	Acier	grafika sirtu
11	Plaque Pleine	200		the Secret
12	Tuyau	200	1	11.
13	Coude	- "		Attentide?
14	Clapet de Retenue			
	W. Carlotte			

STATION POMPAGE - RMC

La station de pompage comprend

- Une bache de reprise de 2×500 m3 = 1000 m3
- Une salle de machines
- Locaux de service (exploitation)

On propose une pompe à axe horizontal, et une pompe identique sera prétue en secours L'approprie de la pompe se fera en depression en plaçant l'axe de la pompe au dessus du plan d'aspiration.

Les caracteristiques de refoulement sont , Q = 176L/s = 633,6 m 3/h HmT = 82,17 m

Le cataloque JEUMONT SCHWEIDER pour les pompes horizontales nous donne la pompe suivante : N.M.88.

Le rendement est de 75 % , et la vitesse de rotation du moteur est 1450 Tr/mn

3. FONCTIONNEMENT DES POMPES :

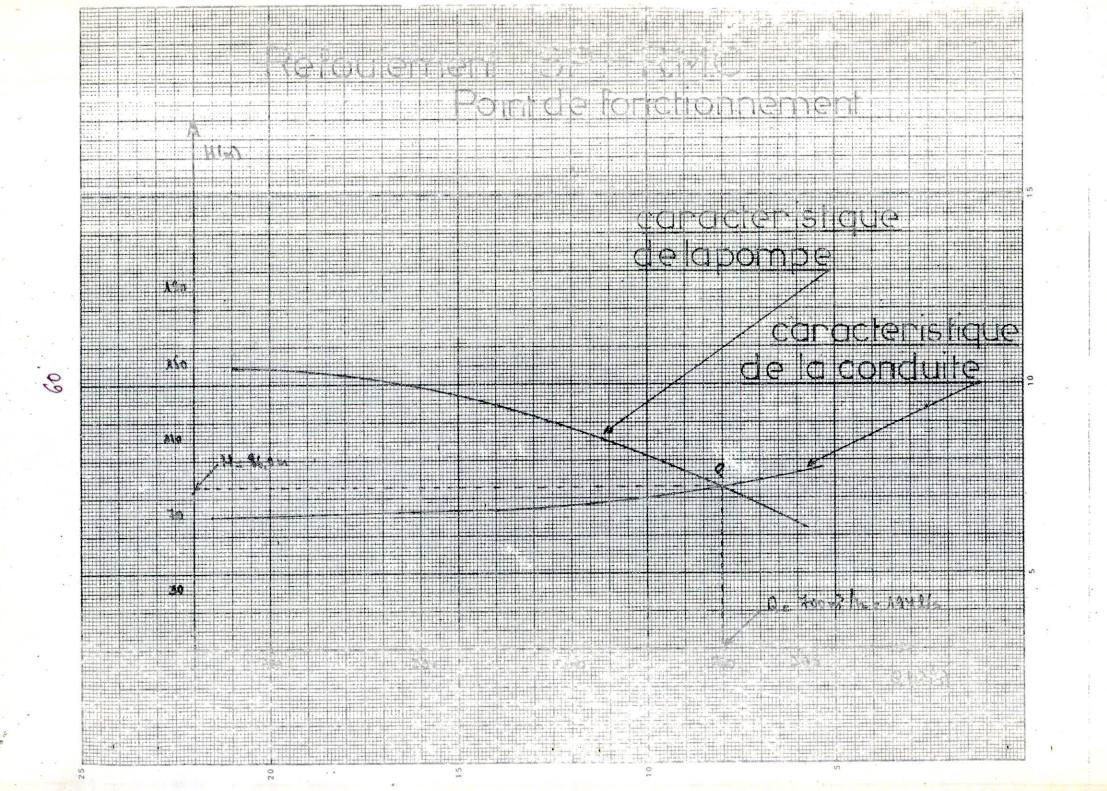
Le point de fonctionnement s'obtient en construisant la courbe caractéristique de 1 refoulement pour differents débits Q , et la courbe caractéristique de la pompe QH. Le point P définit donc l'intersection de ces 2 courbes caractéristiques .

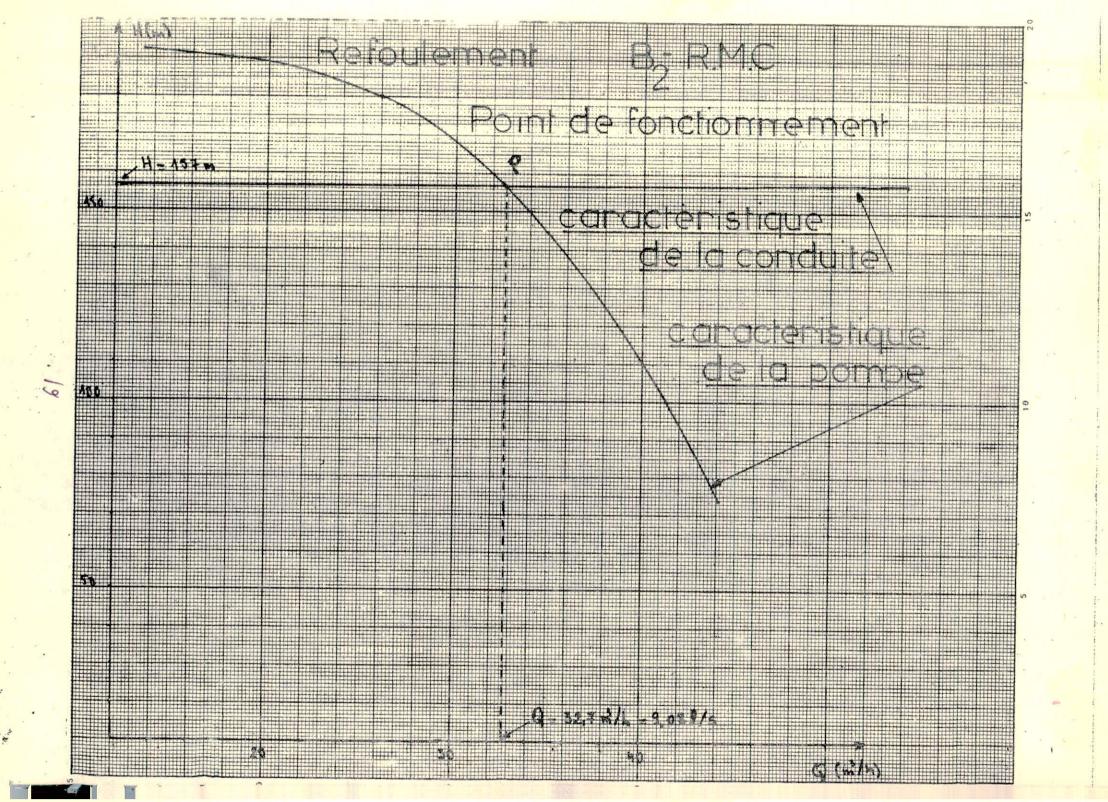
Si la pompe est installée dans un puit ou un forage, la recherche du point de fonctionnement devra tenir compte de la courbe Qh de pompage établie lors de l l'essai de débit (courbes qu'on n'est pas en possession : pour notre étude) Qh, en fait, n'est autre que la caracteristique du puits et cette courbe s'utilide comme n'importe quelle autre caracteristique.

La courbe CH coupe la caracteristique de la conduite au point Q qui est le point de fonctionnement de la pompe qui est différent du point de fonctionnement désiré. En vue d'obtenir ce dernier, plusieurs solutions sont possibles:

*Accepter le point de fonctionnement de la pompe tout en etudiant la non cavitation de la pompe, le débit de fonctionnement de la pompe est olus grand que le débit désiré, d'ou la durée de pompage sera dimuniée.

- * Soit on rogue la rouz de façon à faire passer la courbe QH par le point de fonctionnement désiré.
- * On vanne sur le refoulement, pour creer une perte de charge. Le point de fonctionnement nous donnera le débit désiré.


4. AUTOMATISATION :


L'automatisation des installations d'un service d'eau est évidement fort souhaitable .Elle ne peut, cependant, assurer une sécurité totale, ou des defaillances du matériel sont toujours possibles, ce qui exige parfois de doubler le commande pour des dispositifs differents.

En tout état de cause, l'automatisation permet une réduction du personnel d'exploitation ce qui constitue un serieux avantage.

4.1 AUTOMATISATION AU NIVEAU DES FORAGES:

Le niveau d'eau dans les forages pourrait eventuellement baisser, au dessous de la côte de fonctionnement prévue donc il est necessaire de commander sa mide en route et son arrêt en fonctionnement dun niveau d'eau à l'aspiration. De même un relai a minimum de puissance coupe l'alimentationsi la puissance électrique

consommée n'est pas suffisante, assure l'interdiction de ce mode de fonctionnement .

4.2 AUTOMATISATION MOTEUR RESERVOIR:

Il est indispensable de commander l'arrêt du groupe, lorsque le reservoir atteint un certains niveau (plien), et sa mise en marche lorsque le niveau atteint une valeur de consigne.

La disposition d'un robinet flotteur à l'arrivée de refoulement présente l'inconvenient de ne pas être trés étanche, et la fermeture devient défectueuse avec le temps.

Pour plus de sécurité, on chima pour une commande par ligne pilote.

POSE DE LA CONDUITE :

Lors de la pose de la conduite, généralement on éxécute une tranche d'une largeur de façon à avoir 0,30 m départ et d'autre de la conduite h = D+0,80+0,10 = 0,10

5. ETUDE COMPARATIVE DES DEUX VARIANTES :

DESIGNATION DES OUVRAGES	PRIX EN (DA VARIANTEnº1	PRIX EN (DA) VARIANTEnº2
Coût des travaux de terrassement	4.240.980,00	4.371.660,00
R.M.D	1.400.000,00	1.400.000,00
Abris de forage	678.648 , 00	678.648,00
Logement pour exploitation et gardiennage	925.711,00	925.711,00
Bache d'aspiration de 1000 m3	-	1.576.680,00
Poste de transformations	689.000,00	700.000,00
Groupe électrogómpe, clapet, vanne compteur, bude, groupe de secours et piéces de rechange	4.330.000,00	5.100.000,00
TOTAL	. 12.264.339,00	14.752.699,00

La variante 1 est économique, mais elle présente deaucoups d'unconvenients:

Si un accident se produit sur un des trançons des conduites reliant les forages l'effet de cette accident se représente sur le débit total d'exploitation ce qui entraine une diminution de débit total d'apport.

-L'exploitation des forages demandent plusieurs agents de surveillance, et beaucoup de déplacements.

La variante n° 2 qui présente un relévement en 2 temps, bien qu'elle sera plus onerense en frais que la 1er varante consistant à un refoulement direct.

Neamoin elle présente beaucoup d'avantage s .

-Elle apporte une certaine souplesse, à l'occasion d'un accident sur une conduite reliant les forages, elle permet grâce à la reserve accumulée à la S.P de continuer à fonctionner avec le débit normal pendant que les dispositions sont prise, soit pour maneuvrer des robinets vannes soit pour réparerla conduite.

- Un seul agent peut controler la marxhe de l'exploitation, grace à toute les informations qui parviennent au batiment de la stationde pompage par automatisma, et il peut suivre sur les tableaux les défauts possible d'exploitation.
- -Elle est rationnelle, elle permet d'obtenir un rendement général.
- 6 Le groupement des installations dans la S.P faciliteront l'exploitation et c'est un aspect du probléme qu'il ne faut pas négligé.
- A la base de cette étude, ou apte pour la 2 me Variante.

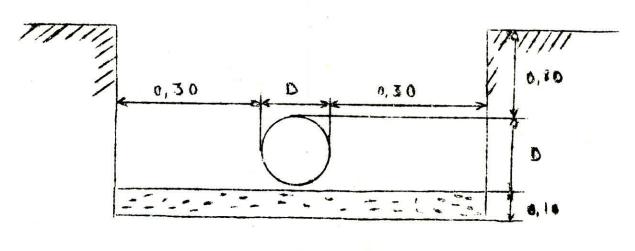


fig.P.

