Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11304
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorImadalou, Karine-Anais-
dc.contributor.authorMimouni, Aya-Fella-
dc.contributor.otherChanane, Larouci, Directeur de thèse-
dc.contributor.otherkhelalef, Aziz, Directeur de thèse-
dc.date.accessioned2025-11-10T09:51:12Z-
dc.date.available2025-11-10T09:51:12Z-
dc.date.issued2025-
dc.identifier.otherEP01036-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11304-
dc.descriptionMémoire de Projet de Fin d’Études : Génie Minier : Alger, École Nationale Polytechnique : 2025fr_FR
dc.description.abstractThis study aims to explore the use of machine learning as a powerful artificial intelligence tool to develop an algorithm capable of estimating and predicting three essential petro- physical parameters: clay volume (VCL), effective porosity (P HIE), and water saturation (SW ), based on raw log data from several production wells in the Berkine Basin. The main challenge lies in the accurate prediction of water saturation. Several models were compared, including XGBoost, MLP, and CNN. The results obtained, especially with the CNN model, demonstrate the high efficiency of machine learning techniques, achiev-ing a global determination coefficient of R2 = 0.81 for water saturation, which is the most complex parameter to predict.fr_FR
dc.language.isoenfr_FR
dc.subjectMachine learningfr_FR
dc.subjectArtificial intelligencefr_FR
dc.subjectPredictionfr_FR
dc.subjectClay volumefr_FR
dc.subjectEffectivefr_FR
dc.subjectPorosityfr_FR
dc.subjectWater saturationfr_FR
dc.subjectLogsfr_FR
dc.subjectReservoirsfr_FR
dc.subjectBerkine Basinfr_FR
dc.titlePredictive and comparative study of petrophysical parameters based on AIfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Génie Minier

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Pfe.2025.min.IMADALOU.Karine_MIMOUNI.Aya.pdfEP0103620.22 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.