Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/11030
Titre: | Machine learning techniques for turbo decoding in wireless communication systems |
Auteur(s): | Benkirat, Mehdi Layes, Mehdi Chames Eddinne Berkouk, El Madjid, Directeur de thèse |
Mots-clés: | Turbo codes Turbo decoding SNR Machine learning Attention models Transformer SOVA Error Rate (BER) |
Date de publication: | 2024 |
Résumé: | This study investigates machine-learning techniques aimed at enhancing turbo decoding in wireless communication. Traditional turbo decoders often struggle with challenges such as susceptibility to burst noise and high error rates at high Signal-to-Noise Ratios (SNRs). To tackle these issues, the study explores Sequence-to-Sequence attention models and Transformer architectures, adapting them for turbo decoding to potentially enhance accuracy and robustness across various channel noise conditions. The research includes foundational discussions on convolutional and turbo codes, simulations using the SOVA algorithm, reviews of neural networks in turbo decoding applications, and introduces the effective models TurboAttention and TurboTransformer. These models demonstrate promising results in terms of Bit Error Rate (BER) across a wide range of SNR values, with encouraging performance observed in hardware inference tests. |
Description: | Mémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2024 |
URI/URL: | http://repository.enp.edu.dz/jspui/handle/123456789/11030 |
Collection(s) : | Département Electronique |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
BENKIRAT.Mehdi_LAYES.Mehdi-Chames-Eddinne.pdf | PN01124 | 19 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.