Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/6867
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | Azli, Hadjer | - |
dc.contributor.other | Adnane, Mourad, Directeur de thèse | - |
dc.date.accessioned | 2021-01-24T07:56:14Z | - |
dc.date.available | 2021-01-24T07:56:14Z | - |
dc.date.issued | 2017 | - |
dc.identifier.other | S000185 | - |
dc.identifier.uri | http://repository.enp.edu.dz/xmlui/handle/123456789/6867 | - |
dc.description | Mémoire de Master : Electronique : Alger, Ecole Nationale Polytechnique : 2017 | fr_FR |
dc.description.abstract | This studyaims to analyze and process Electroencephalogram (EEG)signals using an automated classification method with Support vector machine (SVM), to categorize patient’s seizure: epileptic or non-epileptic. We employed a framework of signal analysis techniques, and we started by applying discrete wavelet decomposition(DWT) on the original signal, followed by extracting a set of statistical features and building the feature matrix. Next, a feature reduction PCA and ICA were explored to represent the data in a new distinct space with reduced dimension. Finally, an SVM algorithm was trained and used upon a set of testing data to be classified: epileptic or not. The performance of classification process due to different methods is presented and compared to show the excellent classification process. | fr_FR |
dc.language.iso | en | fr_FR |
dc.subject | Electroencephalogram (EEG) | fr_FR |
dc.subject | Discrete Wavelet Transform (DWT) | fr_FR |
dc.subject | Independent Component Analysis (ICA) | fr_FR |
dc.subject | Principal Component Analysis (PCA) | fr_FR |
dc.subject | Support Vector Machine (SVM) Epileptic Seizure | fr_FR |
dc.title | A comparison study on EEG signal classification using Component analysis (PCA, ICA) and Support Vector Machine (SVM) | fr_FR |
dc.type | Thesis | fr_FR |
Collection(s) : | Département Electronique |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
AZLI.Hadjer.pdf | Ms13017 | 2.38 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.