Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11225
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorTouil, Mohamed Reda-
dc.contributor.authorBenzine, Yasser-
dc.contributor.otherAdnane, Mourad, Directeur de thèse-
dc.contributor.otherAit Arab, Mohamed Rafik, Directeur de thèse-
dc.date.accessioned2025-10-13T13:04:09Z-
dc.date.available2025-10-13T13:04:09Z-
dc.date.issued2025-
dc.identifier.otherEP00926-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11225-
dc.descriptionMémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2025fr_FR
dc.description.abstractTraditional liver surgical planning, relying on manual interpretation of 2D images, is often limited in precision and efficiency. This report introduces an integrated system designed to revolutionize this practice by combining automated deep learning-based liver segmentation with a collaborative Mixed Reality (MR) environment. The developed approach leverages advanced neural network architectures for accurate liver and tumor segmentation, followed by rapid 3D reconstruction. The segmentation model achieved a median Dice score of 0.92 on the IRCAD dataset, with comparable performance on LiTS and MDHV. The generated 3D models are then imported into an interactive MR application, enabling immersive visualization and intuitive manipulation. Furthermore, the system supports multiple simultaneous users in local collaborative mode, facilitating joint discussion and planning. This unique contribution, merging automated segmentation with immersive MR collaboration, significantly enhances the precision and efficiency of surgical planning, offering substantial potential for improving clinical outcomes. The emphasis on these key figures and the system’s unique contribution highlights that the project’s value lies not only in the performance of its individual components but also in the synergy created by integrating AI and MR to optimize a complex clinical workflow.fr_FR
dc.language.isoenfr_FR
dc.subjectLiver surgical planningfr_FR
dc.subjectAutomated segmentationfr_FR
dc.subjectDeep Learningfr_FR
dc.subjectMixed Realityfr_FR
dc.subject3D reconstructionfr_FR
dc.subjectClinical collaborationfr_FR
dc.titleAutomated 3D liver segmentation and mixed reality integration for preoperative surgical planningfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
TOUIL.Mohamed-Reda_BENZINE.YAsser.pdfPN0102517.62 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.