Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11004
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBoukhari, Imed-Eddine-
dc.contributor.otherBenmahamed, Youcef, Directeur de thèse-
dc.date.accessioned2024-10-06T10:27:31Z-
dc.date.available2024-10-06T10:27:31Z-
dc.date.issued2024-
dc.identifier.otherEP00755-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11004-
dc.descriptionMémoire de Projet de Fin d’Études : Électrotechnique : Alger, École Nationale Polytechnique : 2024fr_FR
dc.description.abstractThis work focuses on diagnosing the condition of power transformer oil through dissolved gas analysis consisting of H2, CH4, C2H2, C2H4, and C2H6. For this purpose, many machine learning algorithms have been developed. eight input vectors have been considered, and several pre-processing techniques were used. The database used contains 666 samples, of which 506 are selected for training and 160 for testing. Inspired by international standards such as IEC and IEEE, six electrical and thermal faults have been considered, namely PD, D1, D2, T1, T2, and T3. The best diagnostic rate of 99.375% was achieved using a custom-built decision tree.fr_FR
dc.language.isoenfr_FR
dc.subjectPower transformerfr_FR
dc.subjectInsulating oilfr_FR
dc.subjectDiagnosisfr_FR
dc.subjectDissolved gas analysisfr_FR
dc.subjectElectrical and thermal faultsfr_FR
dc.subjectMachine learningfr_FR
dc.titleComparative analysis of machine learning methods for power transformer oil diagnosis using dissolved gas analysisfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electrotechnique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
BOUKHARI.Imed-Eddine.pdfPA014245.71 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.