CHAPITTRE (6)

ADDUCTION GRAVITAIRE

Le tracé de l'adduction gravitaire pour l'approvisionnement des réservoirs de stockage de Sidi-Aissa, Ain El Hadjel et Sidi Hadjeres est d'une grande importance. Il présente une distance de 70 Km environ. L'influence de la rugosité absolue, sur le calcul du gradient de perte de charge sera prise en considération.

1 Importance du choix de la rugosité E.

La rugosité absolue & est donné par la mesure de l'épaisseur des rugosités des parois du tuyau. La rugosité relative est le rapport de la rugosité absolue & au diametre de la conduite D.

Dans la pratique, la rugosité absolue n'est pas uniforme, mais on peut la caractériser par une valeur moyenne qui au point de vue des pertes de charges est équivalente à une rugosité uniforme cependant, c'est par des mesures sur les tuyaux et conduite réels que l'on établit à l'heure actuelle la valeur de la rugosité uniforme équivalente correspondant à un matériaux (conduite) et à un finissage déterminés.

D'après "Memento des pertes de charges" I.E. IDELCIK la rugosité des tuyaux en acier soudé est donnée par le tableau suivant.

VA	LEURS DE LA RUGOSITE	E mm)
Tuyaux	Neuß, ou væux, en bon état joint soudé ou rivés	0,04 - 0,10
x en acier	Neuf, revêtus de bitume	0,05
	En service, le bitume partiellement corrodés	- e , 10

2 CALCUL DES PERTES DE CHARGES

l'ecculement de l'eau dans les conduites forcées à fait l'objet de nombreuses formules qui ont été traduites ou mises sens formes de tabeaux. Cette diversité montre les difficultés qu'en rencontre les chercheurs scientifiques en vue d'établir une expression générale satisfaisante tenant compte à la fois de tous les parametre intervenant dans la résistance à l'écculement tels que, nature du tuyau, nature et état du revetement (degré d'usine, incrustations, dépôts). viscosité du liquide transporté ;;.. ETC.

Toute fois, ces diverses influences peuvent être groupé sous un coefficient unique dit de perté de charge, qui est fonction de (2,Re)

DIAGRAMME UNIVERSEL DE MOODY

En se fondant sur les expériences de Nikuradses, sur l'analise mathématique de brandtet voukarman, sur les abservation de coloobrok et white et sur un grand nombre d'expériences en conduites industrielle, moody à etabli un diagramme, qui donne P Coefficient de frottement en fonction de Re et de E.

Pour l'etude de notre projet, le choix de formule pour calculer 🗭 a été basé sur la formule de coolbrook.

Les pertes de charges sont calculés par 2 méthodes et pour différentes valeurs de rugosité &

2.1 Méthode classique

Méthode classique Nous avons la formule de continuite Q = V.S., Q = V.S. = V.II. D^2 Q = V.S.

Nous proposons une vitesse moyenne de 1 m/S, et on obtient D, nous prenons un diamétre normalisé et on calcule la vitesse V lui cofrespondant. Les pertes de charges sont données par la formule de doncy-WEISBACH

AH= J.L = 1V2 L

Dn. 2g

$$\Delta H = J \cdot L = \frac{7}{7} V2 \qquad I$$

F Donnée par la formule de colebrook

$$\frac{1}{\sqrt{1}} = -2 \operatorname{Log} \left(\underbrace{E}_{3,7D} + \underbrace{2,5I}_{\text{Re V}} \right), \operatorname{Re} = \underbrace{V.D.}_{3}$$

pour un débit constant Q=176 l/s, et une longueur de 3993I,4 m et un diametre constant D=500 mm.

on établit un tableau de calcul des pertes de changes lineaire et singulier (extimees à I5 %) pour voir l'influence de la rugosité absolue (TAREEAU N° 1) Pour différentes rugosités absolues et températurés = F (T°), Re=F(v,0,3)

Régime d'écoulement est déterminée par

b) Pour formule d'altchoul :

23 $\stackrel{\longleftarrow}{=}$ Re $\stackrel{<}{<}$ 560 Régime de transition

E(mm)	T°C	J (m2/5)	Re	E/D	F	J	L (m)	DIIT (m)	E/D Re
	4	1,57;10- ⁶	2,85 10 ⁵	0,0001	0,0158306	0,001308	39931,40	60,06	22,5
0,05	10	1,3I 10 ⁻⁶	3 , 42 10 ⁵	0,0001	0,0154324	0,001276	3993140,40	58,60	34, 2
	20	1,01 10 ⁻⁶	4,44 10 ⁵	0,0001	0,0149173	0,0012329	11	56,62	44,10
	30	0,83 10-	5 , 40 105	0,0001	0,0145709	0,0012043	11	55,30	54,00
	4	I,57 10€	2,85 10 ⁵	0,0002	0,0166554	0,0013766	17	63,22	57,00
0,1	10	I,3I 10 - 6	3,42 1 0 ⁵	0,0002	0,01632I54	0,0013490	-	6I , 94	68,40
	20	1,01 10-6	4,44 10 ⁵	0,0002	0,0159008	0,0013142	11	60,35	88,80
	30	0,83 10-6	5,40 1 0 ⁵	0,0002	0,015626	0,0012915	71	59 , 3I	108,00
	4	I,57 10 ⁻⁶	2 , 85 1 0 ⁵	0,0008	0,020170	0,0016537	77	75 , 94	22 8,00
C4	10	1,3I 10 ⁻⁶	3,42 10 ⁵	0,0008	c , c1999c	c , cc16389	11	75,26	273,60
=	20	1,01 4 0-6	4,44 1 0 ⁵	0,0008	0,019776	0,0016213	PF	74,45	355,20
l	30	c , 83 10 ⁻⁶	5,40 10 ⁵	0,0008	GC 19643	0,00161046	11	73,95	432,00

000

Interpretation du tableau N° 1 67-

on remarque

- 1°) Les pertes de charges diminuent au fur et à mesure que la T° augmente
- 2°) Pour une temprérature constante et pour une variation **1** = 0,05 me il y a une variation moyenne de pertes de charges de 3,50 m
- 3°) Pour T = cte et & = 0,3 mm il y aa une variation moyenne de nortes de charges de I4 m à la base de ce tableau de calcul. Pour notre de la en supposant que la température pour diverses saison est en moyenne de 20°C, nous prenens un coefficient de mugosité & = 4.10 -4 m, et ceei pour avoir une bonne sécuritié de tenir compte du veillissement de la conduite.
- 2-2 Longueur flui dodynamique (G. LAPRAY)

connaissant D et & on a :

Dh Du diagramme de Moody, on détermine le régime d'écculement Re

A=D D. D. = parametre adimensionnel du profil circulaire

D'aprés l'abaque 8 (etabli par G. LARRAY)

 \sqrt{Jr} > Jr, si l'écculement est en mégime de transition Q en écrit $J = \sqrt{J} Jr$

 $^{5}J^{5,5}$ est déterminé par l'abaque I7 C Les pertes de charges $\mathbf{A}_{+}^{H} = J.L \div I,I5(JL)$

JL: perte de charge lineaire.

Application R.M.C. Noend C1

Pour un débit de I76 l/S, et $\hat{J} = 10^{-6} \text{ m2/s}$

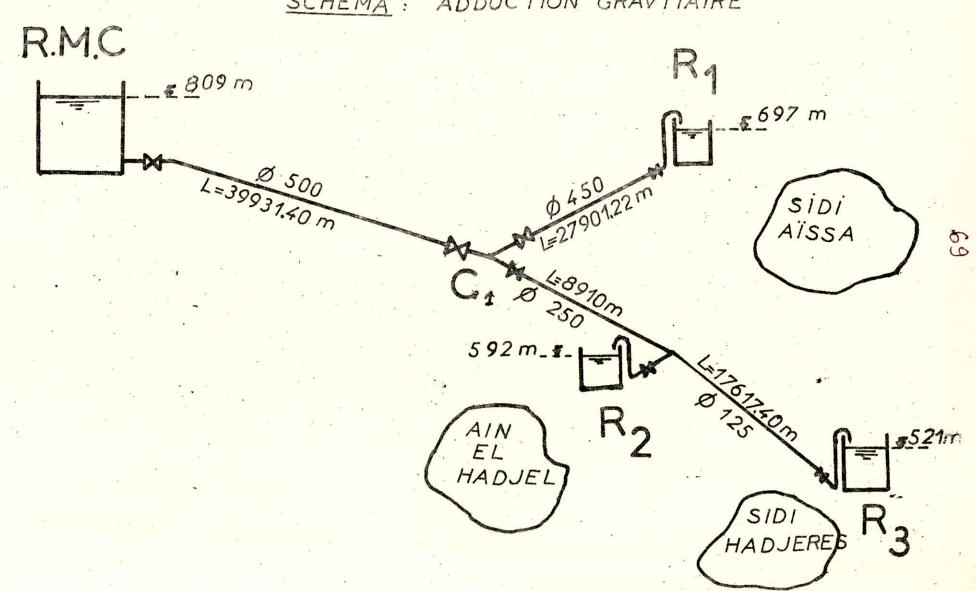
pour un diametre de 500 mm, le long du ronçon

TABLEAAU DONNANT LES PERTES DE CHARGES POUR DIFFERENTES VALEURS DE E (PAR LONGUEURS FLUIDCHYNAMIQUE)

R ım)	D (mm)	Dn	Re	1=D (m)	^г Јљ (8)	友,3 _J (I7c)	J	L (m)	DH (m)	DHT
,10	500	2 10 ⁻⁴	4 , 488.10 ⁵	0 , 325	0,0011456	1,145	0,001311	3993I , 40	52, 38	60,23
40,40	500	10 ⁴ و8	11	11	0,0015295	I,(55	0,001616	3993I ₉ 40	64 , 53	74,20

Les 2 Méthodes de calcul des pertes de charg nous ont donné les mêmes résultats pour notre étude nous prenons un coefficient de rugosité £ = 3,4 mm, et deci par avroi une bonne sécurité et tenir compte veillissement de la conduite

Tracé de ligne piezométrique (planche N°4)


Le tracé de la ligne piezométrique, doit toujours passer aqu dessus de la con misc afin que celle-ci reste en prossion.

Suivant les besoins en eau potable des agglomération de Sidi-Aissa, Ain el Hadjel et de Sidi Hadjeres qui sont respectiivement de 92 l/s, 741/S et 101/s, et pour D = 4,1(-) m la ligne piezométrique sera tracé à la base des resultats de calcul du tableau N° 2 et du point de vue sécurité d'exploitation des vannes seront D - vus sur les rençons CTR₁

C1- R2 .et une vanne de sur vitesse sur le trançon principam R MC - C1 dont le principe de fonctionnement est le suivant :

- elle se ferme automatiquement et iniversiblement dès que le débit a dépassé le maximum autorisé. Le temps de ferméture est réglable pour éviter le risque de coup de belier le réglage du débit de déclenchement se fait par déclenchement du contre poids.

SCHEMA: ADDUCTION GRAVITAIRE

designation	Longlett	Diame tre		J	\$ V	Mi ^L	Hat tothing.	Siring Color	Côte (N.G.A)	Pression
W. F. 'P 100000000000000000000000000000000000	(m)	(mm)	(1/s		(m,'s)	(m)	(m)	(m)	(m)	(m)
RMC-C ₁	3993I , 40	500	176	0,001621	0,90	74 , 03	805,20	731,17	1:N 633,10	98 ,07
C7-R4	27901 , 22	450	92	0,000788	0 , 58	25,30	731,17	705,87	697	8,87
C, -R ₂	8910	250	84	0,0137669	Ι,71	I38,6I	731,17	592 , 56	T.P 592	C , 56
R ₂ - R ₃	17617,40	I2 5	10	0,0034769	0,81	70,44	592,56	522 , I2	T.P 521	I,I2

Las charge disponible pour le reservoir R₁est supérieur à la charge nécessaire, ce qui entraine un débit important que celui demandé.

D'ou la nécessité d'installer un robinet-vanne sur la conduite d'arrivée le réservoir pour dissiper la charge supplementaire, dont nous calculerons le la fermeture.

