Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/11067
Titre: | Using machine learning techniques and reconnaissance drought index for meteorological drought forecasting |
Auteur(s): | Ammour, Mohamed Bouguerra, Hamza, Directeur de thèse Benziada, Salim, Directeur de thèse |
Mots-clés: | Drought Drought forecasting Reconnaissance drought index Atmospheric circulation indices Agriculture |
Date de publication: | 2024 |
Résumé: | Climate change significantly impacts our environment, leading to increase drought, more frequent wildfires, and unpredictable rainfall patterns. These changes disrupt ecosystems and human livelihoods, highlighting the urgent need for climate action. Understanding these effects is crucial for developing effective mitigation and adaptation strategies. In our project, we focus specifically on the issue of drought in Algeria and its profound effects on agriculture. Therefore, the objective of this project is the development of a forecasting model to address the need for an early warning system against drought in Algeria. Utilizing the approach of linking between atmospheric circulation indices and drought indices, the reconnaissance drought index in our case, in the northwest region of Algeria. This work not only addresses immediate safety concerns but also lays the groundwork for various perspectives, potentially contributing to advancements in drought mitigations. |
Description: | Mémoire de Projet de Fin d’Études : Hydraulique : Alger, École Nationale Polytechnique : 2024 |
URI/URL: | http://repository.enp.edu.dz/jspui/handle/123456789/11067 |
Collection(s) : | Département Hydraulique |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
AMMOUR.Mohamed.pdf | PH00924 | 9.93 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.