Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11246
Titre: Artificial neural networks for predicting the maximum surface settlement induced by EPB-TBM : the Algiers metro case
Auteur(s): Ayari, Ilies
Derbal, Yacine
Sebaï, Souâd, Directeur de thèse
Mots-clés: Artificial neural network
EPB-TBM tunneling
Prediction of surface settlement
Machine learning
Date de publication: 2025
Résumé: This thesis presents a methodology to correlate ground surface movements (settlement) with tunnel boring machine (TBM) operation parameters , Tunnel geometry and Geotechnical pa-rameters using an Artificial neural network model to predict maximum ground surface settle-ment. Data analyzed were selected from the excavation of the extension of Algiers subway line “1” (El-Harrach to H.B. Int. Airport) tunnel, which was performed by a shield TBM. The surface settlements observed along the entire tunnel section of the project (Contract 1-9) were satisfactorily reproduced by the proposed ANN model. A dedicated pre-processing procedure was necessary to enhance the model’s predictive capability, followed by a sensitivity analysis to assess the individual contribution of each feature
Description: Mémoire de Projet de Fin d’Études : Génie Civil : Alger, École Nationale Polytechnique : 2025
URI/URL: http://repository.enp.edu.dz/jspui/handle/123456789/11246
Collection(s) :Département Génie Civil

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2025.cvl.AYARI.Ilyes_DERBAL.Yacine.pdfPB0042528 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.