dc.contributor.author |
Saadi, Brahim |
|
dc.contributor.author |
Elfraihi, Mohammed Younes |
|
dc.contributor.other |
Zouaghi, Iskander, Directeur de thèse |
|
dc.contributor.other |
Ioana, Manolescu, Directeur de thèse |
|
dc.contributor.other |
Oana, Balalau, Directeur de thèse |
|
dc.date.accessioned |
2025-02-03T14:27:11Z |
|
dc.date.available |
2025-02-03T14:27:11Z |
|
dc.date.issued |
2024 |
|
dc.identifier.other |
EP00882 |
|
dc.identifier.uri |
http://repository.enp.edu.dz/jspui/handle/123456789/11175 |
|
dc.description |
Mémoire de Projet de Fin d’Etudes : Génie Industriel. Data Science-Intelligence Artificielle : Alger, Ecole Nationale Polytechnique : 2024 |
fr_FR |
dc.description.abstract |
This thesis explores the development and evaluation of automated fact-checking systems, focusing on matching claims and tweets to fact-checking articles. We assess retrieval and re-ranking methods, such as the BM25 algorithm and SBERT model. Key contributions include:
• Sentence-Level Similarity: A novel approach for SBERT re-ranking improves accuracy in tweet-article matching.
• Language-Specific Analysis: Comparative analysis of English and French claims highlights the need for language-specific models.
• FactCheckBureau Platform: A web application designed to help researchers and journalists develop accurate claim-fact check matching systems.
Our experiments reveal the strengths and limitations of various methods. While BM25 serves as a robust baseline, SBERT with sentence-level granularity enhances precision. We also explore tweet enrichment techniques like OCR and image captioning to improve tweet representation. This research advances automated fact-checking, offering tools and insights to combat misinformation. The FactCheckBureau platform enables effective claim verification, promoting accurate information online. |
fr_FR |
dc.language.iso |
en |
fr_FR |
dc.subject |
Fact-checking |
fr_FR |
dc.subject |
Misinformation |
fr_FR |
dc.subject |
Automated systems |
fr_FR |
dc.subject |
Tweet-article matching |
fr_FR |
dc.subject |
Information retrieval |
fr_FR |
dc.subject |
BM25 |
fr_FR |
dc.subject |
SBERT |
fr_FR |
dc.subject |
Sentence-level similarity |
fr_FR |
dc.subject |
Tweet enrichment |
fr_FR |
dc.subject |
English and French |
fr_FR |
dc.subject |
FactCheckBureau |
fr_FR |
dc.title |
FactCheckBureau : build your own fact-check analysis pipeline |
fr_FR |
dc.type |
Thesis |
fr_FR |