Optimization of recommender systems using knowledge graphs

Show simple item record

dc.contributor.author Mokeddem, Boualem
dc.contributor.author Guia, Hocine Islam
dc.contributor.other Beldjoudi, Samia, Directeur de thèse
dc.contributor.other Bouzeghoub, Amel, Directeur de thèse
dc.contributor.other Gauthier, Vincent, Directeur de thèse
dc.date.accessioned 2025-11-16T13:30:44Z
dc.date.available 2025-11-16T13:30:44Z
dc.date.issued 2025
dc.identifier.other EP00979
dc.identifier.uri http://repository.enp.edu.dz/jspui/handle/123456789/11334
dc.description Mémoire de Projet de Fin d’Études : Génie Industriel.Date Science et intelligence artificiel : Alger, École Nationale Polytechnique : 2025 fr_FR
dc.description.abstract Spatial and temporal recommendation systems struggle to fully exploit the geographic context. However, information on administrative areas and relationships between points of interest remains largely underutilized. This thesis proposes to integrate an urban knowledge graph to fill this gap. Several prediction models are compared, such as: Each architecture is trained twice, without any graph information, and by injecting KG embeddings as static features or initial states. By combining symbolic reasoning (knowledge graph) and spatiotemporal deep learning, this study shows that an explicit geographic context significantly improves the accuracy of place recommendations. fr_FR
dc.language.iso en fr_FR
dc.subject Recommendation system fr_FR
dc.subject Knowledge graph fr_FR
dc.subject Embedding fr_FR
dc.title Optimization of recommender systems using knowledge graphs fr_FR
dc.type Thesis fr_FR


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account