Performance prediction of a reverse osmosis system using machine learning

Show simple item record

dc.contributor.author Britah, Adem
dc.contributor.author Belala, Haithem Abderrahmane
dc.contributor.other Tadjine, Mohamed, Directeur de thèse
dc.contributor.other Chakir, Messaoud, Directeur de thèse
dc.date.accessioned 2024-10-10T08:44:32Z
dc.date.available 2024-10-10T08:44:32Z
dc.date.issued 2024
dc.identifier.other EP00736
dc.identifier.uri http://repository.enp.edu.dz/jspui/handle/123456789/11016
dc.description Mémoire de Projet de Fin d’Études : Automatique : Alger, École Nationale Polytechnique : 2024 fr_FR
dc.description.abstract The reverse osmosis process holds great importance in the water treatment industry. Despite its common use, this process suffers from membrane fouling, which affects the quality of the produced water and the performance of the membrane itself. So far, the operation of reverse osmosis systems relies on the operators’ experience, with maintenance activities carried out according to predefined schedules or criteria. This work involves developing a sliding mode observer-based fouling estimation, and using various machine learning techniques to provide real-time predictions and maintenance recommendations. The results provide valuable insights into the performance and suitability of these estimation approaches. fr_FR
dc.language.iso en fr_FR
dc.subject Desalination fr_FR
dc.subject Reverse osmosis fr_FR
dc.subject Modeling fr_FR
dc.subject Membrane fouling fr_FR
dc.subject Fouling prediction fr_FR
dc.subject Machine learning fr_FR
dc.subject Long short-term memory fr_FR
dc.subject Transformer fr_FR
dc.subject Sliding mode observer fr_FR
dc.title Performance prediction of a reverse osmosis system using machine learning fr_FR
dc.type Thesis fr_FR


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account