Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11229
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBenrekia, Yaseen-
dc.contributor.authorDjemmah, Imad Eddine-
dc.contributor.otherTaghi, Mohamed Oussaid, Directeur de thèse-
dc.date.accessioned2025-10-13T13:56:57Z-
dc.date.available2025-10-13T13:56:57Z-
dc.date.issued2025-
dc.identifier.otherEP00922-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11229-
dc.descriptionMémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2025fr_FR
dc.description.abstractThis project presents a comprehensive study on BMI estimation from face images, with a particular emphasis on improving predictive performance. By leveraging state-of-the-art deep learning architectures, advanced image preprocessing techniques, and robust feature extraction methods, the proposed approach achieves significant improvements in estimation accuracy. Experimental results demonstrate the effectiveness of the optimized model on benchmark datasets, highlighting the potential of facial analysis as a practical tool for automated BMI assessment in various healthcare and wellness applications.fr_FR
dc.language.isoenfr_FR
dc.subjectBMIfr_FR
dc.subjectFeature extractionImage prerocessingfr_FR
dc.subjectHealthfr_FR
dc.subjectAutomatic estimationfr_FR
dc.titleBMI estimation from face imagesfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
DJEMMAH.Imad-Eddine_BENREKIA.Yaseen.pdfPN006251.68 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.