Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11026
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorGuir, Abdelbaki-
dc.contributor.otherLaleg, Taous Meriem, Directeur de thèse-
dc.contributor.otherHamami Née Mitiche, Latifa, Directeur de thèse-
dc.date.accessioned2024-10-17T09:30:55Z-
dc.date.available2024-10-17T09:30:55Z-
dc.date.issued2024-
dc.identifier.otherEP00747-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11026-
dc.descriptionMémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2024fr_FR
dc.description.abstracthis study explores the use of deep learning methods, particularly Deep Convolutional Neural Networks (Deep CNN) and Cycle Generative Adversarial Networks (Cycle GAN), to purify neurophysiological signals such as EEG and PPG from unwanted artifacts. EEG signals are often contaminated by EOG and EMG artifacts, while PPG signals suffer from motion artifacts and baseline drifts. Our models have shown a significant improvement in signal quality compared to traditional techniques, highlighting the potential of deep learning architectures to enhance the processing of neurophysiological signals and biomedical applications.fr_FR
dc.language.isoenfr_FR
dc.subjectElectroencephalogramfr_FR
dc.subjectPhotoplethysmogramfr_FR
dc.subjectDeep convolutional neural networksfr_FR
dc.subjectDeep learningfr_FR
dc.subjectCycle generative adversarial networksfr_FR
dc.subjectImage processingfr_FR
dc.subjectSignal processingfr_FR
dc.titleLearning based artifact removal for EEG and PPG signals : contribution to artifact removal for EEG signals using Learning based methodsfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2024.eln.GUIR.Abdelbaki.pdfPN005246.55 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.