Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/6867
Titre: | A comparison study on EEG signal classification using Component analysis (PCA, ICA) and Support Vector Machine (SVM) |
Auteur(s): | Azli, Hadjer Adnane, Mourad, Directeur de thèse |
Mots-clés: | Electroencephalogram (EEG) Discrete Wavelet Transform (DWT) Independent Component Analysis (ICA) Principal Component Analysis (PCA) Support Vector Machine (SVM) Epileptic Seizure |
Date de publication: | 2017 |
Résumé: | This studyaims to analyze and process Electroencephalogram (EEG)signals using an automated classification method with Support vector machine (SVM), to categorize patient’s seizure: epileptic or non-epileptic. We employed a framework of signal analysis techniques, and we started by applying discrete wavelet decomposition(DWT) on the original signal, followed by extracting a set of statistical features and building the feature matrix. Next, a feature reduction PCA and ICA were explored to represent the data in a new distinct space with reduced dimension. Finally, an SVM algorithm was trained and used upon a set of testing data to be classified: epileptic or not. The performance of classification process due to different methods is presented and compared to show the excellent classification process. |
Description: | Mémoire de Master : Electronique : Alger, Ecole Nationale Polytechnique : 2017 |
URI/URL: | http://repository.enp.edu.dz/xmlui/handle/123456789/6867 |
Collection(s) : | Département Electronique |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
AZLI.Hadjer.pdf | Ms13017 | 2.38 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.