Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/11226
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | Mekerri, Ouarda | - |
dc.contributor.author | Kaci, Ilhem Meroua | - |
dc.contributor.other | Halimi, Abderrahim, Directeur de thèse | - |
dc.contributor.other | Taghi, Mohamed Oussaid, Directeur de thèse | - |
dc.date.accessioned | 2025-10-13T13:08:01Z | - |
dc.date.available | 2025-10-13T13:08:01Z | - |
dc.date.issued | 2025 | - |
dc.identifier.other | EP00925 | - |
dc.identifier.uri | http://repository.enp.edu.dz/jspui/handle/123456789/11226 | - |
dc.description | Mémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2025 | fr_FR |
dc.description.abstract | 3D imaging is critical in applications requiring precise spatial detail. Among available technologies, LiDAR sensors are particularly prized for their accuracy and reliability. However, in realistic conditions, their performance is usually compromised by photon noise and sparse, low-resolution measurements. To overcome these limitations, we introduce a deep learning approach with multiscale processing to produce high-quality depth reconstructions despite low-quality input data. Tested on simulated LiDAR datasets, the method has notable improvements in accuracy and robustness. | fr_FR |
dc.language.iso | en | fr_FR |
dc.subject | Depth map | fr_FR |
dc.subject | Point cloud | fr_FR |
dc.subject | Single photon Lidar | fr_FR |
dc.subject | Dtof | fr_FR |
dc.subject | Robust | fr_FR |
dc.subject | Photon sparsity | fr_FR |
dc.title | Model based Deep Learning for computational imaging : application to robust multimodal 3D imaging | fr_FR |
dc.type | Thesis | fr_FR |
Collection(s) : | Département Electronique |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
MEKERRI.Ouarda_KACI.Meroua-Ilhem.pdf | PN00925 | 14.29 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.