Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/11229
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | Benrekia, Yaseen | - |
dc.contributor.author | Djemmah, Imad Eddine | - |
dc.contributor.other | Taghi, Mohamed Oussaid, Directeur de thèse | - |
dc.date.accessioned | 2025-10-13T13:56:57Z | - |
dc.date.available | 2025-10-13T13:56:57Z | - |
dc.date.issued | 2025 | - |
dc.identifier.other | EP00922 | - |
dc.identifier.uri | http://repository.enp.edu.dz/jspui/handle/123456789/11229 | - |
dc.description | Mémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2025 | fr_FR |
dc.description.abstract | This project presents a comprehensive study on BMI estimation from face images, with a particular emphasis on improving predictive performance. By leveraging state-of-the-art deep learning architectures, advanced image preprocessing techniques, and robust feature extraction methods, the proposed approach achieves significant improvements in estimation accuracy. Experimental results demonstrate the effectiveness of the optimized model on benchmark datasets, highlighting the potential of facial analysis as a practical tool for automated BMI assessment in various healthcare and wellness applications. | fr_FR |
dc.language.iso | en | fr_FR |
dc.subject | BMI | fr_FR |
dc.subject | Feature extractionImage prerocessing | fr_FR |
dc.subject | Health | fr_FR |
dc.subject | Automatic estimation | fr_FR |
dc.title | BMI estimation from face images | fr_FR |
dc.type | Thesis | fr_FR |
Collection(s) : | Département Electronique |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
DJEMMAH.Imad-Eddine_BENREKIA.Yaseen.pdf | PN00625 | 1.68 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.