Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/11359| Titre: | Improving ride-hailing order allocation via a ranked-first policy : Case Yassir |
| Auteur(s): | Ighil, Chakib Fourar Laidi, Hakim, Directeur de thèse |
| Mots-clés: | Ride-hailing Order dispatching Driver behavior Driver acceptance prediction Ranked-first policy Matching efficiency |
| Date de publication: | 2025 |
| Résumé: | Ride-hailing platforms typically employ the nearest-first matching policy that prioritizes proximity while disregarding driver acceptance behavior, leading to inefficient assignments. This work proposes and evaluates a Ranked-First Policy that integrates acceptance prediction into the dispatching process, using Yassir, Algeria’s leading ride-hailing platform, as a case study. An empirical analysis of 312,216 dispatch records from Oran, Algeria, revealed systematic patterns in driver acceptance behavior influenced by economic, temporal, spatial, and experiential factors. A comprehensive feature set was engineered to capture these behavioral signals, and an XGBoost model achieved an AUC of 0.785 with 79.2% Hit@1 accuracy, correctly identifying the accepting driver as the top-ranked candidate in most cases. A counterfactual simulation against Yassir’s current ETA-based policy demonstrated substantial operational improvements: first-offer success rate nearly doubled from 43.46% to 79.2%, and average time-to assignment decreased by 72%, from 21.18 to 5.79 seconds. These result confirm that acceptance-aware matching significantly enhances efficiency by reducing rider wait times and optimizing driver allocation. |
| Description: | Mémoire de Projet de Fin d’Études : Génie Industriel. Data Science et Intelligence Artificielle : Alger, École Nationale Polytechnique : 2025 |
| URI/URL: | http://repository.enp.edu.dz/jspui/handle/123456789/11359 |
| Collection(s) : | Département Génie industriel : Data Science_Intelligence Artificielle |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| pfe.2025.dsia.IGHIL.Chakib.pdf | PI02725 | 7.87 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.