Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11226
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorMekerri, Ouarda-
dc.contributor.authorKaci, Ilhem Meroua-
dc.contributor.otherHalimi, Abderrahim, Directeur de thèse-
dc.contributor.otherTaghi, Mohamed Oussaid, Directeur de thèse-
dc.date.accessioned2025-10-13T13:08:01Z-
dc.date.available2025-10-13T13:08:01Z-
dc.date.issued2025-
dc.identifier.otherEP00925-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11226-
dc.descriptionMémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2025fr_FR
dc.description.abstract3D imaging is critical in applications requiring precise spatial detail. Among available technologies, LiDAR sensors are particularly prized for their accuracy and reliability. However, in realistic conditions, their performance is usually compromised by photon noise and sparse, low-resolution measurements. To overcome these limitations, we introduce a deep learning approach with multiscale processing to produce high-quality depth reconstructions despite low-quality input data. Tested on simulated LiDAR datasets, the method has notable improvements in accuracy and robustness.fr_FR
dc.language.isoenfr_FR
dc.subjectDepth mapfr_FR
dc.subjectPoint cloudfr_FR
dc.subjectSingle photon Lidarfr_FR
dc.subjectDtoffr_FR
dc.subjectRobustfr_FR
dc.subjectPhoton sparsityfr_FR
dc.titleModel based Deep Learning for computational imaging : application to robust multimodal 3D imagingfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
MEKERRI.Ouarda_KACI.Meroua-Ilhem.pdfPN0092514.29 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.