Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11067
Titre: Using machine learning techniques and reconnaissance drought index for meteorological drought forecasting
Auteur(s): Ammour, Mohamed
Bouguerra, Hamza, Directeur de thèse
Benziada, Salim, Directeur de thèse
Mots-clés: Drought
Drought forecasting
Reconnaissance drought index
Atmospheric circulation indices
Agriculture
Date de publication: 2024
Résumé: Climate change significantly impacts our environment, leading to increase drought, more frequent wildfires, and unpredictable rainfall patterns. These changes disrupt ecosystems and human livelihoods, highlighting the urgent need for climate action. Understanding these effects is crucial for developing effective mitigation and adaptation strategies. In our project, we focus specifically on the issue of drought in Algeria and its profound effects on agriculture. Therefore, the objective of this project is the development of a forecasting model to address the need for an early warning system against drought in Algeria. Utilizing the approach of linking between atmospheric circulation indices and drought indices, the reconnaissance drought index in our case, in the northwest region of Algeria. This work not only addresses immediate safety concerns but also lays the groundwork for various perspectives, potentially contributing to advancements in drought mitigations.
Description: Mémoire de Projet de Fin d’Études : Hydraulique : Alger, École Nationale Polytechnique : 2024
URI/URL: http://repository.enp.edu.dz/jspui/handle/123456789/11067
Collection(s) :Département Hydraulique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
AMMOUR.Mohamed.pdfPH009249.93 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.