Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11243
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorAbid, Wissam-
dc.contributor.otherBouadjenek, Nesrine, Directeur de thèse-
dc.date.accessioned2025-10-14T10:22:57Z-
dc.date.available2025-10-14T10:22:57Z-
dc.date.issued2025-
dc.identifier.otherEP00917-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11243-
dc.descriptionMémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2025fr_FR
dc.description.abstractSmart agriculture aims to improve crop monitoring through automated and accurate analysis of plant health. A critical task in this domain is disease severity estimation, which focuses on identifying the progression stages of plant infections. In this work, we propose a deep learning-based solution using two transformer architectures: Vision Transformer (ViT) and Swin Transformer. These models are implemented, evaluated, and combined into a novel architecture that leverages ViTs global attention and Swins hierarchical local attention for fine-grained severity classification. The models are trained on Wheat Yellow Rust dataset, which includes six severity stages. Finally, results show that the combined model outperforms individual baselines, providing an effective solution for automated severity estimation.fr_FR
dc.language.isoenfr_FR
dc.subjectSmart agriculturefr_FR
dc.subjectDisease severity Estimationfr_FR
dc.subjectYellow rustfr_FR
dc.subjectTransformer encoderfr_FR
dc.subjectVision transformer (ViT)fr_FR
dc.subjectSwin transformerfr_FR
dc.subjectMulti-head self-attentionfr_FR
dc.subjectFeature extractionfr_FR
dc.titlePlant leaves disease severity stimationfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
ABID.Wissam.pdfPN0012516.2 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.