Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11330
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorLafifi, Bochra-
dc.contributor.otherArki, Oussama, Directeur de thèse-
dc.contributor.otherGabis, Asma, Directeur de thèse-
dc.contributor.otherKlai, Kais, Directeur de thèse-
dc.contributor.otherChakchouk, Faten, Directeur de thèse-
dc.date.accessioned2025-11-13T14:21:27Z-
dc.date.available2025-11-13T14:21:27Z-
dc.date.issued2025-
dc.identifier.otherEP00975-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11330-
dc.descriptionMémoire de Projet de Fin d’Études : Génie Industriel. Data Science et Intelligence Artificielle : Alger, École Nationale Polytechnique : 2025fr_FR
dc.description.abstractThis thesis introduces the Colored Petri Neural Network (CPNN), a novel frame- work that integrates Colored Petri Nets (CPNs) with multi-layer perceptrons (MLPs) to enhance the interpretability of neural networks. The CPNN model addresses the challenge of explainability in deep learning by enabling formal, fine-grained tracking of information flow during forward propagation. This approach provides transparent insights into feature contributions and decision-making processes. By leveraging the formal verification strengths of CPNs, the model supports rigorous analysis without compromising predictive performance—particularly in critical domains such as healthcare. Additionally, a mathematical investigation of the neural network hyperparameters effects on state space complexity reveals the influence of factors like layer depth and mini-batch size on computational requirements, guiding more efficient design and verification. This work lays the foundation for developing interpretable, efficient, and verifiable deep learning systems in critical applications.fr_FR
dc.language.isoenfr_FR
dc.subjectColored petri netsfr_FR
dc.subjectNeural networksfr_FR
dc.subjectFormal verificationfr_FR
dc.subjectExplainable artificialfr_FR
dc.subjectIntelligence (XAI)fr_FR
dc.subjectModel Checkingfr_FR
dc.titleExploring a new method for the formal verification of neural networks through coloured petri net modelingfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Génie industriel : Data Science_Intelligence Artificielle

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
PFE.2025.DSIA.LAFIFI.Bochra.pdf.pdfPI006255.17 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.