Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11009
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorGuerazem, Said-
dc.contributor.authorBenslimane, Tarik-
dc.contributor.otherBoukhetala, Djamel, Directeur de thèse-
dc.contributor.otherAchour, Hakim, Directeur de thèse-
dc.date.accessioned2024-10-07T13:21:39Z-
dc.date.available2024-10-07T13:21:39Z-
dc.date.issued2024-
dc.identifier.otherEP00730-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11009-
dc.descriptionMémoire de Projet de Fin d’Études : Automatique : Alger, École Nationale Polytechnique : 2024fr_FR
dc.description.abstractThe main objective of this End of Studies project concerns the level control of the coupled tank systems. We begin with a description of the benchmark available in the laboratory of the Control Engineering Department, then we develop an analytical mathematical model of the system in question through which the description of the dynamic characteristics of the system has been carried out. A decentralised PI controller was adopted whilst the adjustment of its parameters has been carried out using a PSO algorithm. This control technique was taken as a reference for comparison with the techniques that we developed subsequently. Firstly, we develop two control techniques , linear and non-linear model predictive control (MPC) techniques. Additionally, we propose another approach based on recurrent neural networks (RNN) to predict the control inputs and reduce the computation time compared with conventional methods. Finally, we used Takagi-Sugeno type fuzzy systems to describe the non-linear model for multi-model control with stability analysis and trajectory tracking. Robustness tests have been carried out to evaluate the performance of each methodfr_FR
dc.language.isoenfr_FR
dc.subjectQuadruplefr_FR
dc.subjectTank processfr_FR
dc.subjectDecentralized PI control Model Predictive Control (MPC) -Recurrent Neural Networks (RNNs)fr_FR
dc.subjectModel Predictive Control (MPC)fr_FR
dc.subjectRecurrent neural networks (RNNs)fr_FR
dc.subjectTakagi-Sugeno fuzzy modelsfr_FR
dc.subjectPDC controlfr_FR
dc.subjectLinear matrix inequality (LMI)fr_FR
dc.subjectParticle Swarm Optimization (PSO)fr_FR
dc.titleFuzzy predictive control of the coupled tanks processfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Automatique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2024.aut.GUERAZEM.Said_BENSLIMANE.Tarik.pdfPA002246.75 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.