Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11021
Titre: Machine learning and deep learning methods for cancer prediction and responses to its treatment
Auteur(s): Achour, Wissal
Boudjatit, Feriel
Benalia, Nour El Houda, Directeur de thèse
Mots-clés: Cancer
Brain tumor
Cancer Drug Response
MRI
Machine learning
Deep
Machine learning
Deep learning
Date de publication: 2024
Résumé: Cancer remains a significant global health challenge, affecting individuals of all ages. Early detection and personalized treatment are crucial as they significantly improve prognosis and treatment outcomes. Recent advancements in machine learning (ML) and deep learning (DL) methods, have shown considerable promise in enhancing cancer detection through medical image analysis and predicting patient-specific drug responses. This study focuses on the classi- fication of Gliomas, a type of brain tumor, into Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG) by proposing an end-to-end tumor grading model that performs on MRI slices. Additionally, it explores the development of a predictive model for cancer drug response by leveraging drug molecular data and clinical cell line information.
Description: Mémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2024
URI/URL: http://repository.enp.edu.dz/jspui/handle/123456789/11021
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.eln.2024.ACHOUR.Wissal_BOUDJATIT.Feriel..pdfPN00624471.17 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.