Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11359
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorIghil, Chakib-
dc.contributor.otherFourar Laidi, Hakim, Directeur de thèse-
dc.date.accessioned2025-12-07T08:28:12Z-
dc.date.available2025-12-07T08:28:12Z-
dc.date.issued2025-
dc.identifier.otherEP01044-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11359-
dc.descriptionMémoire de Projet de Fin d’Études : Génie Industriel. Data Science et Intelligence Artificielle : Alger, École Nationale Polytechnique : 2025fr_FR
dc.description.abstractRide-hailing platforms typically employ the nearest-first matching policy that prioritizes proximity while disregarding driver acceptance behavior, leading to inefficient assignments. This work proposes and evaluates a Ranked-First Policy that integrates acceptance prediction into the dispatching process, using Yassir, Algeria’s leading ride-hailing platform, as a case study. An empirical analysis of 312,216 dispatch records from Oran, Algeria, revealed systematic patterns in driver acceptance behavior influenced by economic, temporal, spatial, and experiential factors. A comprehensive feature set was engineered to capture these behavioral signals, and an XGBoost model achieved an AUC of 0.785 with 79.2% Hit@1 accuracy, correctly identifying the accepting driver as the top-ranked candidate in most cases. A counterfactual simulation against Yassir’s current ETA-based policy demonstrated substantial operational improvements: first-offer success rate nearly doubled from 43.46% to 79.2%, and average time-to assignment decreased by 72%, from 21.18 to 5.79 seconds. These result confirm that acceptance-aware matching significantly enhances efficiency by reducing rider wait times and optimizing driver allocation.fr_FR
dc.language.isoenfr_FR
dc.subjectRide-hailingfr_FR
dc.subjectOrder dispatchingfr_FR
dc.subjectDriver behaviorfr_FR
dc.subjectDriver acceptance predictionfr_FR
dc.subjectRanked-first policyfr_FR
dc.subjectMatching efficiencyfr_FR
dc.titleImproving ride-hailing order allocation via a ranked-first policy : Case Yassirfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Génie industriel : Data Science_Intelligence Artificielle

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2025.dsia.IGHIL.Chakib.pdfPI027257.87 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.