Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/11330| Titre: | Exploring a new method for the formal verification of neural networks through coloured petri net modeling |
| Auteur(s): | Lafifi, Bochra Arki, Oussama, Directeur de thèse Gabis, Asma, Directeur de thèse Klai, Kais, Directeur de thèse Chakchouk, Faten, Directeur de thèse |
| Mots-clés: | Colored petri nets Neural networks Formal verification Explainable artificial Intelligence (XAI) Model Checking |
| Date de publication: | 2025 |
| Résumé: | This thesis introduces the Colored Petri Neural Network (CPNN), a novel frame- work that integrates Colored Petri Nets (CPNs) with multi-layer perceptrons (MLPs) to enhance the interpretability of neural networks. The CPNN model addresses the challenge of explainability in deep learning by enabling formal, fine-grained tracking of information flow during forward propagation. This approach provides transparent insights into feature contributions and decision-making processes. By leveraging the formal verification strengths of CPNs, the model supports rigorous analysis without compromising predictive performance—particularly in critical domains such as healthcare. Additionally, a mathematical investigation of the neural network hyperparameters effects on state space complexity reveals the influence of factors like layer depth and mini-batch size on computational requirements, guiding more efficient design and verification. This work lays the foundation for developing interpretable, efficient, and verifiable deep learning systems in critical applications. |
| Description: | Mémoire de Projet de Fin d’Études : Génie Industriel.Date Science et intelligence artificiel : Alger, École Nationale Polytechnique : 2025 |
| URI/URL: | http://repository.enp.edu.dz/jspui/handle/123456789/11330 |
| Collection(s) : | Département Génie industriel : Data Science_Intelligence Artificielle |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| PFE.2025.DSIA.LAFIFI.Bochra.pdf.pdf | PI00625 | 5.17 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.