Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11004
Titre: Comparative analysis of machine learning methods for power transformer oil diagnosis using dissolved gas analysis
Auteur(s): Boukhari, Imed-Eddine
Benmahamed, Youcef, Directeur de thèse
Mots-clés: Power transformer
Insulating oil
Diagnosis
Dissolved gas analysis
Electrical and thermal faults
Machine learning
Date de publication: 2024
Résumé: This work focuses on diagnosing the condition of power transformer oil through dissolved gas analysis consisting of H2, CH4, C2H2, C2H4, and C2H6. For this purpose, many machine learning algorithms have been developed. eight input vectors have been considered, and several pre-processing techniques were used. The database used contains 666 samples, of which 506 are selected for training and 160 for testing. Inspired by international standards such as IEC and IEEE, six electrical and thermal faults have been considered, namely PD, D1, D2, T1, T2, and T3. The best diagnostic rate of 99.375% was achieved using a custom-built decision tree.
Description: Mémoire de Projet de Fin d’Études : Électrotechnique : Alger, École Nationale Polytechnique : 2024
URI/URL: http://repository.enp.edu.dz/jspui/handle/123456789/11004
Collection(s) :Département Electrotechnique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
BOUKHARI.Imed-Eddine.pdfPA014245.71 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.