Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11030
Titre: Machine learning techniques for turbo decoding in wireless communication systems
Auteur(s): Benkirat, Mehdi
Layes, Mehdi Chames Eddinne
Berkouk, El Madjid, Directeur de thèse
Mots-clés: Turbo codes
Turbo decoding
SNR
Machine learning
Attention models
Transformer
SOVA
Error Rate (BER)
Date de publication: 2024
Résumé: This study investigates machine-learning techniques aimed at enhancing turbo decoding in wireless communication. Traditional turbo decoders often struggle with challenges such as susceptibility to burst noise and high error rates at high Signal-to-Noise Ratios (SNRs). To tackle these issues, the study explores Sequence-to-Sequence attention models and Transformer architectures, adapting them for turbo decoding to potentially enhance accuracy and robustness across various channel noise conditions. The research includes foundational discussions on convolutional and turbo codes, simulations using the SOVA algorithm, reviews of neural networks in turbo decoding applications, and introduces the effective models TurboAttention and TurboTransformer. These models demonstrate promising results in terms of Bit Error Rate (BER) across a wide range of SNR values, with encouraging performance observed in hardware inference tests.
Description: Mémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2024
URI/URL: http://repository.enp.edu.dz/jspui/handle/123456789/11030
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
BENKIRAT.Mehdi_LAYES.Mehdi-Chames-Eddinne.pdfPN0112419 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.