Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11317
Titre: An interactive data-driven assistant for automated petrophysical rock typing
Auteur(s): Mokrani, Ali
Bareche, Imene, Directeur de thèse
Sahar, Mohamed Yacine, Directeur de thèse
Mots-clés: Petrophysical Rock Typing
Clustering
Machine Learning
Hydraulic Flow Unit
Super Lorenz Plot
Interactive Assistan
Date de publication: 2025
Résumé: Petrophysical Rock Typing (PRT) is vital for reservoir characterization, yet traditional methodsrely on subjective interpretation or complex graphical workflows. The Hydraulic Flow Unit (HFU) method, though conceptually strong, lacks practical adoption due to implementation challenges. This thesis offers a fully automated, reproducible HFU workflow. It uses the Ramer-Douglas-Peucker algorithm to segment the Stratigraphic Modified Lorenz Plot (SMLP) and applies machine learning to classify segments into rock types. A key contribution is an expert-in-the-loop framework that enables iterative refinement using data-driven metrics. Rock types are further characterized with Pore Throat Radius Indicator boundaries to enhance interpretability. The approach was validated on the Gulfaks and Poseidon datasets and implemented as a web-based module combining automation with expert control. It supports both rapid default deployment and advanced customization, offering a scalable, consistent tool for reservoir studies.
Description: Mémoire de Projet de Fin d’Études : Génie Industriel.Date Science et intelligence artificiel : Alger, École Nationale Polytechnique : 2025
URI/URL: http://repository.enp.edu.dz/jspui/handle/123456789/11317
Collection(s) :Département Génie industriel : Data Science_Intelligence Artificielle

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Pfe.2025.dsia.MOKRANI.Ali.pdfEP00981668.67 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.