Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/11246
Titre: | Artificial neural networks for predicting the maximum surface settlement induced by EPB-TBM : the Algiers metro case |
Auteur(s): | Ayari, Ilies Derbal, Yacine Sebaï, Souâd, Directeur de thèse |
Mots-clés: | Artificial neural network EPB-TBM tunneling Prediction of surface settlement Machine learning |
Date de publication: | 2025 |
Résumé: | This thesis presents a methodology to correlate ground surface movements (settlement) with tunnel boring machine (TBM) operation parameters , Tunnel geometry and Geotechnical pa-rameters using an Artificial neural network model to predict maximum ground surface settle-ment. Data analyzed were selected from the excavation of the extension of Algiers subway line “1” (El-Harrach to H.B. Int. Airport) tunnel, which was performed by a shield TBM. The surface settlements observed along the entire tunnel section of the project (Contract 1-9) were satisfactorily reproduced by the proposed ANN model. A dedicated pre-processing procedure was necessary to enhance the model’s predictive capability, followed by a sensitivity analysis to assess the individual contribution of each feature |
Description: | Mémoire de Projet de Fin d’Études : Génie Civil : Alger, École Nationale Polytechnique : 2025 |
URI/URL: | http://repository.enp.edu.dz/jspui/handle/123456789/11246 |
Collection(s) : | Département Génie Civil |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
pfe.2025.cvl.AYARI.Ilyes_DERBAL.Yacine.pdf | PB00425 | 28 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.