Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/10844
Titre: | Automation in cybersecurity : deep learning-based approaches for malware family identification |
Auteur(s): | Abi, Chaimaa Berrani, Sid-Ahmed, Directeur de thèse Boudjellal, Abdelouahab, Directeur de thèse |
Mots-clés: | Malware analysis Malware classification Malware visualization Feature extraction Deep learning Multimodal Convolutional neural networks Machine learning |
Date de publication: | 2023 |
Résumé: | The rapid proliferation of malware presents a significant threat to computer systems and data security. The ability to detect and accurately classify malware is crucial for mitigating cyber threats and preventing potential damages. However, traditional methods for malware classification and analysis have shown some limitations in keeping pace with the with the ever-changing landscape of malware. In this thesis, we propose a novel approach that harnesses the power of machine and deep learning techniques for efficient malware classification and offers real-time and automated data-driven solution, enabling proactive measures to efficiently prevent and mitigate cyber threats. |
Description: | Mémoire de Projet de Fin d’Études : Génie Industriel. Data Science et Intelligence Artificielle : Alger, École Nationale Polytechnique : 2023 |
URI/URL: | http://repository.enp.edu.dz/jspui/handle/123456789/10844 |
Collection(s) : | Département Génie industriel : Data Science_Intelligence Artificielle |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
ABI.chaimaa.pdf | PI02623 | 4.02 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.