Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11092
Titre: Interpretable recommender systems : a hybrid architecture with logical and collaborative filtering layers
Auteur(s): Mazari Boufares, Nadhir
Beldjoudi, Samia, Directeur de thèse
Mots-clés: Recommendation system
Reasoning
Interpretability
Date de publication: 2024
Résumé: Recommender systems (RSs) are rapidly evolving with increasing personalization to meet new constraints and improve performance on digital platforms. However, a significant issue remains: the lack of transparency in their decision-making, particularly with black-box approaches. Integrating logical reasoning and symbolic methods offers a promising solution for enhancing interpretability, but these methods are often underutilized. This thesis proposes a novel RS model that enhances interpretability for end users. Our architecture integrates a logical layer for generating rules from user and item attributes, alongside a graph convolutional network for collaborative filtering. By combining these components, our model generates recommendation scores with improved transparency and interpretability.
Description: Mémoire de Projet de Fin d’Etudes : Génie Industriel. Data Science-Intelligence Artificiel : Alger, École Nationale Polytechnique : 2024
URI/URL: http://repository.enp.edu.dz/jspui/handle/123456789/11092
Collection(s) :Département Génie industriel : Data Science_Intelligence Artificielle

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2024.DSIA.MAZARI-BOUFARES,N.pdfPI025241.31 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.