Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/11092
Titre: | Interpretable recommender systems : a hybrid architecture with logical and collaborative filtering layers |
Auteur(s): | Mazari Boufares, Nadhir Beldjoudi, Samia, Directeur de thèse |
Mots-clés: | Recommendation system Reasoning Interpretability |
Date de publication: | 2024 |
Résumé: | Recommender systems (RSs) are rapidly evolving with increasing personalization to meet new constraints and improve performance on digital platforms. However, a significant issue remains: the lack of transparency in their decision-making, particularly with black-box approaches. Integrating logical reasoning and symbolic methods offers a promising solution for enhancing interpretability, but these methods are often underutilized. This thesis proposes a novel RS model that enhances interpretability for end users. Our architecture integrates a logical layer for generating rules from user and item attributes, alongside a graph convolutional network for collaborative filtering. By combining these components, our model generates recommendation scores with improved transparency and interpretability. |
Description: | Mémoire de Projet de Fin d’Etudes : Génie Industriel. Data Science-Intelligence Artificiel : Alger, École Nationale Polytechnique : 2024 |
URI/URL: | http://repository.enp.edu.dz/jspui/handle/123456789/11092 |
Collection(s) : | Département Génie industriel : Data Science_Intelligence Artificielle |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
pfe.2024.DSIA.MAZARI-BOUFARES,N.pdf | PI02524 | 1.31 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.