Exploring a new method for the formal verification of neural networks through coloured petri net modeling

Show simple item record

dc.contributor.author Lafifi, Bochra
dc.contributor.other Arki, Oussama, Directeur de thèse
dc.contributor.other Gabis, Asma, Directeur de thèse
dc.contributor.other Klai, Kais, Directeur de thèse
dc.contributor.other Chakchouk, Faten, Directeur de thèse
dc.date.accessioned 2025-11-13T14:21:27Z
dc.date.available 2025-11-13T14:21:27Z
dc.date.issued 2025
dc.identifier.other EP00975
dc.identifier.uri http://repository.enp.edu.dz/jspui/handle/123456789/11330
dc.description Mémoire de Projet de Fin d’Études : Génie Industriel.Date Science et intelligence artificiel : Alger, École Nationale Polytechnique : 2025 fr_FR
dc.description.abstract This thesis introduces the Colored Petri Neural Network (CPNN), a novel frame- work that integrates Colored Petri Nets (CPNs) with multi-layer perceptrons (MLPs) to enhance the interpretability of neural networks. The CPNN model addresses the challenge of explainability in deep learning by enabling formal, fine-grained tracking of information flow during forward propagation. This approach provides transparent insights into feature contributions and decision-making processes. By leveraging the formal verification strengths of CPNs, the model supports rigorous analysis without compromising predictive performance—particularly in critical domains such as healthcare. Additionally, a mathematical investigation of the neural network hyperparameters effects on state space complexity reveals the influence of factors like layer depth and mini-batch size on computational requirements, guiding more efficient design and verification. This work lays the foundation for developing interpretable, efficient, and verifiable deep learning systems in critical applications. fr_FR
dc.language.iso en fr_FR
dc.subject Colored petri nets fr_FR
dc.subject Neural networks fr_FR
dc.subject Formal verification fr_FR
dc.subject Explainable artificial fr_FR
dc.subject Intelligence (XAI) fr_FR
dc.subject Model Checking fr_FR
dc.title Exploring a new method for the formal verification of neural networks through coloured petri net modeling fr_FR
dc.type Thesis fr_FR


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account