Les pertes de charges singulières à dissiper par la vanne sont de la forme suiva de AHJ= KQ² (K résistance de la vanne)

$$\triangle Hv = KQ^2 = Y \quad \frac{V^2}{23} \Rightarrow \quad V = \frac{\triangle Hv}{V} \stackrel{?}{=} \qquad = \frac{KQ^2}{V^2} \stackrel{?}{=} = 12, 0 \stackrel{?}{=} \stackrel{\mathbf{D}}{\bullet}^4 \qquad \triangle Hv$$

Y Coefficient de perte de charge

Ally charge à dissiper

$$z$$
 hv = $Y = \frac{v^2}{2g} = (v_{v} - v)$ v_{v} Vitesse dans la section de la vanne

$$Av = AV_V \implies \Delta H_V = Y \frac{v^2}{2g} = \frac{V^2}{2g} \left(\frac{A}{Av} - 1\right)^2$$

$$\underline{Y} = \left(\frac{\Lambda}{A_{\mathbf{v}}} - 1\right)^{2} \implies A_{\mathbf{v}} = \frac{\Lambda}{\sqrt{Y} + 1}$$

$$V = I2,09 \frac{(0.450)^4}{(0.092)^2}$$
 8,37 = 490,26

$$Y = (A_v - 1)^2$$
 $\Rightarrow A_v = \frac{II p^2}{K \sqrt{Y} + 1} = \frac{II \cdot (0,450)^2}{\sqrt{490,26} + 1}$

$$A_v = 0,00710 \text{ m}2$$

 $A = 0.1590 \text{ m}2$

9H (m)	Q 1/s	Ā	D (mm)	A m. 2	A _v	ाड्युपर De fermeture en %
8 , 37	92	490 , 25	450	0 , I590	0,0500	95 , %

; : DAULE NU COUP DE BÉLIER

La manification du reseau dans la partie gravitaire nécessite une étude sur les ondes de propagation le long de la canalisation.

TADLEAU DES CELERITES DES ONDES DE PROPAGATION

CONDUI	DE TRON Ç ON LTE	DIAMETRE (mm)	EPAISSEUR (mm)	CELERITE (m/s)	LONGUEUR (m)	т (в)
1	B.,-C.	450	5	1045	27901 , 22	26,7
2	C,-32	250	3 , 5	1103	89 10	3,03
3	C,-RMC	500	5	1018	3993I , 40	39 , 2

T = L est la durée de parcourt d'un tronçon de conduite par une onde de propagation

Une onde de choc vermant à une bifurcation C, provoque l'apparition d'un comp d'intensité \mathbb{F}_1 , $\mathbb{C} = \mathbb{F}_1$ qui part reflechit de signe négatif, deux ordes de rêce intensité \mathbb{F}_2 , $\mathbb{C} = \mathbb{F}_3$, $\mathbb{C} = \mathbb{F}_1$ qui se propage le long des deux autres oanluites.

$$S_1 = \frac{2A_1/a_1}{A_1/a_1 + A_2/a_2}$$
 et $f_1 = S_1 - 1$

& Coefficient de reflexion

S. Coefficient de transmition

Au niveau de C

$$Y_1 = -0,21867$$
 $Y_3 = -0,00981$ $Y_2 = -0,77152$
 $S_1 = 0,78133$ $S_3 = 0,99019$ $S_2 = 0,22846$

a) à t = c en R, fermeture instantannée

$$\mathbb{F}_1 = \underline{\text{avo}} = \underline{\frac{1045 \cdot 0,69}{9,8}} = 73,58$$

Cette onde atteint C à $\mathbb{T} = 26,7s$, elle se décompose en

$$F_{1,2}0 = V$$
, $F_{1} = (-0,21867)$ (73,58) = I6,10 qui part vers R_{1}

$$F_{2,0} = S_1 F_1 = (0,78133)(73,58) = +57,49$$
 qui part vers R_2

$$F_{3.0} = S_1 F_1 = (0,78133) (73,58) = 57,49$$
 qui par vers R.M.C.

à l'instant T = 25,7.2 = 52,4 S $F_{1,0}$ arrive en P₁ et salamaferre en :

```
F1,1 = F1,0 H1 = F1 + 2 F1,0 = 73,58 + 2(-16,10) = 41,38 m
à l'instant T = 26,7 + 8,08 = 34,78 S
F2, Carrive en R2 et se transforme en $2, Cen R2 la pression est constante
-F2,0 = F2,0 \pm -57,49
A L'instant T = 34,78 + 8,08 = 42,86
F2, Carrive en Cet se transforme en
F21 = F2. F2,0 = (-0.77 I52)(-57.49))(-7.152) = 44.35 qui part vers <math>M2
F1.1 = S2 F2.0 = (0.22846)(-57.49) = -I3.I3 qui part vers R1
F3,1 = S2 F2,0 = (0,22846)(-57,49)=-13,13 qui part vers RMC
A L'instant T = 42,86 \div 26,7 = 69,56 D F11 arrive en R1 et se ransforme en F12 = F11
H2 = H1 + 2 + 11 = 41,38 + 2 (-13,13) = 15,12
Al'instant T = 42,86 \div 8,08 = 50,94 F21 arrive on R2 et se transforme 721 = -721
A l'instant T = 50,94 + 8,08 = 59,02 S F21 arrive en C et se transforme en
F12 = S2 F21 = (0,22846) (-44,35) = -10,13
\mathbb{P}^{22} = \mathbb{P}^2 \quad \mathbb{P}^{21} = (-0,77152)(-44,35) = 34,22
F22 = S2 F21 = (0,22846)(-44,35) = -10,13
A l'instant T = 59,02 + 26,7 = 85,72 S
T I2 arrive en R1 et se transforme en :
            H3 = 112 \div 2 \text{ p12} = 15,12 \div 2 (-10,13) = -5,14 \text{ m}
A L'instant D + 59.02 + 3,08 + 67, I S F 22 arrive en R 2 et se transforme en
F22 = - F 22 = - 3 - 12
A L'instant = 37, 0 0,00 = 75,13 S, F 22 arrive en c, et se transforme en :
F = S2 = (0,22846) (-34,22) = -7,82
F 33 = S2 F 22 = (0,22846)(-34,22) = -7,82
\mathbb{F} 23 = \mathbb{F} 2 = (-0.77152)(-34.22) = 26.40
a l'instant T = 75, I8 \div 26, 7 = 101,88 S Soit 1 mm. 42 S
'/13 arrive en R1 et se transforme
F I4 = FI3 H4 = h3 + 2 F I3 = -5, I4 + 2(-7, 82)=-20,78
```

et le procedé continue, nous sommes arretés au temps T = 101,38 S soit 1 mm 42 S

TRANCON RMC-CI: Conduite issue de RMC et comportant une vine en con-Les caractéristiques de cette adduction sont:

 $Q_{c}=0,176 \text{ M3/S}$, L=39.931,4 m , D=500 mm, e=5 mm. Celérite de l'onde.

a=
$$\frac{1466}{\sqrt{1+ \frac{2,15.109}{2,10\%5}}}$$
 = 1.018m/s

Vitesse de l'eau pendant le fonctionnement normale.

$$V_0 = \frac{Q}{A} = \frac{0.175}{0.196} = 0.898 \text{ m/s}$$

Prenons comme unité de temps la valour L , le temps

mis par une onde de RMC à C1

$$\frac{L}{a} = \frac{39.931,40}{1018} = 39,23^{\circ} \text{ (a)}$$

Valeur max du com de bélier.

$$b = \underline{avo} = 1018 \times 0.898 = 93,28 \text{ m}$$
Surpression.

$$10 + 6 = 175,9 + 93,28 = 269,18 \,\hat{\mathbf{n}}$$

Dépression.

$$Ho - b = 175,9 - 93,28 = 82,62 m$$

Dans l'hypothèse où la fermeture s'effectue brusque, nous remarquons que cel lieu à une surpression trop grande par conséquent inacceptable. C'est pour de palier à cet inconvenient nous supposons que la fermeture sera assur qui opére ce travail en 39,23 X 6 = 235 s,et nous déterminerons la sur les des passer.

Les caractéristiques de fermeture de la vanne seront représent a la co 0,1,2,3,4,5, espacés de 39,23 s. Ces caracristiques sont des paraboles de caracristiques de caracristiques sont des paraboles de caracristiques de caracristiq paraboles caractéristiques est:

$$Q = m - \sqrt{2g (Ho + h)}$$

→ = section réduite

m = Coef. de contraction

Ho = pression statique

1 = surpression due au coup de oélier.

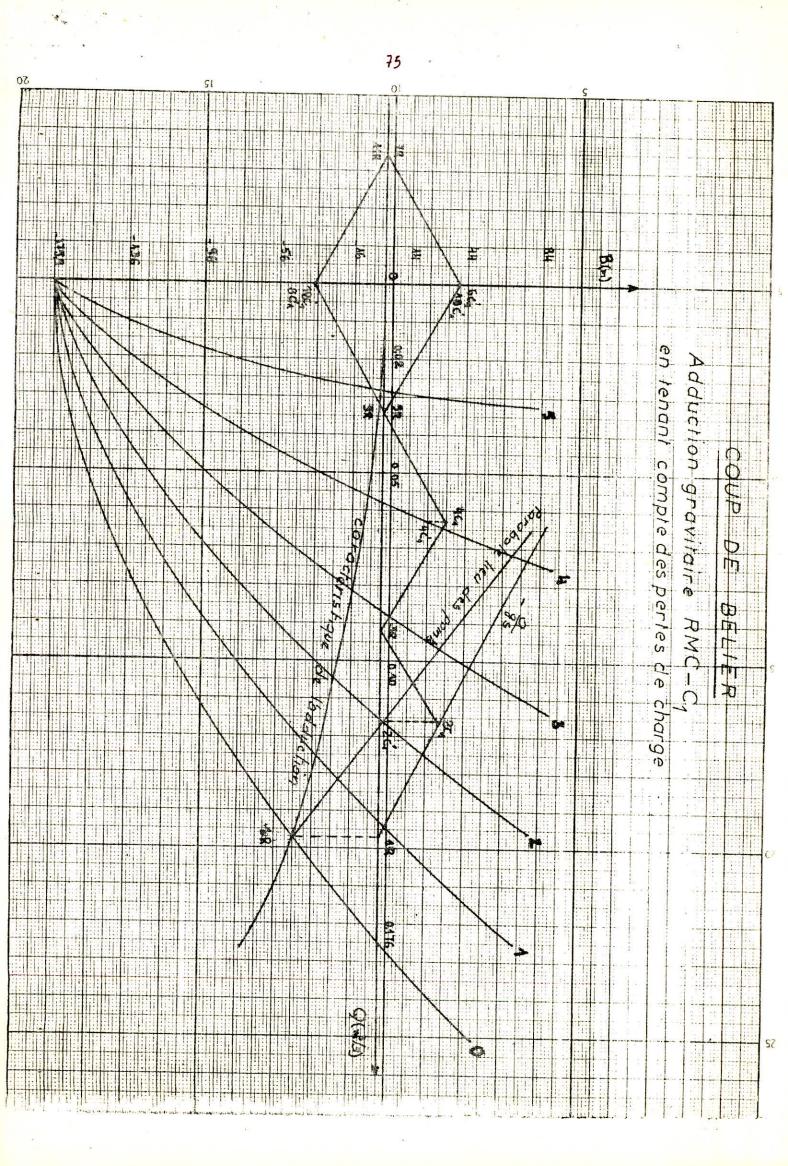
Ho + b =
$$Q^2$$

Au temps 0 la parabole 0 casse par 0,176 M3/s et par le point 20 = 175,9 m. Pour trouver un point que le conque, point N de la parabole O neus procédons comme suit:

$$F = 0$$
 with $b = H$ et $2gM^2 - \frac{2}{12} = K$

$$H_N = \frac{Q_N x}{K} = \frac{Q_0^2}{K}$$

$$H_{N} = \frac{Q_{N}^{2}}{K} = \frac{Q_{N}^{N}}{K} = \frac{Q_{N}^{2}}{K} = \frac{Q_{N}^{2}}{K} = \frac{Q_{N}^{2}}{K} = \frac{$$


Avec les deux points (-Ho = 175,9m et Qo = 0,176m3/s) et les points N,la être tracée.

