Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/11359Affichage complet
| Élément Dublin Core | Valeur | Langue |
|---|---|---|
| dc.contributor.author | Ighil, Chakib | - |
| dc.contributor.other | Fourar Laidi, Hakim, Directeur de thèse | - |
| dc.date.accessioned | 2025-12-07T08:28:12Z | - |
| dc.date.available | 2025-12-07T08:28:12Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.other | EP01044 | - |
| dc.identifier.uri | http://repository.enp.edu.dz/jspui/handle/123456789/11359 | - |
| dc.description | Mémoire de Projet de Fin d’Études : Génie Industriel. Data Science et Intelligence Artificielle : Alger, École Nationale Polytechnique : 2025 | fr_FR |
| dc.description.abstract | Ride-hailing platforms typically employ the nearest-first matching policy that prioritizes proximity while disregarding driver acceptance behavior, leading to inefficient assignments. This work proposes and evaluates a Ranked-First Policy that integrates acceptance prediction into the dispatching process, using Yassir, Algeria’s leading ride-hailing platform, as a case study. An empirical analysis of 312,216 dispatch records from Oran, Algeria, revealed systematic patterns in driver acceptance behavior influenced by economic, temporal, spatial, and experiential factors. A comprehensive feature set was engineered to capture these behavioral signals, and an XGBoost model achieved an AUC of 0.785 with 79.2% Hit@1 accuracy, correctly identifying the accepting driver as the top-ranked candidate in most cases. A counterfactual simulation against Yassir’s current ETA-based policy demonstrated substantial operational improvements: first-offer success rate nearly doubled from 43.46% to 79.2%, and average time-to assignment decreased by 72%, from 21.18 to 5.79 seconds. These result confirm that acceptance-aware matching significantly enhances efficiency by reducing rider wait times and optimizing driver allocation. | fr_FR |
| dc.language.iso | en | fr_FR |
| dc.subject | Ride-hailing | fr_FR |
| dc.subject | Order dispatching | fr_FR |
| dc.subject | Driver behavior | fr_FR |
| dc.subject | Driver acceptance prediction | fr_FR |
| dc.subject | Ranked-first policy | fr_FR |
| dc.subject | Matching efficiency | fr_FR |
| dc.title | Improving ride-hailing order allocation via a ranked-first policy : Case Yassir | fr_FR |
| dc.type | Thesis | fr_FR |
| Collection(s) : | Département Génie industriel : Data Science_Intelligence Artificielle | |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| pfe.2025.dsia.IGHIL.Chakib.pdf | PI02725 | 7.87 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.