Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11245
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBoukharouba, Mohamed-
dc.contributor.otherTadjadit, Abdelmadjid, Directeur de thèse-
dc.date.accessioned2025-10-14T10:35:02Z-
dc.date.available2025-10-14T10:35:02Z-
dc.date.issued2025-
dc.identifier.otherEP00932-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11245-
dc.descriptionMémoire de Projet de Fin d’Études : Génie Civil : Alger, École Nationale Polytechnique : 2025fr_FR
dc.description.abstractStructural Health Monitoring (SHM) plays a critical role in ensuring the safety and func- tionality of vital structures such as bridges, dams, and public buildings. To make SHM sys-tems more cost-effective, it is essential to optimize the number and placement of sensors, reducing implementation costs while maintaining reliable damage detection and structural assessment. This study addresses the problem of optimizing damage-adaptive sensor layout in struc- tural health monitoring (SHM) for multi-story buildings. A three-dimensional finite ele- ment model of a 12-story reinforced concrete tower (R+12) was developed using SAP2000, enabling the identification of high-risk damage zones based on internal force distributions. Steady-state vibration responses were generated, and a genetic algorithm was used to iden-tify the optimal sensor configuration for each damage scenario using distance matrices as damage-sensitive features. These scenario-based layouts were then merged into a unified configuration by analyzing sensor occurrence and importance scores. The final sensor set ensures sufficient coverage and sensitivity to structural degradation while maintaining a reduced number of sensors. The proposed approach provides a scalable and practical solution for SHM system design in complex structures with anticipated damage regionsfr_FR
dc.language.isoenfr_FR
dc.subjectStructural health monitoring (SHM)fr_FR
dc.subjectSensor placement optimizationfr_FR
dc.subjectGe-netic algorithmfr_FR
dc.subjectDistance matrixfr_FR
dc.subjectDamage-adaptive sensingfr_FR
dc.titleHybrid aI-based sensor optimization for structural health monitoring of multi-story buildings — case study : HQ tower R+12fr_FR
dc.typeThesisfr_FR
Collection(s) :Département Génie Civil

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2025.cvl.BOUKHAROUBA.Mohamed.pdfPB006258.86 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.