La fermeture de la vanne étant linéaire, les traces des paraboles 1,2 respectivement par Q5 = 0,029m3/s

Q4 = 0.059m3/s, Q3 = 0.088m3/s, Q2 = 0.117M3/s

-Q1 = 0.147m3/s, Q0 = 0.176m3/s.

et seront tg en Ho =-175,9 m (on suppose m constant quelque soit ---).

en effet Qo Q1 = Q1 Q2 = Q2 Q3 = Q3 Q4 = Q4 Q5 = 0,029 m3/s.

Pour diminuer la valeur du coup de bélier en raison de la dissipation d'énergie engendrée par le frottement de l'eau le long des parois, la prise en compte des pertes de charge seront considérées.

$$\triangle DH = r Q$$
 d'où $r = \frac{DH}{Q2} = \frac{74.03}{0.176} = \frac{2390m^{-7}}{s}$

La variation des P.d c. sont représentées par une parabole caractéristique de l'adduction.

Tracé graphique du coup de hélier, selon la méthode de BERGERON nous donne une surpression maximale de 4 bars. La pression en C, dans la conduite est donc 175,9 + 40 = 215,9 métres d'eau ou environ 22 bars. la dépression maximale est de 4 bars.

RESERVOIR DE MISE EN CHARGE:

Le réservoir de mise en charge n'est autre qu'un réservoir de passage, sa capacité est basée sur la nécessité de maintenir toujours pleine la conduite gravitaire,

quoi qu'il arrive et elle est déterminée d'après:

Le temps de fermeture de la vanne, qui sera déterminée en vue de limiter les effets du coup de bélier,

(T = 235 s), plus un temps de déplacement d'un agent par voiture de la station de pompage jusqu'au point C1 (en cas d'accident d'exploitation), (t = 3h) = 1112

Nous sommes conduit à projeter un RMC à raison des facteurs suivants:

-présence du relief à proximité de la station facilite l'établissement de celui-ci.

-Adduction présentant une grande longueur, établir un refoulement court sous une hauteur d'élévation telle-que la côte de RMC permettra d'écouler le débit vers les trois réservoirs stockage.

-Facteur économique.

CALCUL DE LA CAPACITE DU RESERVOIR RMCI:

En fonctionnement normal, le niveau de l'eau dans RMC est fine tent que le débit d'apport Qa de refoulement est égal au débit de distribution Qd.

Survient l'arrêt des groupes de refoulement ou accident de la conduite gravitaire on aura Qd > Qa , le RMC va se vider, mais le robinet en C1 va entrer en fonctionnement.

Au bout du temps t à partir de l'arrêt (ou au bout deutemps de l'apparition de l'accident), le débit qui s'écoulera du RMC sera de:

$$q = 0,176 - \frac{0,176 \text{ t}}{(235 + 10800)}$$

Le volume de secours compris entre le niveau trop bas et le radier du réservoir peut être calculé comme suit:

d
$$Vs = (0,176 - 0,176 t)$$
 dt

en intégrant de 0 à 11 035 secondés: on aura:

$$Vs = 0,176. \frac{11.035}{2} = 97I m3$$

Le calcul du volume tampon Vt est déterminé en prenant un démarrage par heure. Si on désigne par tf le temps de fonctionnement et T le temps entre l'arrêt et la marche celui-ci sera déterminé d'après les équations suivantes:

$$\forall t = (Qa - Qd) \times \frac{Qd}{Qc} \times T$$

Le volume tampon est max si la dérivée est nulle.

$$\forall \mathsf{'t} = \frac{\mathsf{d} \forall \mathsf{t}}{\mathsf{d} \mathsf{Q} \mathsf{d}} = \mathsf{T} - \underbrace{2 \cdot \mathsf{Q} \mathsf{d} \cdot \mathsf{T}}_{\mathsf{Q} \mathsf{a} \cdot \mathsf{e}} = \mathsf{O}$$

L'intervalle de temps entre l'arrêt et la marche est évidemment diff rent de zéro donc on aura de les

$$1 - 2 Qd = 0 \Rightarrow Qd = Qa$$

Le volume tampon est de:

$$Vt = \frac{1}{2} \times Qa \times \frac{1}{2} T = \frac{Qa \cdot T}{4} = \frac{0.176 \times 3600}{4} = 159 \text{ m}$$

T = le temps entre l'arrêt et mise en marche du groupe. (3600 s)

Pour plus de sécurité on prendra un deuxième volume de secours d'épasses de 50 cm du volume V.

$$V = Vt + Vs = 97I + 159 = 1130 \text{ m}$$

La section du deuxième volume de secours sera:

$$S = \frac{V}{h} = \frac{1130}{4} = 283 \text{ m}2$$

h = hauteur du réservoir = 4m

Le volume pour une épaisseur de 50 cm est bien:

$$Vs2 = 283 \times 0.5 = 142 \text{ m2}.$$

Le volume du réservoir de mise en charge est de:

$$VRMC = Vt + Vs + Vs2.$$

= 159 + 97I + 142 = 1272 m3

Pour faciliter l'étude au génie-civil on prend VRMC = 150 m3

d'où le diamétre est donc:

$$D = \sqrt{\frac{4.V}{II.h}} = \sqrt{\frac{1500}{3.14}} = 22m$$

Les coordonnés de RMC sont: X = 559 481,13 Y = 244 748.63.73 \times T.P = 809 mNGA.

1. - DEMOGRAPHIE:

La population actuelle de SIDI-HADJERES s'élève (recenssement 77) à 1940 habitants, compte tenu d'une augmentation future qui interviendra obligatoirement nous avons accepté un taux d'accroissement annuel moyen de 3% augmenté d'un accre increment miglatoire de 0,1% soit au total 3,1%.

L'accroissement de la population sera calculée par la formule suivant :

$$Pf = Pa (1 + n + t) n$$

Pa = population actuelle (1977)

Pf = population future pour l'horizon considéré (2000)

η = taux d'accroissement miglatoire (%)

t = taux d'accroissement (%)

n = nombre d'années séparant l'horizon considéré et la date du derni recensement.

Connaissant la population du dernier recenssement (1977), calcul population actuelle (82) et future pour l'horizon (2000).

$$P82 = P77 (1 + n + t)^{\frac{1}{2}}$$

 $P2000 = P82 (1 + n + t)^{\frac{1}{2}}$

APPLICATION NUMERIQUE:

$$P82 = 1940 (1 + \frac{3+0.1}{100})^5 = 2260 \text{ hab.}$$

$$P90 = 2260 (1 + 3.1)^8 = 2885 \text{ hab.}$$

$$P2000 = 2260 (19 \frac{3.1}{100})^{18} = 3915 \text{ hab.}$$

2. -EVALUATION DES BESOINS EN EAU POTABLE DE SIDI-HADJERES:

Les évaluations en eau sont évaluées selon lesdivers besoins, qu'il sait satisfaire, à la base des normes collectées auprès de la D.H.W. de M'SIIA.

USAGE DOMESTIQUE:

Q moyen journalier =
$$\frac{\text{qh. N}}{1000}$$
 m3/j

d'où

qh = norme de consommation. 1/j / hab.

N = nombre d'habitants actuels.

$$Qmj = \frac{2260 \times 150}{1000} = 339 \text{ m}3/j$$

Le coefficient Kj max est établi en fonction du changement control par saison, par année, par jour.

$$K j max = 1,1 + 1,3$$

$$q \max j = 1,3 \times 339 = 440,7 \text{ m}3/j$$

calcul du débit futur.

$$qmj = 3915 \times 150 = 587,25 \text{ m}3/j$$

$$emaxj = 587,25 \times 1,3 = 763,43 \text{ m}3/j$$

ECOLE:

La ville de SIDI-HADJERES comprend une école de 4 classes et un la sur la base de 35 élèves par classes de nombre total s'élève à 1 J au con attribue 50 1/ élève/j

a) BESOINS ACTUELS:

$$140 \times 50 = 7000 \, 1/j = 7m3/j$$

Les besoins futurs seront pris aux mêmes titre que les besoins not l' CENTRE ADMINISTRATIF:

On leur attribue 1000 1/j.

MOSQUEE:

On estime qu'il ya 15% de la population qui sont fidèles dont 10% seul fréquentent les mosquées.

Les besoins actuels s'élèvent: (avec 20 1/j/fidèle).

$$\frac{2260 \times 10 \times 20}{100} = 4520 \text{ l/j} = 4,5\text{m}3/\text{j}.$$

Les besoins futurs seront de:

$$\frac{3915 \times 10 \times 20}{100}$$
 = $7830 1/j$ = 7.83 m3/j .

TDI AISSA - ANN-EL-HADJEL:

Les besoins de la population de ces deux villes sont estimées responsible à 6050 m3/j et à 4903 m3/j pour une dotation de 150 l/j /hab. pour l'horizon 2000 données recueillies de la DHW de M'SILA par courrier).

Pour cela on majore ces besoins à 30%

Besoins majorés de la ville.

$$\frac{6050 \times 30}{100}$$
 + $\frac{6050}{100}$ = $\frac{7865}{100}$ m3/j

Besoin majorés de la ville de AIN-EL-HADJEL.

$$\frac{4903 \times 30}{100}$$
 + 4903 = 6374 m3/j

5. - TABLEAU RECAPITULATIF Nº 1 DES BESOINS JOURNALIERS DE LA VILLE SIDI-HADJERE

TON.	ACTUELS	! FUTURS	! PARAMETRE	: CONSOMMATION	EN 1/j.
	1982	2000	1/j	Actuelle	! Future.
MCITAL	! 2260 !	39 15	! 150 !	339.000	! 587.250 !
1	140	! 140	. 50 1/e1/j	7.000	7.000
3 ADMINISTRATIF	1	1 1	1 1000	1 1.000	! 1.000
E	22€	! 392 !	¹ 201/f/j !	! 4.520	1 7.830
' D'ATTISANAT		1	! -	. 67.800	1 6, .
			TOTAL =	419.320 1/j 419 m3/j	

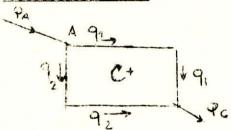
4. - RESEAU DE DISTRIBUTION:

Lors de l'étude de la distribution du village de SIDI-HADJERIS on constaté l'absence:

-du plan d'aménagement et celui de l'ancien réseau, mais d'arrè l' Cormations recueillies auprès des responsables de la SONAGHTER nous en planter à blir la forme du réseau de distribution. (En tenant compte de la configu

-Ce réseau sera alimenté par le réservoir projetí de 600 m³ (TP: 520 m).

DEBIT DE SOUTIRAGE:


-Le débit soutiré a été déterminé suivant la répartition de le et des divers services publics ont été uniformément répartis sur la longueur de la considéré.

4.1 - CALCUL DU RESEAU:

-La calcul du réseau maillé est conduit par approximation succes in calon la méthode H. cross qui repose sur deux lois.

-La somme des débits rentrant est égale à la somme des débits sort--Le long d'un parcourt orienté et fermé la somme des portes de charge est nulle.

étude d'une maille:

En vertu de la 1ere loi.

