Deep learning for predicting epileptic seizures using EEG signals

Show simple item record

dc.contributor.author Terbouche, Hacène
dc.contributor.other Adnane, Mourad, Directeur de thèse
dc.contributor.other Ouadjer, Youcef, Directeur de thèse
dc.date.accessioned 2020-12-22T10:05:36Z
dc.date.available 2020-12-22T10:05:36Z
dc.date.issued 2020
dc.identifier.other EP00085
dc.identifier.uri http://repository.enp.edu.dz/xmlui/handle/123456789/1908
dc.description Mémoire de Projet de Fin d’Études : Électronique : Alger, École Nationale Polytechnique : 2020 fr_FR
dc.description.abstract Epileptic seizure prediction is a challenging problem which consists in identifying a seizureonset using electroencephalogram (EEG) signals, either by an experienced neurologist or automaticallyusing machine learning techniques. In this work, we will take advantage from recent advances of deeplearning techniques and propose two architectures. The first model is based on one dimensional convolutional neural network (1-D CNN) architecture that learns hierarchical representations of EEG with nopreprocessing steps. The second model is based on long term recurrent convolutional network (LRCN)which has the capacity to learn different representations of the spatiotemporal structure of EEG signal.Experimental results demonstrate the reliability of the models by achieving a mean Area Under Curve(AUC) Receiver Operating Characteristics (ROC) of 0.848 for 1-D CNN model, and 0.873 for LRCN model. fr_FR
dc.language.iso en fr_FR
dc.subject EEG fr_FR
dc.subject Epileptic seizure prediction fr_FR
dc.subject Deep Learning fr_FR
dc.subject CNN fr_FR
dc.subject LSTM fr_FR
dc.title Deep learning for predicting epileptic seizures using EEG signals fr_FR
dc.type Thesis fr_FR


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account