Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11330
Titre: Exploring a new method for the formal verification of neural networks through coloured petri net modeling
Auteur(s): Lafifi, Bochra
Arki, Oussama, Directeur de thèse
Gabis, Asma, Directeur de thèse
Klai, Kais, Directeur de thèse
Chakchouk, Faten, Directeur de thèse
Mots-clés: Colored petri nets
Neural networks
Formal verification
Explainable artificial
Intelligence (XAI)
Model Checking
Date de publication: 2025
Résumé: This thesis introduces the Colored Petri Neural Network (CPNN), a novel frame- work that integrates Colored Petri Nets (CPNs) with multi-layer perceptrons (MLPs) to enhance the interpretability of neural networks. The CPNN model addresses the challenge of explainability in deep learning by enabling formal, fine-grained tracking of information flow during forward propagation. This approach provides transparent insights into feature contributions and decision-making processes. By leveraging the formal verification strengths of CPNs, the model supports rigorous analysis without compromising predictive performance—particularly in critical domains such as healthcare. Additionally, a mathematical investigation of the neural network hyperparameters effects on state space complexity reveals the influence of factors like layer depth and mini-batch size on computational requirements, guiding more efficient design and verification. This work lays the foundation for developing interpretable, efficient, and verifiable deep learning systems in critical applications.
Description: Mémoire de Projet de Fin d’Études : Génie Industriel.Date Science et intelligence artificiel : Alger, École Nationale Polytechnique : 2025
URI/URL: http://repository.enp.edu.dz/jspui/handle/123456789/11330
Collection(s) :Département Génie industriel : Data Science_Intelligence Artificielle

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
PFE.2025.DSIA.LAFIFI.Bochra.pdf.pdfPI006255.17 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.