Predictive and comparative study of petrophysical parameters based on AI

Show simple item record

dc.contributor.author Imadalou, Karine-Anais
dc.contributor.author Mimouni, Aya-Fella
dc.contributor.other Chanane, Larouci, Directeur de thèse
dc.contributor.other khelalef, Aziz, Directeur de thèse
dc.date.accessioned 2025-11-10T09:51:12Z
dc.date.available 2025-11-10T09:51:12Z
dc.date.issued 2025
dc.identifier.other EP01036
dc.identifier.uri http://repository.enp.edu.dz/jspui/handle/123456789/11304
dc.description Mémoire de Projet de Fin d’Études : Génie Minier : Alger, École Nationale Polytechnique : 2025 fr_FR
dc.description.abstract This study aims to explore the use of machine learning as a powerful artificial intelligence tool to develop an algorithm capable of estimating and predicting three essential petro- physical parameters: clay volume (VCL), effective porosity (P HIE), and water saturation (SW ), based on raw log data from several production wells in the Berkine Basin. The main challenge lies in the accurate prediction of water saturation. Several models were compared, including XGBoost, MLP, and CNN. The results obtained, especially with the CNN model, demonstrate the high efficiency of machine learning techniques, achiev-ing a global determination coefficient of R2 = 0.81 for water saturation, which is the most complex parameter to predict. fr_FR
dc.language.iso en fr_FR
dc.subject Machine learning fr_FR
dc.subject Artificial intelligence fr_FR
dc.subject Prediction fr_FR
dc.subject Clay volume fr_FR
dc.subject Effective fr_FR
dc.subject Porosity fr_FR
dc.subject Water saturation fr_FR
dc.subject Logs fr_FR
dc.subject Reservoirs fr_FR
dc.subject Berkine Basin fr_FR
dc.title Predictive and comparative study of petrophysical parameters based on AI fr_FR
dc.type Thesis fr_FR


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account