Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/11021
Titre: | Machine learning and deep learning methods for cancer prediction and responses to its treatment |
Auteur(s): | Achour, Wissal Boudjatit, Feriel Benalia, Nour El Houda, Directeur de thèse |
Mots-clés: | Cancer Brain tumor Cancer Drug Response MRI Machine learning Deep Machine learning Deep learning |
Date de publication: | 2024 |
Résumé: | Cancer remains a significant global health challenge, affecting individuals of all ages. Early detection and personalized treatment are crucial as they significantly improve prognosis and treatment outcomes. Recent advancements in machine learning (ML) and deep learning (DL) methods, have shown considerable promise in enhancing cancer detection through medical image analysis and predicting patient-specific drug responses. This study focuses on the classi- fication of Gliomas, a type of brain tumor, into Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG) by proposing an end-to-end tumor grading model that performs on MRI slices. Additionally, it explores the development of a predictive model for cancer drug response by leveraging drug molecular data and clinical cell line information. |
Description: | Mémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2024 |
URI/URL: | http://repository.enp.edu.dz/jspui/handle/123456789/11021 |
Collection(s) : | Département Electronique |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
pfe.eln.2024.ACHOUR.Wissal_BOUDJATIT.Feriel..pdf | PN00624 | 471.17 kB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.