Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/10919
Titre: | Reinforcement and deep learning-based optimization of pose estimation techniques in single and multi-agent systems : application to aerial and mobile robots |
Auteur(s): | Kobbi, Islem Benamirouche, Abdelhak Tadjine, Mohamed, Directeur de thèse |
Mots-clés: | Reinforcement Learning Deep Pose estimation Multi-agent system |
Date de publication: | 2023 |
Résumé: | In this work, we will focus on optimizing pose estimation techniques for aerial and mobile robots in both single-agent and multi-agent systems. Novel approaches based on Deep Learning and Reinforcement Learning will be proposed to enhance accuracy and robustness. The thesis includes a comprehensive literature review, introducing software tools used in the research. Two approaches for single agent pose estimation, will be presented : the QR estimator for an adaptive version of the Extended Kalman Filter and the KalmanNet approach for a direct estimation of the Filter gain. The effectiveness of these approaches will be demonstrated through simulations. The investigation will then be extended to collaborative pose estimation in multi-agent systems. A novel approach will be also proposed which aims to improve accuracy and robustness by leveraging information from neighboring agents. The findings will be validated in a real-world simulation environment using ROS and Gazebo. |
Description: | Mémoire de Projet de Fin d’Études : Automatique : Alger, École Nationale Polytechnique : 2023 |
URI/URL: | http://repository.enp.edu.dz/jspui/handle/123456789/10919 |
Collection(s) : | Département Automatique |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
BENAMIROUCHE.Abdelhak_KOBBI.Islem.pdf | PA01023 | 19.27 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.