Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11362
Titre: Fractional-Order Adaptive Control Techniques for Artificial Pancreas
Auteur(s): BENSALEM, Serine
Bensalem, Serine
Ladaci S.Directeur de thèse
Mots-clés: Artificial Pancreas
Fractional Calculus, Adaptive
Control, Sliding
Mode Control
Bergman
Minimal Model
IVTT Model
Robustness Test
Meal Intake
Adaptive Neuro Fuzzy Controller,
Genetic Algorithm
Optimization.
Date de publication: 2025
Résumé: Type 1 diabetes mellitus is a disease where the patient is not able to produce necessary insulin to regulate the concentration of glucose in the blood. Artificial pancreas is a device that can regulate this concentration and turn the behavior to normal. The human regulatory system can be modeled using differential equations; their order could be integer or fractional. In this work, we examine the accuracy of fractional-order modeling of the minimal model using real data, then robust control techniques are implemented. First, a model reference indirect adaptive controller is designed using two approaches: integer order approach and fractional-order approach, then a fractional-order sliding mode controller is implemented with a robust sliding mode observer to estimate the glucose concentration in the blood. The controller is tuned by a genetic optimization algorithm. Finally, a Neuro fuzzy controller. Several robustness tests are presented (Meal simulation) and evaluated using different types of errors’ criteria.
Description: Mémoire de Projet de Fin d’Études :Automatique : Alger, École Nationale Polytechnique : 2025
URI/URL: http://repository.enp.edu.dz/jspui/handle/123456789/11362
Collection(s) :Département Automatique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2025.aut.BOULASSEL.Bilel_CHAABENI.Ilyes.pdfPA02425830.36 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.