| dc.contributor.author | Lafifi, Bochra | |
| dc.contributor.other | Arki, Oussama, Directeur de thèse | |
| dc.contributor.other | Gabis, Asma, Directeur de thèse | |
| dc.contributor.other | Klai, Kais, Directeur de thèse | |
| dc.contributor.other | Chakchouk, Faten, Directeur de thèse | |
| dc.date.accessioned | 2025-11-13T14:21:27Z | |
| dc.date.available | 2025-11-13T14:21:27Z | |
| dc.date.issued | 2025 | |
| dc.identifier.other | EP00975 | |
| dc.identifier.uri | http://repository.enp.edu.dz/jspui/handle/123456789/11330 | |
| dc.description | Mémoire de Projet de Fin d’Études : Génie Industriel.Date Science et intelligence artificiel : Alger, École Nationale Polytechnique : 2025 | fr_FR |
| dc.description.abstract | This thesis introduces the Colored Petri Neural Network (CPNN), a novel frame- work that integrates Colored Petri Nets (CPNs) with multi-layer perceptrons (MLPs) to enhance the interpretability of neural networks. The CPNN model addresses the challenge of explainability in deep learning by enabling formal, fine-grained tracking of information flow during forward propagation. This approach provides transparent insights into feature contributions and decision-making processes. By leveraging the formal verification strengths of CPNs, the model supports rigorous analysis without compromising predictive performance—particularly in critical domains such as healthcare. Additionally, a mathematical investigation of the neural network hyperparameters effects on state space complexity reveals the influence of factors like layer depth and mini-batch size on computational requirements, guiding more efficient design and verification. This work lays the foundation for developing interpretable, efficient, and verifiable deep learning systems in critical applications. | fr_FR |
| dc.language.iso | en | fr_FR |
| dc.subject | Colored petri nets | fr_FR |
| dc.subject | Neural networks | fr_FR |
| dc.subject | Formal verification | fr_FR |
| dc.subject | Explainable artificial | fr_FR |
| dc.subject | Intelligence (XAI) | fr_FR |
| dc.subject | Model Checking | fr_FR |
| dc.title | Exploring a new method for the formal verification of neural networks through coloured petri net modeling | fr_FR |
| dc.type | Thesis | fr_FR |