 $QA = q_1 + q_2 = Qc_2$

En vertu de la 2eme loi:

$$\triangle H$$
, $\triangle H2 = 0$

Etant donné que cette égalité n'est pas vérifié du premierest nécessaire de modifier la répartition initiale supposée. Admettons que le ct q2 soient erronés de la quantité Aq1, q, ayant été pris trop faible et q2 on peut écrire d'appès B'arcy:

on peut ecrire d'après B'arcy:
$$\Delta H_1 = R_1 \cdot q_1 2 \implies R_1 = \frac{\Delta H_1}{q_1^2}$$

$$\Delta H_2 = R_2 \cdot q_2^2 \implies R_2 = \frac{\Delta H_2}{q_2^2}$$

D'après la 1ere loi: $R_1 (q_1 + \Delta q_1)^2 - R^2 (q^2 - \Delta q^1) = 0$ En dévelloppent et en négligeant les termes en Δq_1^2 , il bient:

$$\Delta q_{1} = \frac{-R_{1} q_{2}^{2} + R_{2} q_{2}^{2}}{2 (R_{1}q_{4} + R_{2} q_{2}^{2})}$$

$$\Delta q_{1} = -\frac{\Delta H_{1} + \Delta H_{2}}{2 (\Delta H_{1} + \Delta H_{2}^{2})} = -\frac{\Delta H_{1} - \Delta H_{2}^{2}}{2 (\Delta H_{1} + \Delta H_{2}^{2})}$$

$$(q_{1} q_{2} \neq 0)$$

......

Si on raisonne par rapport à un centour fermé quelconque et en désignant de la perte de charge totale dans le circuit fermé de la maille et par la somme des termes r,Q1, Y2.Q2,....etc on a:

$$\Delta Q_{1} = \frac{-2 \operatorname{r} Q_{1}^{2}}{2 \operatorname{r} Q}$$

Pour la 1ere approximation les nouveaux débits deviennent

En respectant le sens choisi dans la maille:

Les corrections (Q) qui seront apportées à la valeur estimée estimation des débits sont divisés en deux.

-Celles propres à la maille adjacente, en ce qui concerne les communes à deux mailles avec le signe contraire à celui de \triangle q calculée par edjacente.

Dans notre cas, on a supposé l'écoulement en régime turbulent rugueur cela la formule de Nikunedse à été prise en considération.

$$\Delta H_{\overline{L}} = +f \underline{L} = 0$$

$$2g \underline{D}$$

$$D = 0$$

$$2g \underline{D}$$

1284 = rQ

$$f = (1,14 - 0,86 \text{ én } \frac{\mathbf{\xi}}{2}) - 2$$
 et Le = 1,15. LG LG = Longueur géométrique.

Le) longueur équivalente.

$$\Delta H_{T} = rQ2 = \Delta H_{S} + \Delta H_{e} = 0.15\Delta H_{c}^{2} + \Delta H_{c}^{2} = 1.15\Delta H_{c}^{2}$$

 Δ H_T = perte de charge totale.

CALCUL DE LA PRESSION:

La pression de service en un noeud est déterminé à partir de sométrique du noeud précédent en retranchant les pertes de charges occasions du trançon entre les dits noeuds et la côte du noeud considéré.

CALCUL DU DIAMETRE DE LA CONDUITE DE DISTRIBUTION: (R3 - POINT 1

Le calcul sera fait par 2 méthodes:

- a)classique.
- b)fluidodynamique.

a) Pour un débit de 37 l/s, et une vitesse raisonnable de 1,2 m/s.on av
$$D = \sqrt{\frac{4 Q}{\pi V}} = \sqrt{\frac{4 \times 37.10^{-3}}{\pi 1.2}} = 198 \text{ mm}$$

On prend un diamétre normalisé de 200 mm.

Donc
$$V = \frac{Q}{A} = \frac{4.0,037}{1.00,23} = 1.18 \text{ m/s}$$

..../.....

$$L = 145 \text{ m}$$

$$\Delta H_T = \text{J. Le} = \frac{\text{fr.Le}}{D}, \quad \frac{V^2}{2g} = \frac{0.03844.}{0.2.} \frac{(1.18)^2}{19.6}, \quad 1.15. \text{ A45}$$

 Δ H_T = 2,28 m.

△ HT = △ H linéaire + △ H singul ,

Calcul des pertes de charge.

$$M = D = 0.200 = 0.13$$
) abaque (8a)
 $E = 2 \text{ mm}$) $Q = 0.32 = J_2 = J = (0.07)^{-1}$
 $J = J_{-} = 0.01337$.

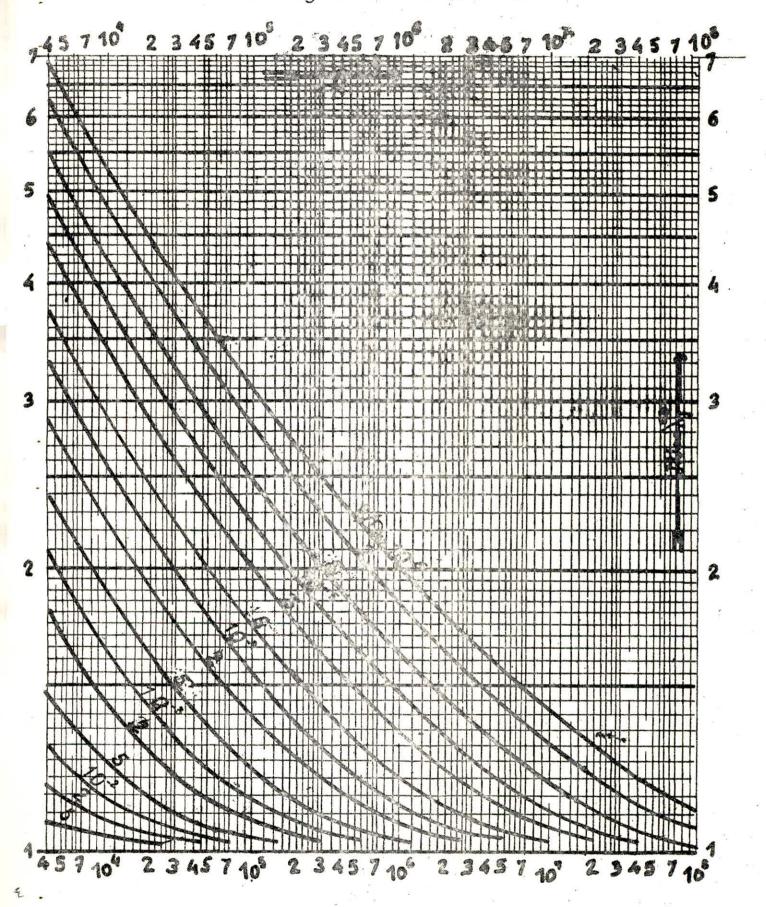
 $\Delta H_{T} = 1,15.L.J = 1,15.145.0,01337 = 2,23 m$

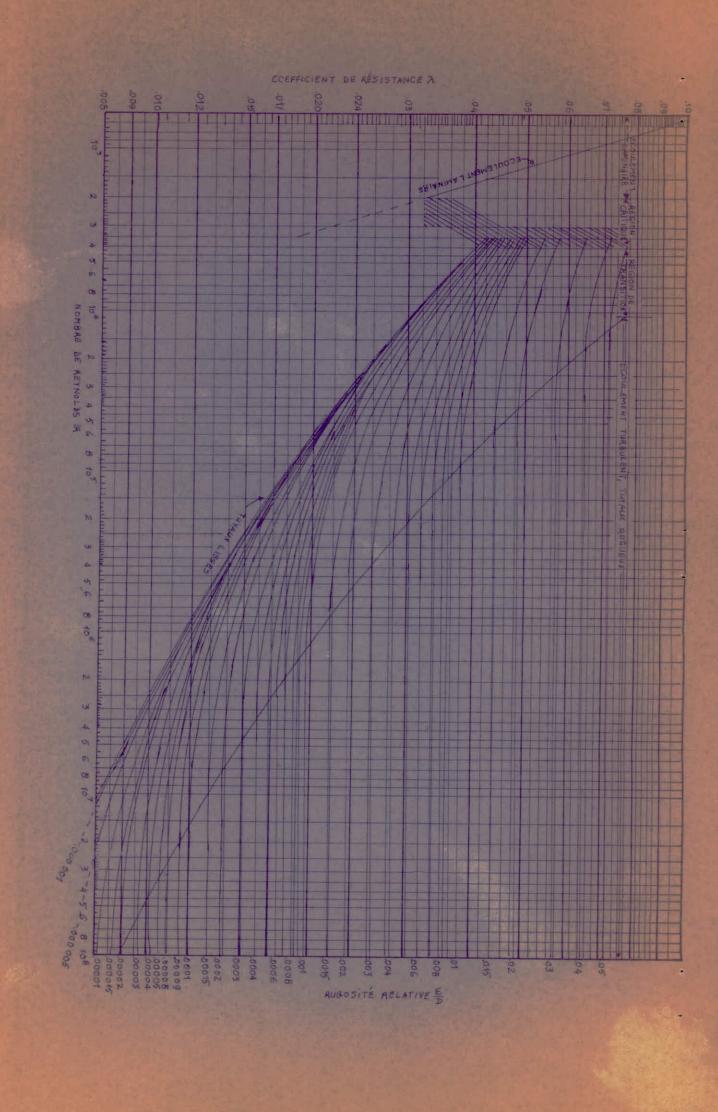
Donc, on trouve les mêmes pertes de charges par les 2 méthodos précédemment.

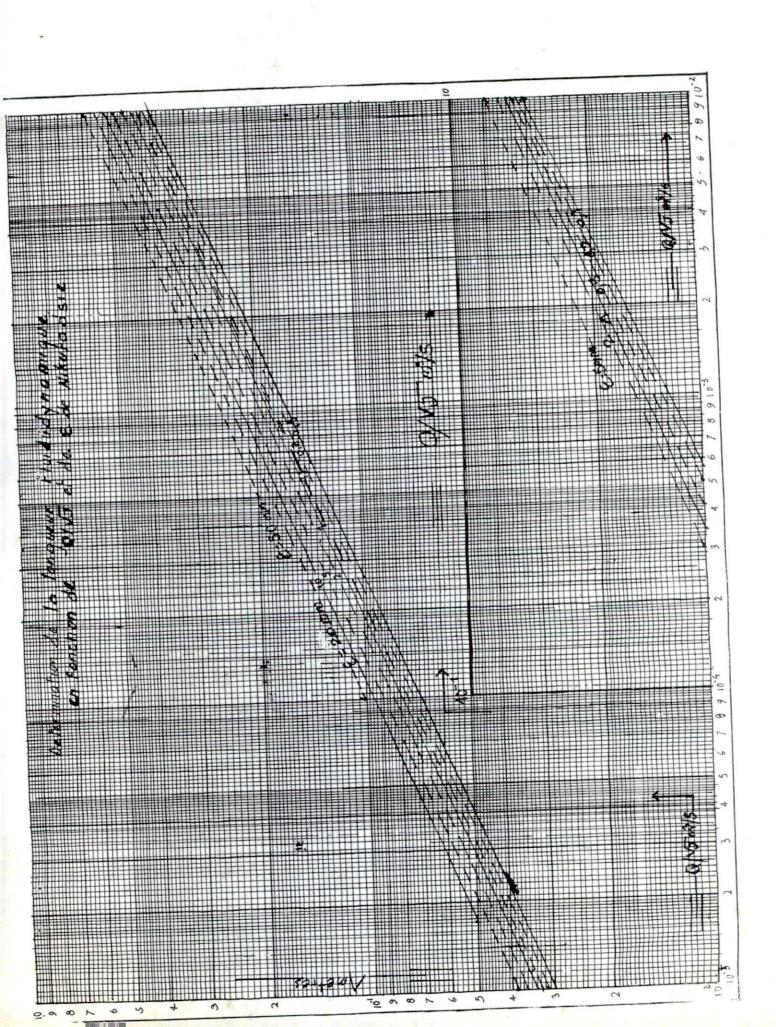
La pression au point A sera de:

La côte piézométrique est de: 515,72 m.

