Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11078
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorGhribi, Ouassim Abdelmalek-
dc.contributor.otherArki, Oussama, Directeur de thèse-
dc.contributor.otherBetrouni, Hachem, Directeur de thèse-
dc.date.accessioned2024-11-03T12:35:16Z-
dc.date.available2024-11-03T12:35:16Z-
dc.date.issued2024-
dc.identifier.otherEP00817-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11078-
dc.descriptionMémoire de Projet de Fin d’Etudes : Génie Industriel. Data Science-Intelligence Artificiel : Alger, École Nationale Polytechnique : 2024fr_FR
dc.description.abstractRecent advancements in natural language processing have highlighted the need for systems that can effectively retrieve and generate information to handle increasingly complex queries. Combining retrieval and generation processes addresses the limitations of each approach individually, leading to more comprehensive and accurate responses. This thesis presents the implementation of a Retrieval-Augmented Generation (RAG) agent utilizing Llama3 to enhance the accuracy and relevance of responses in complex query environments. The primary challenge is integrating effective information retrieval with advanced generative capabilities to provide precise and reliable answers. Our approach combines document retrieval, grading, and generation within a cohesive system. Queries are assessed for relevance, retrieving pertinent documents or conducting web searches as needed. The generated answers are rigorously evaluated to ensure they meet high standards of accuracy. This implementation demonstrates the potential of merging sophisticated retrieval mechanisms with powerful generative models, resulting in significant improvements in response quality and reliability.fr_FR
dc.language.isoenfr_FR
dc.subjectNatural language processingfr_FR
dc.subjectInformation retrievalfr_FR
dc.subjectInformation generationfr_FR
dc.subjectLlama3fr_FR
dc.subjectComplex queriesfr_FR
dc.titleReliable, fully local RAG agents with LLaMA3fr_FR
dc.typeThesisfr_FR
Collection(s) :Département Génie industriel : Data Science_Intelligence Artificielle

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
PFE.2024.DSIA.GHRIBI, Ouassim Abdelmalek.pdf.pdfPI019249.33 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.