Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/11304| Titre: | Predictive and comparative study of petrophysical parameters based on AI |
| Auteur(s): | Imadalou, Karine-Anais Mimouni, Aya-Fella Chanane, Larouci, Directeur de thèse khelalef, Aziz, Directeur de thèse |
| Mots-clés: | Machine learning Artificial intelligence Prediction Clay volume Effective Porosity Water saturation Logs Reservoirs Berkine Basin |
| Date de publication: | 2025 |
| Résumé: | This study aims to explore the use of machine learning as a powerful artificial intelligence tool to develop an algorithm capable of estimating and predicting three essential petro- physical parameters: clay volume (VCL), effective porosity (P HIE), and water saturation (SW ), based on raw log data from several production wells in the Berkine Basin. The main challenge lies in the accurate prediction of water saturation. Several models were compared, including XGBoost, MLP, and CNN. The results obtained, especially with the CNN model, demonstrate the high efficiency of machine learning techniques, achiev-ing a global determination coefficient of R2 = 0.81 for water saturation, which is the most complex parameter to predict. |
| Description: | Mémoire de Projet de Fin d’Études : Génie Minier : Alger, École Nationale Polytechnique : 2025 |
| URI/URL: | http://repository.enp.edu.dz/jspui/handle/123456789/11304 |
| Collection(s) : | Département Génie Minier |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| Pfe.2025.min.IMADALOU.Karine_MIMOUNI.Aya.pdf | EP01036 | 20.22 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.