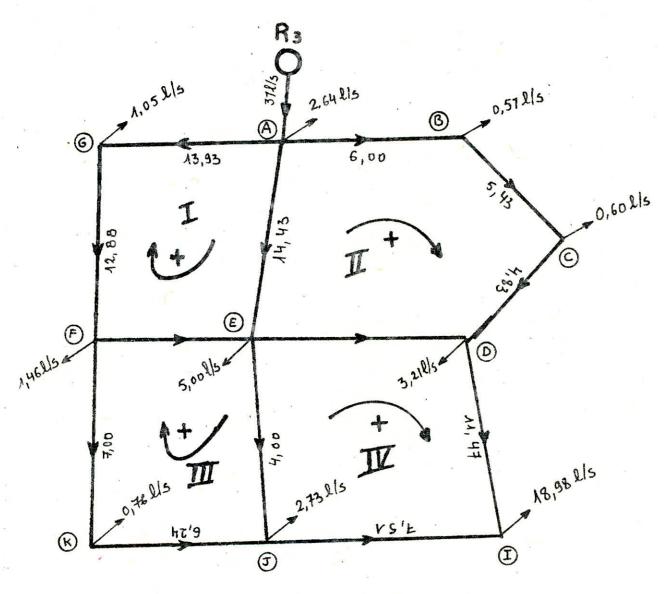
La côte du T.N. est de: 500 m.N (A


Donc la pression au point de jonction (A)avec le réserve


tion est: 515,72 - 500 m = 15,72 m -


On prévoit des bouches d'incendie qui seront installée:

-Soit sous trottoir, en d'autres endroits soumis à de faibles charges -Soit en bordure de trottoirs.


Determination du gradieni**Jde** la perte de charge en regime de fransition

Repartition des debits et sens découlement supposés

Legende:

Debit de transit (1/8)

1,05 Debit de Soutirage (1/6).

Г	T	lear	acteris	tone	T	T			10.50		
6)	maille		dela	- MI	Q.		ere oximalion	Core	1 ere	* 1	Q,
Mail	100	Co	n duit		ļ	TIT			, CC1101		1 .4
M& M	N. C	Kous	(mm)	(m)	(4/5)	ro.2	2r.Q.	CMP	CMA	Total	(45)
		AG		288	-13,93	-2,58	371,07	+1,16	1	+ 0,16	-12,77
I		GF	+		-12,88	-3,53	548,00	+1,16		+ 0,16	-11,72
	I	FE	125	380	-4,42	-0,91	412, 81	+1,16	-0,62	+ 0,54	-3,88
-	I	EA	150	489		+4,71	652,66	+1,16	-0,03	+ 1,13	+15,56
		*		;;; = E	Z=	- 2,31	1984,74	Δς	la+1,16		17,756
		AB	125	403	+6,00	+178	594,29	+0,03			-
		BC	125	345	20		460,43			+0,03	+ 6,03
I		CD	100			1		+0,03		+0,03	+5,46
	N	DE	150		-9,05 -		141	+0,03		+ 0,03	+4,86
	I	EA	150						0,64	-0,49	-10,26
						ARG	3544,63	70,05	_1,16	- 1,13	-15,56
-						6	3344,6g.	Λ 0.	=+0,03		
			-	ä				- 10	- 40,05		
	I	EF	125	380 f	4,42 +	pail	(12 et]	T			
I		FK	125		7,00,-3				1,16	- 0,54	3,88
-M/a		KJ			,24 -1			0,62		+0,62	-6,38
	I	JE	-	-	4,00 +4			0,62		+0,62	- 5,62
20						95.	64,28 +	0,62	0,44	+ 0,18	+4,18
					-		5121,52			6.5	
				•				<i>ن</i> و ر	10=+0,	b 2	
	I	ED	150 4	26 +9	95	01					
717					85 +1				0,03 +	0,41	+ 10,26
IV		-+	125 4	43 7	147 +2,	20 39	-	1.44	+	0,44	+11,91
	I	JE	100 3	57 /	51 -3,0	7 81		1,46	-	0,44	-7.07
			100 3	17 -4,	2 -12	3 110	64,28 +	, 46 -0	,62 -	0,18	-4,18
					- 1	7 27	56.84				

BQ = +0,44.

<u> </u>	2€		9	8		1	1	3	17	3	
		imation	Į.	rection	on	Q ₂	1	ximati	co	rectio	п
	ro2	2ra	CMP	CMA	Total	(1/5)	۲ 92	2002	CMP	CMA	Total
	-217.	340,17	+0,16		+0,16	-12,61	-2,12	555,91	+0,17		+0,17
I	-2,92	498,65	Charles and the second		+0,16	-11,56	-2,84	491,84	19,17		+917
1	-0,70	362,37		-0,35	-0,19	-4,07	-0.77	380,12	+917	1-0013	+0,04
	A	703,77	+916	-0,26	-0110	+15,46	+5,41	699,24	+917	0,05	+0,12
2	-0,31 Z	1904.96	Δφ	1=+0,1	6	2	- 9,32	Z1907.1	1	A 0,=	+9,17
		597,26	+926		+0,26	6,29	+1.96	623,01	+0,05		to,05
	+1,26	462,97	+0,26		+0,26	5.72	11,39	18			+0,05
I	+3,54	1458,19	+0,26		+0,26	+5,12	1	536,20		1	10,05
	-2,07	404,26	+0,26	-0,26	+0,00	-10,26	-2.07	404,27	1	-	0,14
	-5,47	703,76	+0,26	-916	+0,10	-15,46		699,24	+0.05	047	0.49
	-	£3626,44	•	AQ1=	+0,26	, Z	-0,19	E3747	74	A92-	0,05
	+0,70	362,37	+0,35	-0,16	+ 0,19	+4,07	+0,77	380,12	+0,13	0,17	001
AK.	-2,88	901,63	+0,36	1	+0,35			852,17	Annual Contract of the Contrac		10,04
The	-1,40	500,02	+0,35		+0,35	The state of the s	-	468,88	012	1	0,13
	+2,54	1216,68	+0.35		-	+4,27	+2,65	1242,87	4013		0,13
2	-1.04	£2980,7		Δ 9 1= 1	-0,35		-0,39	-	14.	Q2=+	0,13
	+2,07	404,26	+0,26	-0,26	0,00	+10,26	2,07	404,27	0,19 -0	05+0	14
N.	+2,45	412,00	+0,26	-	b	+12,17			0,19		370
/	-2,72	769,78	+0,26		+0,26			747,47	A CONTRACTOR OF THE PARTY OF TH		0,19
	-2,54	1216,68	+0,26	-0,35	-0,09	-4,27	2,65	1242,87	0.19 -0		0,06
Ĺ	E-0.74	2802,7	,	Δ9,=	+0,2	~	0,54	2809,6			<u>'</u>

[Pls] 127_{3}^{2} 277_{3} 127_{4} $127_$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-									** 3	
(els) 122 2103 CMP CMA Total (els) 122 2104 35004 +0.04 0 0 12.44 -2.06 331.38 +0.05 +0.05 11.34 -2.73 482.48 +0.04 0 0 12.44 -2.06 331.38 +0.05 +0.05 11.34 -2.73 482.48 +0.04 0 0 12.35 -0.76 376.38 +0.05 -0.06 -0.01 15.57 +5.48 381.05 +0.04 -0.04 -0.05 11.35 +5.49 704.22 +0.04 -0.04 -0.05 11.35 +5.49 704.22 +0.04 -0.04 -0.05 11.35 +5.49 704.22 +0.04 -0.04 -0.05 11.35 +5.49 704.22 +0.04 -0.04 -0.05 11.35 +5.48 704.22 +0.04 -0.04 -0.05 11.35 +5.48 704.22 +0.04 -0.04 -0.05 11.35 +5.48 704.22 +0.04 -0.04 -0.05 11.35 +5.48 704.22 +0.04 -0.04 -0.05 11.35 +5.48 704.22 +0.04 -0.04 -0.05 11.35 +5.48 704.22 +0.04 -0.04 -0.05 11.35 +5.48 704.22 +0.04 -0.04 -0.05 11.35 +5.48 704.22 +0.04 -0.04 -0.05 11.35 +5.48 704.23 +0.04 -0.05 11.35 +5.48 704.23 +0.04 -0.05 11.35 +5.48 704.23 +0.04 -0.05 11.35 +5.48 704.23 +0.04 -0.05 11.35 +5.48 704.23 +0.04 -0.05 11.35 +5.48 704.23 +0.04 -0.05 11.35 +5.48 704.23 +0.04 -0.05 11.35 +5.48 704.23 +0.04 -0.05 11.35 +5.48 704.23 +0.04 -0.05 11.35 +5.48 704.23 +0.04 -0.05 11.35 +5.48 704.23 +0.04 -0.05 11.35 +0.04 11.35 11.35 +0.04 -0.05 11.35 +0.04 11.35	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4	ę	4	4.€		7	5.5		1 7	< 6	
[Els] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Φ3	Appro	Ximation	co	rrech	ion	94			4	7	oti
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_			21-93	CMP	cma	Tota	(2/3)	-		-	1	T-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-12,44	-2,06	331,38	+0,05		+0.05		 		<u> </u>		1.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I					ě		1	-	00,04	+0,04	 	0,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-0,76	376,38	+0,05	-910	1			704.05	+0,04		0,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_		+5,49	704,67	+0,05	-0.06		-	+548	70190	1904	-0,04	90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Σ.			5=+0,0	75	2	0,07		21		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		+6,34 +	1,99	627,97+	0,06		0,06	6,40	202	C22 0-1	T		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T I	15/17.	1,41 4	89,26 +	0,06	-	0,06	+	1 44	10130	10,01		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+		-	551,21+	0,06			En				\rightarrow	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1550 1	2,13 4	09,78 +0	0,06	0,07	- +			300,214	0,01	\dashv	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	-13/36	0,49 2	48,31 40	,06 _				5 809	10,784	0,01 -	3,05 -0	7,00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1071-		(6)				۷-	Z38	712,55	4	∂ =+0	ું ૦1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IL S	5,90 -2, 5,14 -1, 4,21 +2,	18 45 58 122	7,31 +0,	10	+0,	10 -5	6,80 -2 6,04 -1	,38 81 13 W	9,07 o,	04	0.0	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$22883,28$ $\Delta Q_4 = +0.04$ +10.40 $+2.13$ 409.78 $+0.07$ -0.06 $+0.01$ 10.41 2.13 410.78 $+0.05$ -0.01 $+0.04+12.36$ $+2.64$ 427.56 $+0.07$ 0.07 12.43 2.67 429.98 $+0.05$ $0.05-6.62$ -2.38 720.78 $+0.07$ $+0.07$ -0.03 -6.55 -2.38 73.16 $+0.05$ $0.05-4.21$ -2.58 1225.41 $+0.07$ -0.10 -0.03 -4.24 -2.62 1234.74 $+0.05$ $+0.01-6.01$ -6.02 -6.03 -6.05		€-0,	30 £28	92,9	W 1				62 23	4,14 10,0	4-00	5-0,0	21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+12,36 $+2,64$ $+27,56$ $+0,07$ 0.07 $12,43$ 2.67 $429,98+0.05$ 0.05 $-6,62$ $-2,38$ $+20,78+0.07$ $+0,07$ $-6,55$ $-2,38$ $+20,78+0.07$ $+0,07$ $-6,55$ $-2,38$ $+25,41+0.07$ $-0,10$ -0.03 $-4,24$ $-2,62$ $+234,14+0.05$ $+0.01$ -2.09 -2.09 -2.09 -2.09 -2.09	110			* .	<u> </u>			· ,				5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-4.21 -2.58 1225,41 +0.07 -0.10 -0.03 -4.24 -2.62 1234,14+0.05 +0.01 \(\xi = 0.19 \) \(\xi = 0.19 \) \(\xi = 0.15 \) \(\xi = 0.15 \)	+12,	36 +2,6	4 427	56+0,0	7				13 410	18 +0,0	5-00		-
£2783,53 402 +0.07 . Z-0.15	£2783,53 402 +0.07 . Z-0.15	-	21 -2,58	1225,	41 +0,07	7-0,11		7 -6,	55 -2,3	33 713	16 40	5	0,05	
(LANT AL A MALASE					3,53	40	3= +0,0			5 .				- C

