Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/11191
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | Raibia, Khalil, | - |
dc.contributor.author | Khelfaoui, Abdelkader | - |
dc.contributor.other | Achour, Hakim, Directeur de thèse | - |
dc.contributor.other | - | |
dc.date.accessioned | 2025-10-02T14:12:15Z | - |
dc.date.available | 2025-10-02T14:12:15Z | - |
dc.date.issued | 2025 | - |
dc.identifier.other | EP00891 | - |
dc.identifier.uri | http://repository.enp.edu.dz/jspui/handle/123456789/11191 | - |
dc.description | Mémoire de Projet de Fin d’Études :Automatique : Alger, École Nationale Polytechnique | fr_FR |
dc.description.abstract | This thesis presents a pipeline for mapless navigation of mobile robots, where decision- making and control are handled in separate stages. A Deep Reinforcement Learning (DRL) agent, trained with artificial neural networks, generates velocity commands that allow the robot to reach a goal while avoiding obstacles, using only onboard sensor data. These commands are then passed to a fuzzy Takagi-Sugeno (T-S) controller, which ensures accurate and robust trajectory tracking. In the single-agent case, the DRL-based navigation is compared with a classical navigation approach. The framework is further extended to a multi-robot setup, demonstrating decentralized coordination in shared environments. Simulation results validate the effectiveness and adaptability of the proposed pipeline. | fr_FR |
dc.language.iso | en | fr_FR |
dc.subject | mapless navigation | fr_FR |
dc.subject | Deep Reinforcement Learning | fr_FR |
dc.subject | artificial neural networks | fr_FR |
dc.subject | fuzzy | fr_FR |
dc.subject | T-S controller | fr_FR |
dc.subject | trajectory tracking | fr_FR |
dc.subject | mobile robots | fr_FR |
dc.title | Deep Reinforcement Learning based mapless navigation and control of mobile robots. | fr_FR |
dc.title.alternative | Navigation autonome sans carte basée sur l’Apprentissage par Renforcement Profond et commande des robots mobiles | fr_FR |
dc.type | Thesis | fr_FR |
Collection(s) : | Département Automatique |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
pfe.2025.aut.RABIA.Khalil_KHELFAOUI.Abderaouf.pdf | PA00325 | 12.43 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.