Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11026
Titre: Learning based artifact removal for EEG and PPG signals : contribution to artifact removal for EEG signals using Learning based methods
Auteur(s): Guir, Abdelbaki
Laleg, Taous Meriem, Directeur de thèse
Hamami Née Mitiche, Latifa, Directeur de thèse
Mots-clés: Electroencephalogram
Photoplethysmogram
Deep convolutional neural networks
Deep learning
Cycle generative adversarial networks
Image processing
Signal processing
Date de publication: 2024
Résumé: his study explores the use of deep learning methods, particularly Deep Convolutional Neural Networks (Deep CNN) and Cycle Generative Adversarial Networks (Cycle GAN), to purify neurophysiological signals such as EEG and PPG from unwanted artifacts. EEG signals are often contaminated by EOG and EMG artifacts, while PPG signals suffer from motion artifacts and baseline drifts. Our models have shown a significant improvement in signal quality compared to traditional techniques, highlighting the potential of deep learning architectures to enhance the processing of neurophysiological signals and biomedical applications.
Description: Mémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2024
URI/URL: http://repository.enp.edu.dz/jspui/handle/123456789/11026
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2024.eln.GUIR.Abdelbaki.pdfPN005246.55 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.