Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11348
Titre: Developing a planning panel to forecast truck fleet size based on activity forecast
Auteur(s): Rahmani, Oussama
Adjabi, Salah Eddine
Zouaghi, Iskander, Directeur de thèse
Mots-clés: Oil and gas services
Supply chain optimization
Mathematical modeling
Decision support tools
Supply chain planning
Planning adherence
Dynamic scheduling
Date de publication: 2025
Résumé: This thesis addresses inefficiencies in SLB Algeria’s domestic logistics by developing an integrated solution composed of a planning tool, an optimization model, and a performance dashboard. The planning panel, built in Excel VBA, improves visibility over job schedules, truck allocation, and material requirements. A mixed-integer linear programming model is implemented to retrospectively determine the minimum truck fleet needed to fulfill past demand while respecting operational constraints. A Power BI dashboard visualizes key performance indicators to assess efficiency and support decision-making. Findings show that data-driven tools significantly improve planning accuracy, fleet utilization, and visibility. However, challenges remain regarding data integration, shipment consolidation logic, and tool scalability, indicating directions for future research.
Description: Mémoire de Projet de Fin d’Études : Génie Industriel.Management industriel : Alger, École Nationale Polytechnique : 2025
URI/URL: http://repository.enp.edu.dz/jspui/handle/123456789/11348
Collection(s) :Département Génie industriel : Management Industriel

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2025.indus.RAHMANI.Oussama_ADJABI.Salah Eddine.pdfPI025254.51 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.