Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/1946
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorKadem, Rayane-
dc.contributor.authorRabehi, Yacine-
dc.contributor.otherBouadjenek, Nesrine, Directeur de thèse-
dc.date.accessioned2020-12-22T10:42:19Z-
dc.date.available2020-12-22T10:42:19Z-
dc.date.issued2020-
dc.identifier.otherEP00077-
dc.identifier.urihttp://repository.enp.edu.dz/xmlui/handle/123456789/1946-
dc.descriptionMémoire de Projet de Fin d’Études : Électronique : Alger, École Nationale Polytechnique : 2020fr_FR
dc.description.abstractHandwriting as a part of behavioral biometrics has been proved to having the abilityto sufficiently differentiate any two individuals. Therefore, in this work, we proposea system for writer identification using single handwritten words. In this regard, wepropose, associated to Support Vector Machine (SVM) classifier, a hybrid features fusionthat combined features extracted from a new descriptor namely, Multiscale Local OrientedGradient (MLOG) and features generated from Convolutional Neural Network VGG-16.Two known approaches of writer identification were addressed: writer-dependent andwriter-independent. Experiments conducted on two standard datasets, showed satisfyingand very promising resultsfr_FR
dc.language.isoenfr_FR
dc.subjectWriter identificationfr_FR
dc.subjectHandwritingfr_FR
dc.subjectMLOGfr_FR
dc.subjectHybrid featuresfr_FR
dc.subjectCNNfr_FR
dc.titleHybrid features fusion for writer identification usingsingle handwritten wordsfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
KADEM.Rayane_RABEHI.Yacine.pdfPN007205.74 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.