Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11016
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBritah, Adem-
dc.contributor.authorBelala, Haithem Abderrahmane-
dc.contributor.otherTadjine, Mohamed, Directeur de thèse-
dc.contributor.otherChakir, Messaoud, Directeur de thèse-
dc.date.accessioned2024-10-10T08:44:32Z-
dc.date.available2024-10-10T08:44:32Z-
dc.date.issued2024-
dc.identifier.otherEP00736-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11016-
dc.descriptionMémoire de Projet de Fin d’Études : Automatique : Alger, École Nationale Polytechnique : 2024fr_FR
dc.description.abstractThe reverse osmosis process holds great importance in the water treatment industry. Despite its common use, this process suffers from membrane fouling, which affects the quality of the produced water and the performance of the membrane itself. So far, the operation of reverse osmosis systems relies on the operators’ experience, with maintenance activities carried out according to predefined schedules or criteria. This work involves developing a sliding mode observer-based fouling estimation, and using various machine learning techniques to provide real-time predictions and maintenance recommendations. The results provide valuable insights into the performance and suitability of these estimation approaches.fr_FR
dc.language.isoenfr_FR
dc.subjectDesalinationfr_FR
dc.subjectReverse osmosisfr_FR
dc.subjectModelingfr_FR
dc.subjectMembrane foulingfr_FR
dc.subjectFouling predictionfr_FR
dc.subjectMachine learningfr_FR
dc.subjectLong short-term memoryfr_FR
dc.subjectTransformerfr_FR
dc.subjectSliding mode observerfr_FR
dc.titlePerformance prediction of a reverse osmosis system using machine learningfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Automatique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Pfe.2024.aut.BRITAH.Adem_BELALA.Haithem-Abderrahmane.pdfPA008246.14 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.