Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/6867
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorAzli, Hadjer-
dc.contributor.otherAdnane, Mourad, Directeur de thèse-
dc.date.accessioned2021-01-24T07:56:14Z-
dc.date.available2021-01-24T07:56:14Z-
dc.date.issued2017-
dc.identifier.otherS000185-
dc.identifier.urihttp://repository.enp.edu.dz/xmlui/handle/123456789/6867-
dc.descriptionMémoire de Master : Electronique : Alger, Ecole Nationale Polytechnique : 2017fr_FR
dc.description.abstractThis studyaims to analyze and process Electroencephalogram (EEG)signals using an automated classification method with Support vector machine (SVM), to categorize patient’s seizure: epileptic or non-epileptic. We employed a framework of signal analysis techniques, and we started by applying discrete wavelet decomposition(DWT) on the original signal, followed by extracting a set of statistical features and building the feature matrix. Next, a feature reduction PCA and ICA were explored to represent the data in a new distinct space with reduced dimension. Finally, an SVM algorithm was trained and used upon a set of testing data to be classified: epileptic or not. The performance of classification process due to different methods is presented and compared to show the excellent classification process.fr_FR
dc.language.isoenfr_FR
dc.subjectElectroencephalogram (EEG)fr_FR
dc.subjectDiscrete Wavelet Transform (DWT)fr_FR
dc.subjectIndependent Component Analysis (ICA)fr_FR
dc.subjectPrincipal Component Analysis (PCA)fr_FR
dc.subjectSupport Vector Machine (SVM) Epileptic Seizurefr_FR
dc.titleA comparison study on EEG signal classification using Component analysis (PCA, ICA) and Support Vector Machine (SVM)fr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
AZLI.Hadjer.pdfMs130172.38 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.