Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/11342| Titre: | Data-driven optimization for nurse scheduling and rescheduling problem |
| Auteur(s): | Chorfi, Hadil Beldjoudi, Samia, Directeur de thèse Ouazene, Yassine, Directeur de thèse Alaouchiche, Yasmine, Directeur de thèse |
| Mots-clés: | Nurse scheduling Rescheduling Heuristic Hurdle model Predictive modeling Multi-objective programming |
| Date de publication: | 2025 |
| Résumé: | Nurse scheduling in hospitals is a highly constrained and uncertain task. While traditional optimization models can generate feasible baseline schedules, they often fail to account for unplanned disruptions such as last-minute absences. These absences compromise care quality, create workload imbalances, and force costly last-minute adjustments. Existing models rarely integrate predictive insights or proactive mechanisms to handle such volatility. The core challenge addressed in this work is to design a scheduling and rescheduling system that anticipates and reacts to daily absences with minimal disruption, while maintaining fairness, regulatory compliance, and staffing quality. |
| Description: | Mémoire de Projet de Fin d’Études : Génie Industriel.Management industriel : Alger, École Nationale Polytechnique : 2025 |
| URI/URL: | http://repository.enp.edu.dz/jspui/handle/123456789/11342 |
| Collection(s) : | Département Génie industriel : Management Industriel |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| PFE.2025.indus.CHORFI.Hadil.pdf | PI01925 | 2.31 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.