dc.contributor.author |
Raibia, Khalil, |
|
dc.contributor.author |
Khelfaoui, Abdelkader |
|
dc.contributor.other |
Achour, Hakim, Directeur de thèse |
|
dc.contributor.other |
|
|
dc.date.accessioned |
2025-10-02T14:12:15Z |
|
dc.date.available |
2025-10-02T14:12:15Z |
|
dc.date.issued |
2025 |
|
dc.identifier.other |
EP00891 |
|
dc.identifier.uri |
http://repository.enp.edu.dz/jspui/handle/123456789/11191 |
|
dc.description |
Mémoire de Projet de Fin d’Études :Automatique : Alger, École Nationale Polytechnique |
fr_FR |
dc.description.abstract |
This thesis presents a pipeline for mapless navigation of mobile robots, where decision-
making and control are handled in separate stages. A Deep Reinforcement Learning (DRL)
agent, trained with artificial neural networks, generates velocity commands that allow the robot
to reach a goal while avoiding obstacles, using only onboard sensor data. These commands are
then passed to a fuzzy Takagi-Sugeno (T-S) controller, which ensures accurate and robust
trajectory tracking. In the single-agent case, the DRL-based navigation is compared with
a classical navigation approach. The framework is further extended to a multi-robot setup,
demonstrating decentralized coordination in shared environments. Simulation results validate
the effectiveness and adaptability of the proposed pipeline. |
fr_FR |
dc.language.iso |
en |
fr_FR |
dc.subject |
mapless navigation |
fr_FR |
dc.subject |
Deep Reinforcement Learning |
fr_FR |
dc.subject |
artificial neural networks |
fr_FR |
dc.subject |
fuzzy |
fr_FR |
dc.subject |
T-S controller |
fr_FR |
dc.subject |
trajectory tracking |
fr_FR |
dc.subject |
mobile robots |
fr_FR |
dc.title |
Deep Reinforcement Learning based mapless navigation and control of mobile robots. |
fr_FR |
dc.title.alternative |
Navigation autonome sans carte basée sur l’Apprentissage par Renforcement Profond et commande des robots mobiles |
fr_FR |
dc.type |
Thesis |
fr_FR |