Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11012
Titre: Learning algorithms based state estimation, optimization and control of nonlinear processes
Auteur(s): Abedou, Abdelhadi
Bennacer, Amine Rami
Tadjine, Mohamed, Directeur de thèse
Mots-clés: Unmanned aerial vehicle
Icing
LMI
Neural networks
Sparse identification
IoT
Date de publication: 2024
Résumé: Machine learning (ML), including deep learning and reinforcement learning, offers powerful tools for addressing complex problems. This thesis leverages ML to enhance state estimation, system identification, and optimization in non-linear systems, where traditional methods often fall short. Key focus areas include improving accuracy in capturing complex system dynamics, extracting system characteristics directly from data, and solving non-convex problems. The thesis demonstrates these methods through applications in aircraft dynamics and smart sensor networks for IoT technologies, highlighting the potential of ML to enhance the performance, reliability, and adaptability of control systems.
Description: Mémoire de Projet de Fin d’Études : Automatique : Alger, École Nationale Polytechnique : 2024
URI/URL: http://repository.enp.edu.dz/jspui/handle/123456789/11012
Collection(s) :Département Automatique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2024.aut.ABEDOU.Abdelhadi_BENNACER.Amine-Rami.pdfPA004246.97 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.