	1	1 60		1-2-0-0		and the same of the same of	5 197 111 112 113	* 7 *
	Q ₅	Appro		Vitesse	Allitu d Soe	e côte	m)	Can Sol
	(1/s)	1:95	2495	(14/5)	(101)	Amon	+ Aval	(m)
,	-12,35	-2,03	328,98	0,70	498	515,72	1 513, 69 °	15,09 6
4	_11,30	-2,72	480,78	0,64	1474	513,69	510,97	The same of the sa
9	_4,08	-0,78	381,05	0,53	492	510,99	510, 19	18.19
	15,60		705,57	0,88	492	515,72	A 510,22 E	18,22
	2	-0,0'3 2	£18 96, 38	09=1	0,02			
	6,41	2,03	634,90	0,52	493	515,72	1 513, 69 B	20,69 B
6.	5,84	1,45	495,19	0,48	491	513,69	8 512, 24 C	21,24 °
Ŋ	5,24	4,12	1572,20	0,67	490	512,24		18,12 D
	10,45	-2/15	411,75	0,59	490	510,19	18	18,04
	-15,60	-5,50	705,57	0,88	492	515,49	- N	18,22 €
	2	-0,05	238 19;	51 Δα =	+0,01	a a a a a a a a a a a a a a a a a a a		
	4,08	078	381,05	0,33	492	510,9	510,49	18,19 J
Th	-5.76	-2,3	814,01	0,47	489	510.0	508,63	19,63 ×
,	- 5,00	-1,11	444,86	0,41	488	508,6	507,52	19,52
	4,23	2,60	1231,23	0.54	488	510, 1	507,59	19,59 3
	Σ	-0,03 Z	287415	1 Q = +0,01	g 41 V			
	10,45		411,75	0,59	490 D	510,19 €	508,04	18,04°
N/	12,48			0.71	4	508,040		18,35 1
/			707,72	0.53			505,22 2	18, 22.1
2			1231,31	0.54	1	510,40 5	507,59 3	19,59\$
	ī	-40¢ Z	2782,49	W			301102	

19= +0,02

PROTECTION DES CONDUITES CONTRE LA CORROSION:

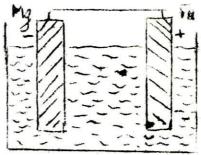
Vu l'importance de l'adduction présentant une grande longue.

La corrosion des canalisations en acier est caractérisés :

-Par une attaque du métal dûe à la nature agressive de se
-Par l'influence des installations électrique de situées au voisinage des réseaux d'alimentation.d'eau.

1) CORROSION PAR FORMATION DE PILE:

L'attaque de la canalisation en acier enterrée pour le c à ce qui se passe dans un bac d'électrolyte où plongent deux métaux de différentes.


Si nous prenons comme métaux le fer et le magnésium nous sur -Le fer se protège et joue le rôle de cathode caractérisée par une réduction du métal.

$$F_e^{2+} + 2e^- \longrightarrow F_e$$

Le Mg se trouve attaqué et joue le rôle d'anode caractérisée une omydation du métal.

$$Mg \rightarrow Mg^{2+} + 2\bar{e}$$

L'atome de magnésitm ionisé se trouvant en solution va se contra avec d'autres éléments.

Mais, si nous prenons le fer et le cuivre, nous obtenons:

$$Cu^{2+} + 2 \bar{e} \rightarrow Cu$$
 (Cathode)
Fe \rightarrow Fe²⁺ + 2 \bar{e} (Anode)

Dans ce cas c'est le fer qui se trouve attaqué et le cuivre protégé.

Ainsi, les éléments métalliques (dans l'ordre du pouvoir qu' de réduire les ions des autres métaux) sont dressés dans le tableau sui.

METAUX	ION CONSIDERE	Eo
ARGETT	Ag ⁺	+ 0,7994
CUIVRE	Cu ⁺⁺	! + 0,3370
HYDROGENE	1 H ⁺	! + 0
FER	! Fe ⁺⁺	! - 0,4400
ZINC	Zn ⁺⁺	- 0,76 28
ALUMINIUM	A1 ⁺⁺⁺	- 1,66
MAGNESIUM	1 Mg ++	è 1,66

Eo: Potentiel normal de l'électrode correspondante du métal plonge dans un lution normale de l'un de ses sels à la t° 25°C, (rapportés à l'électrod référence à hydrogène.)

D'après le classement du tableau, chaque métal peut réduire le métaux placés après lui, mais la réciproque est impossible.

Nous pouvons conclure que pour deux métaux donné conclure que pour deux métaux donné conclure que pour deux métaux donné conclure plus haut potentiel par rapport à l'autre représente, la cathelle tégé tandis que l'autre métal joue le rôle d'anode et se trouve de la cathelle d

Le même phénomène se produit quand deux barres d'un même métal.
gées dans un électrolyte et placées en deux points de concentrati s diffé

Ce phénomène s'appelle:Pile de concentration.

Les concentrations pratiques ont montré que les terrains argileux, recageux et humides sont anodiques, tandis que les terrains secs et bien $\varepsilon^{2\pi i}$ cathodiques.

2. - CORROSION SOUS L'INFLUENCE D'UNE INSTALLATION ELECTRIQUE ENTERIEURE:

Sous l'action des courants vagabonds émis par des sources électrique de courant continu, la corrosion se produit. Ces sources sont généralement si au voisinage des canalisations, parmi les cas les plus fréquents dans la pratique mous mentionnens le chemin de fer électrique.

L'appréciation du danger de corrosion, comme la définition des mesure de protection à prendre, demandent l'intervention de spécialistes et ne peuvent ^1 entrepris directement par les constructeurs ou les exploitants. Néanmoins nerons quelques indications sur le principe.

PRINCIPE:

La protection d'un réseau de canalisations en acid entre de commandée dans tous les cas.

Elle consiste à donner le rôle de cathode à la conduite et le un potentiel minimal de - 0,770 Volt par rapport à l'électrode de référent drogène.

Pratiquement il faut assurer un potentiel égal (de - 0,90 - I... pour une sécurité totale qui tient compte des fluctuations de potentiels (due exemple à des indices climatiques saisonnières ou autres).

3. - PRATIQUE DE LA PROTECTION CATHODIQUES:

On ne dispose pas de données concernant les caractéristiques du l' néanmoins, nous présentons donc le mode pratique de deux procédés de réalisat largement utilisés.

PROTECTION CATHODIQUE PAR ANODE REACTIVE:

Elle consiste à relier la conduite à un métal plus-électro-négatif : le fer formant ainsi une pile dont la cathode est la canalisation.généralement le zinc et le magnésium sont les plus utilisés comme anodes réactives.

......

La pose des anodes doit s'effectuer dans les sols de basts pour faciliter le passage de courant", mais de préférence, il fout choi. susceptibles de retenir les eaux (fossés, rives, des cours d'eau....),l doivent être posées de 2 à 4 m de la canalisation de manière verticale, tête au niveau de la génératrice supérieure de la conduite.

Théoriquement la masse nécessaire de l'anode à dissoud durée de passage du courant est donnée par la loi de Faraday, la loi de Fara

$$m = \frac{I.t.M}{F.V}$$

m = masse dissoute de l'anode (g)

I = intensité du courant (A)

M = Masse atomique du métal (g)

t = temps de passage du courant (s)

V = Valence du métal de l'anode.

F - 1 Faraday (F = 96500 (ou Lombs)

La masse dissoute d'une anode en zinc est mo

$$m_0 = \frac{1 \times 3600 \times 65,37}{96500 \times 2}$$
 $M = 65,37 \text{ g}$) Zinc

Par mesure de sécurité et vues les variations irrégulie viristiques du sol, on prend dans la pratique 2g par Ampère-heure.

Le nombre d'anodes disponibles pour un réseau s'obtient

suivante:

La pose des anodes doit s'effectuer dans les sols de passerésis pour faciliter le passage de courant", mais de préférence, il faut choisir des susceptibles de retenir les eaux (fossés, rives, des cours d'eau....), les ano doivent être posées de 2 à 4 m de la canalisation de manière verticale, e' tête au niveau de la génératrice supérieure de la conduite.

Théoriquement la masse nécessaire de l'anode à dissoudre de passage du courant est donnée par la loi de Faraday, la loi de

$$m = \underbrace{I.t.M}_{F.V}$$

m = masse dissoute de l'anode (g)

I = intensité du courant (A)

M = Masse atomique du métal (g)

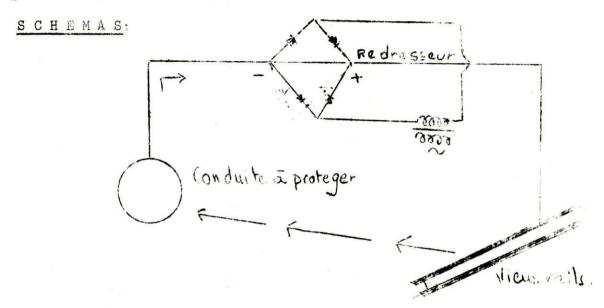
t = temps de passage du courant (s)

V = Valence du métal de l'anode.

F - 1 Faraday (F = 96500 (outombs)

La masse dissoute d'une anode en zinc est mo

Par mesure de sécurité et vues les variations irrégulières des téristiques du sol, on prend dans la pratique 2g par Ampère- heure.


Le nombre d'anodes disponibles pour un réseau s'obtient par la f suivante:

I : Courant probable de l'anode (A)

Les valeurs de i et I dépendent principalement de la résistivit PROTECTION CATHODIQUE PAR SOUTIRAGE DU COULANT:

A partir d'une source électrique de courant continu (courant tif redressé), on relie la conduite à la borne négative de cette source.

La horne positive étant raccordée à une prise de terre constitudinairement par de vieux rails enterrés dans un milieu humide à une distance grande de la conduite (100 m)

Le courant, en quittant la prise de terre, regagnera le pôle négrila source électrique en passant par la conduite et entrainera la dissoluque des vieux rails. Ce dispositif permet de protéger efficacement des résolute nature en présence de courants vagabonds. Il conduit, toutefois, à une dition non négligeable. En effet, 1 ampère/an détruit & Kg de fer on peut alor placer les vieux rails enterrés par des anodes en graphite, en Ferro-silicium titane platiné.

ONCLUSION:

Avant la protection cathodique prévue sur un réseau de canalises souterraines en acier, il faut effectuer des travaux accessoires peut cousimple qui sont essentielles.

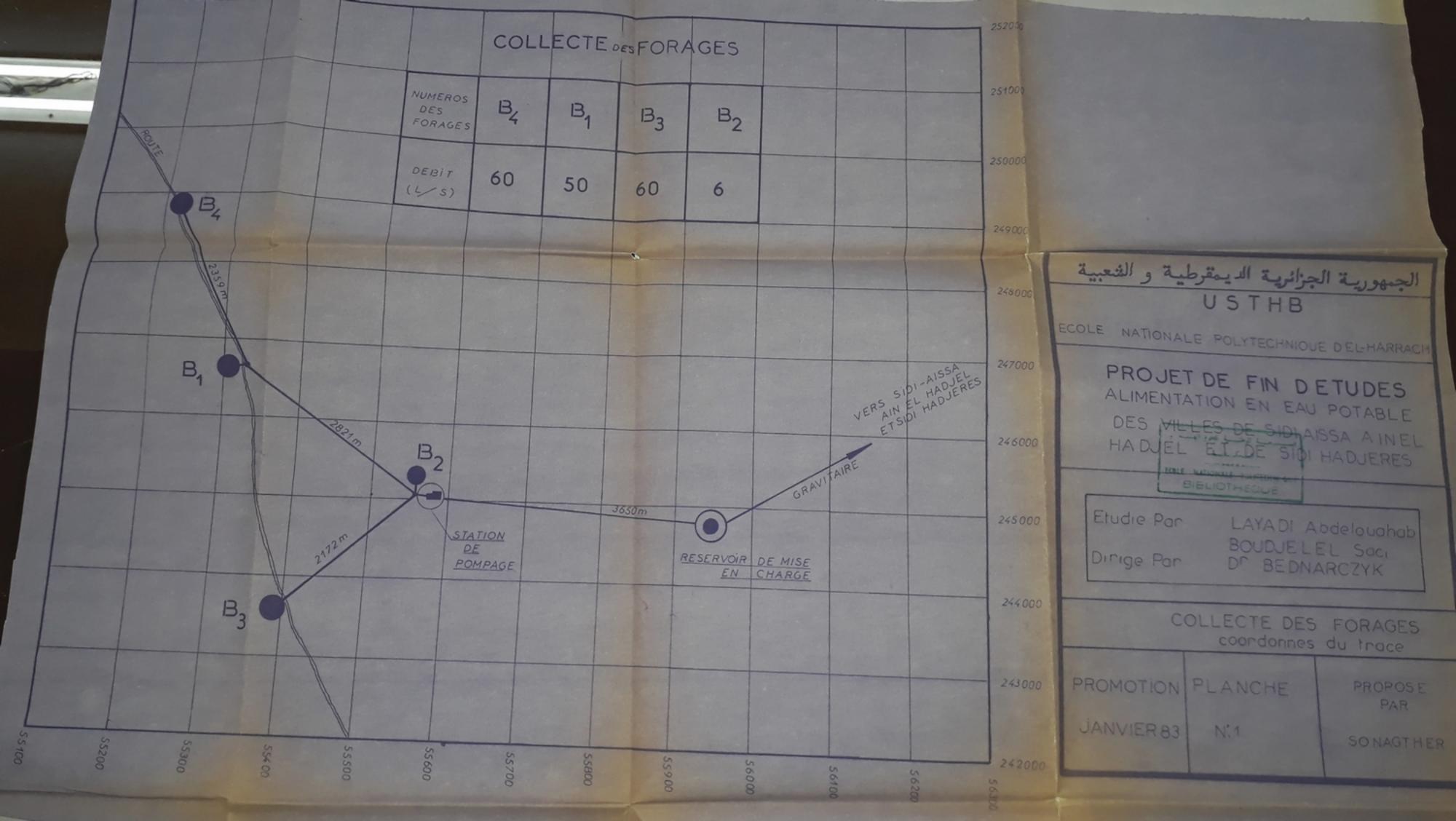
-L'état des revêtements intérieurs et extérieurs de êtr convenable.

