Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11191
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorRaibia, Khalil,-
dc.contributor.authorKhelfaoui, Abdelkader-
dc.contributor.otherAchour, Hakim, Directeur de thèse-
dc.contributor.other-
dc.date.accessioned2025-10-02T14:12:15Z-
dc.date.available2025-10-02T14:12:15Z-
dc.date.issued2025-
dc.identifier.otherEP00891-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11191-
dc.descriptionMémoire de Projet de Fin d’Études :Automatique : Alger, École Nationale Polytechniquefr_FR
dc.description.abstractThis thesis presents a pipeline for mapless navigation of mobile robots, where decision- making and control are handled in separate stages. A Deep Reinforcement Learning (DRL) agent, trained with artificial neural networks, generates velocity commands that allow the robot to reach a goal while avoiding obstacles, using only onboard sensor data. These commands are then passed to a fuzzy Takagi-Sugeno (T-S) controller, which ensures accurate and robust trajectory tracking. In the single-agent case, the DRL-based navigation is compared with a classical navigation approach. The framework is further extended to a multi-robot setup, demonstrating decentralized coordination in shared environments. Simulation results validate the effectiveness and adaptability of the proposed pipeline.fr_FR
dc.language.isoenfr_FR
dc.subjectmapless navigationfr_FR
dc.subjectDeep Reinforcement Learningfr_FR
dc.subjectartificial neural networksfr_FR
dc.subjectfuzzyfr_FR
dc.subjectT-S controllerfr_FR
dc.subjecttrajectory trackingfr_FR
dc.subjectmobile robotsfr_FR
dc.titleDeep Reinforcement Learning based mapless navigation and control of mobile robots.fr_FR
dc.title.alternativeNavigation autonome sans carte basée sur l’Apprentissage par Renforcement Profond et commande des robots mobilesfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Automatique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2025.aut.RABIA.Khalil_KHELFAOUI.Abderaouf.pdfPA0032512.43 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.