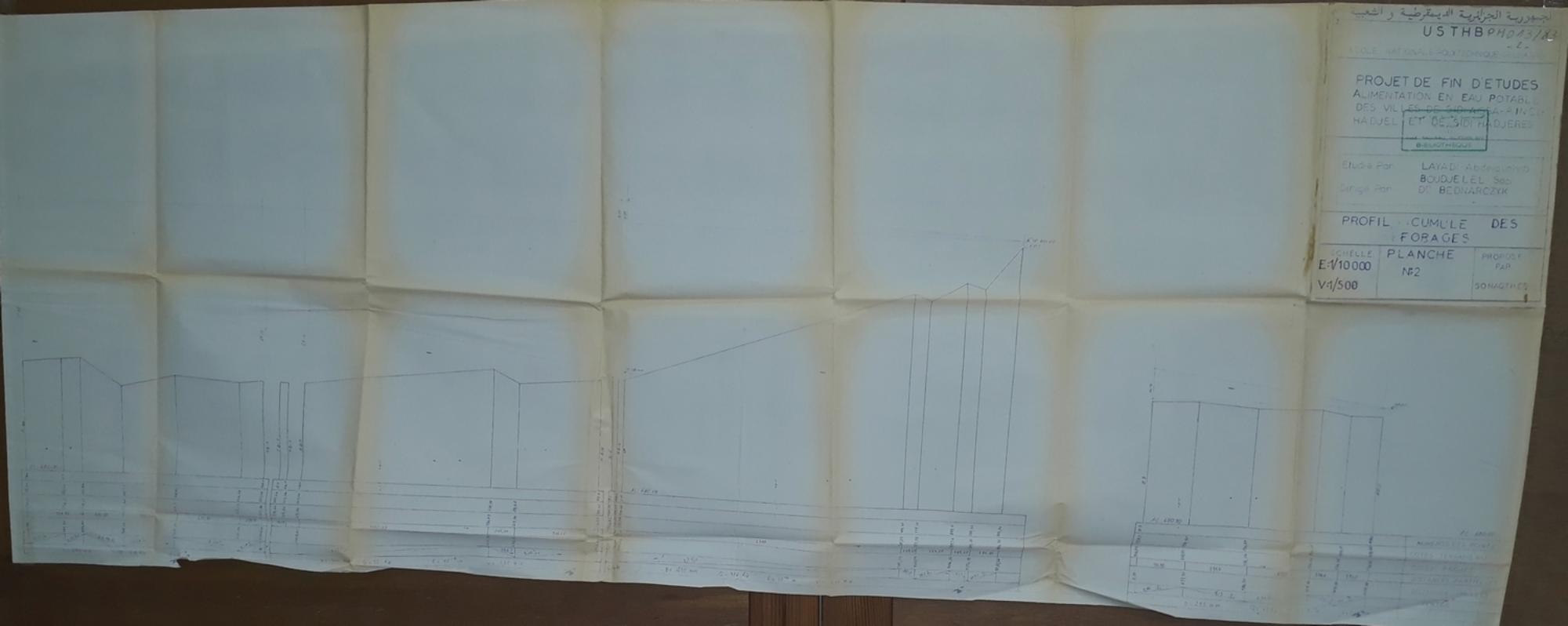
-Stockage, transport et pose des conduites dans les tranch : re convenable.

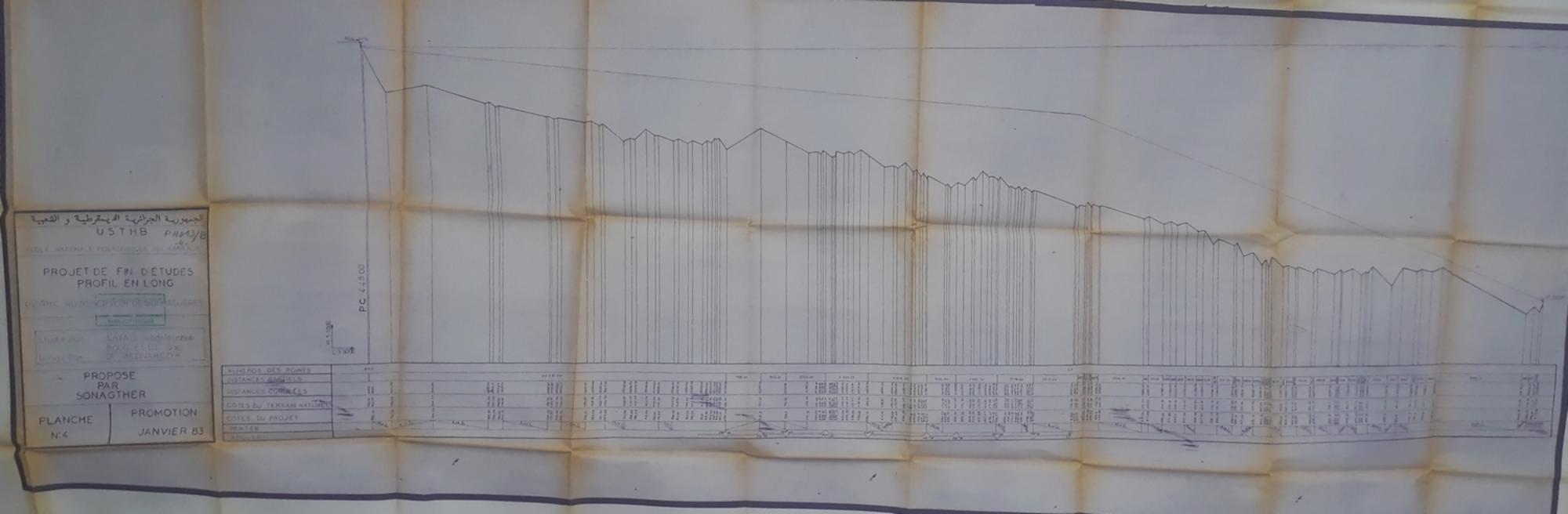
-Assurer la continuité électrique au niveau de joints et ressauf xception désirée (isolement des branches d'abonnés.).

........

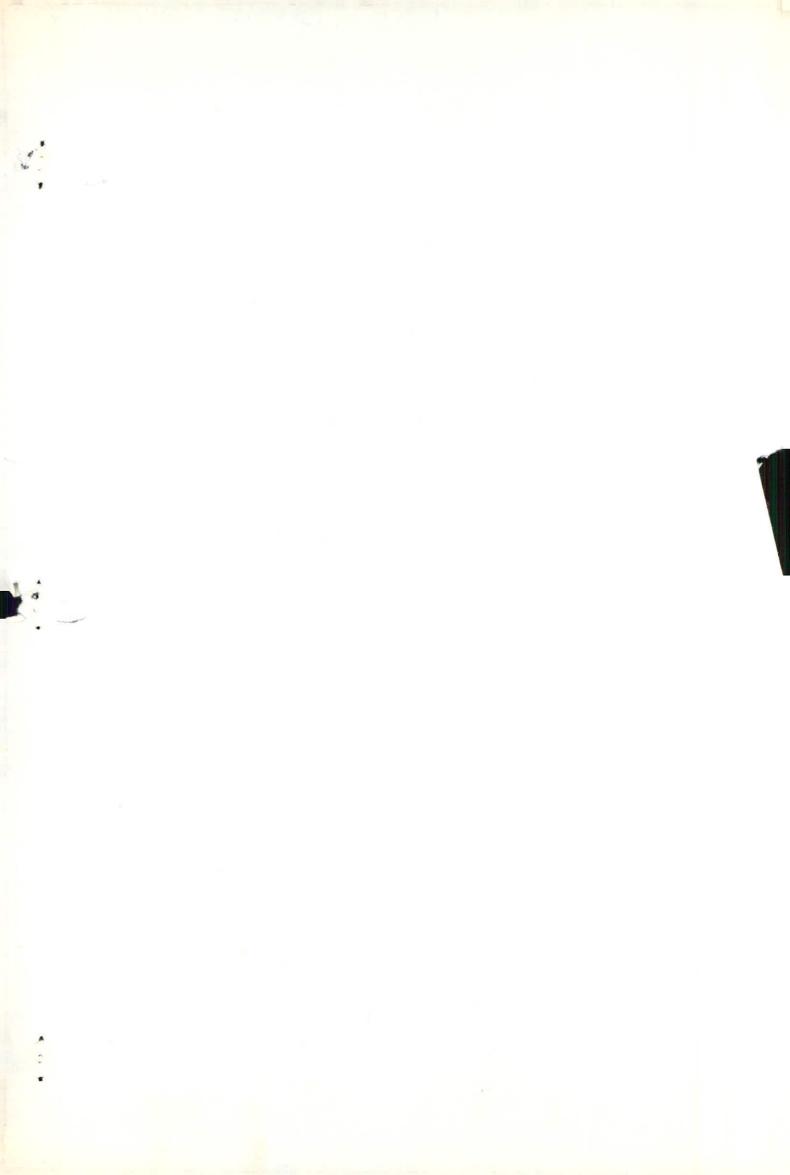
4. - PROTECTION DES CONDUITES CONTRE LES PHENOMENES DIVERS:


PRESENCE D'AIR:


Par suit des variations de température et de pression, l'air se trouvant dans l'esu se dégage, et aussi il peut y avoir présence d'air au moment de la mis en service où d'une réparation du réseau. Cette air s'accumule aux points hauts et peut ainsi, soit diminuer le débit en cas d'adduction gravitaire, soit augmen er la consommation d'énergie en cas de refoulement.


Donc, pour évacuer cette air nocif, nous prévoyons de doter l'adduction ventouses installées au points hauts du réseau et des vidanges au points fils en long.),

Ainsi que des vannes de séctionnement.


	BIBLIOGRAPHIE
	THEORIE DE LA LONGUEUR FLUIDODYNAMIQUE
	THEORIE DES DINDES
×	HYDRAULIQUE URBAINE (tome 2)
×	HYDRAULIQUE URBAINE
×	MANUEL D'HYDRAULIQUE GENERALE
× ^	HYDRAULIQUE GENERALE ET APPLIQUEE CARLIER
×	CATALOQUE DES POMPES
1	MEMENTO des la hes -le charge 1.E. 10 ELCIM

